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Abstract: Following the first COVID-19 infected cases, Malta rapidly imposed strict lockdown
measures, including restrictions on international travel, together with national social distancing
measures, such as prohibition of public gatherings and closure of workplaces. The study aimed
to elucidate the effect of the intervention and relaxation of the social distancing measures upon
the infection rate by means of a trendline analysis of the daily case data. In addition, the study
derived a predictive model by fitting historical data of the SARS-CoV-2 positive cases within a
two-parameter Weibull distribution, whilst incorporating swab-testing rates, to forecast the infection
rate at minute computational expense. The trendline analysis portrayed the wave of infection to fit
within a tri-phasic pattern, where the primary phase was imposed with social measure interventions.
Following the relaxation of public measures, the two latter phases transpired, where the two peaks
resolved without further escalation of national measures. The derived forecasting model attained
accurate predictions of the daily infected cases, attaining a high goodness-of-fit, utilising uncensored
government-official infection-rate and swabbing-rate data within the first COVID-19 wave in Malta.
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1. Introduction

Upon the identification of a novel coronavirus in China in January 2020, infections
caused by the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread
worldwide [1]. Coronavirus disease 2019 (COVID-19) cases have been reported to be highly
infectious and carry substantial morbidity and mortality [2]. Despite precautionary measures
promoted by societal institutions, the impact of COVID-19 on healthcare systems has been
significant, overwhelming hospital bed capacity and intensive care resources [3–5]. In an
effort to ‘flatten the curve’, governments have implemented varying public health measures,
which, at the most extreme, have involved lockdowns of large cities and countries [6,7].
These measures, however, have incurred substantial costs, and required large-scale logis-
tical efforts to achieve an effective balance between the protection of human health and
the national economy [8]. Studies have indicated that control measures have been effec-
tive [9,10], with a full lockdown imposition being the most effectual manner to mitigate the
spread of the virus [11]. Yet, as the categories of control measures imposed by a government
may vary substantially, very distinct cohorts of the population can truly be affected. As a
result, analysing the virus spread in relation to discretised imposed measures has been a
constraint in epidemiological analyses [12,13].

In order to constitute data-driven decisions, forecasting models by means of distribu-
tion fitting are commonly utilised to implement interventions within speculated timespans.
These models have provided quantitative infection case projections that allow policymakers
to plan appropriate interventions [14]. Of particular importance is short-term hospital
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resource allocation, such as emergency expansion and adoption of patient beds, hospital
wards, or Nightingale hospitals, patient distributions within critical and intensive units, and
diversion/suspension of routine hospital activities to permit functionality within rapidly
changing trends. In turn, this endeavour requires predictive modelling that is ideally
achievable without the need for specialised expertise or computational infrastructure, such
that medical professionals may directly attain the data required for decision-making [15].
Specific enforcement measures must be historically justified to be effective on a national
scale, yet epidemiological studies have not been able to isolate such measures due to
external imported cases.

Dahal et al. [16] investigated transmission dynamics of COVID-19 at national and
regional levels by using laboratory-confirmed RT-PCR data. Utilising dynamic phenomeno-
logical growth models, 10- and 20-day sequential forecasts of reproduction numbers were
performed at weekly intervals over a timespan of two months (March to May 2021). The
forecast indicated a declining trend of COVID-19 cases in Nepal, with a linear trajectory
of COVID-19 incidence during the first wave and a sub-exponential growth pattern in the
second. The study highlighted how computationally light mathematical models can pro-
vide reliable short-term projections and public health planning in such epidemic situations.
Using similar techniques, Pajuelo-Reyes et al. [17] described the transmission of COVID-19
in the Amazonas region of Peru between March and July 2020.

Olumoyin et al. [18] argued that mitigation measures may impact epidemiological
models with constant parameters. As a result, an algorithm was introduced to estimate
the time-varying transmission rate for the COVID-19 pandemic in a background of differ-
ent mitigation measures. Utilising cumulative and daily reported symptomatic infection
numbers, the effect on the basic reproduction number of non-pharmaceutical mitigation
measures, such as early detection of positive cases, subsequent contact tracing, and im-
plementation of social distancing, was simulated. Using error metrics, the accuracy of the
proposed algorithm was demonstrated for Italy, South Korea, the United Kingdom, and
the United States.

The epidemiology of COVID-19 was also studied by Fonseca et al. [19] in the state of
Sergipe, Brazil. The authors showed a positive correlation between the number of cases
and deaths with demographic density. Using social parameters affecting the COVID-19
pandemic in Brazil, Marinho et al. [20] developed models that could be utilised by public
managers for effective decision-making.

Ogwara et al. [21] observed the time-varying reproduction number of SARS-CoV-
2 in Georgia, USA as state and countywide policies were implemented that enforced
and relaxed COVID-19 public health measures. Policy changes were associated with
increases or decreases at different time points. The reproduction number was seen to
increase following the reopening of schools for in-person instruction. Additionally, Fain
and Dobrovolny [22] developed a correlation model for SARS-CoV-2 infections using a
complex partial differential equation mathematical model. The model generated dose–
response curves for peak viral load, time of viral peak, viral growth rate, infection duration,
and area under the viral curve.

Albeit the various studies conducted to establish and forecast the spread of COVID-19
have been impactful, the analyses have either had limitations in establishing the virus
spread causation within a geographic area due to imported cases or incomplete data gather-
ing, or had computationally intensive methodologies in forecasting the virus spread, hence
requiring high-end computing architecture and highly trained analysts. In contrast, the
primary aim of this work, in recognition of the limited imported cases as a result of the in-
ternational travel ban, was to elucidate the effect of the distinct enforcement and relaxation
social distancing measures upon the virus infection rate within the Maltese population
by means of a historical trendline-fitting analysis. Additionally, as short-term hospital
resource allocation and adaptation of routine hospital activities was critical throughout
the pandemic, the secondary aim was developing a computationally efficient, yet accurate,
forecasting model for the COVID-19 infection spread, using SARS-CoV-2 positive-case
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and swab-testing data in Malta, to be solved on commonly utilised office machines and
spreadsheet software for data-driven logistics insights and decision-making.

Malta is a Mediterranean island country with a population of approximately 500,000 in-
habitants. Its first SARS-CoV-2 isolate was reported on 7 March 2020. Following the initial
case, the country experienced an epidemic until the end of July, with a peak in mid-April, in
what was the first wave of COVID-19 in the country. Various interventions were introduced
by the government to address the challenge, with international and national travel bans
being the most substantial. A fundamental component of the national strategy was an
exhaustive track-and-trace strategy, which reached a frequency of almost 2000 swabs per
100,000 residents per week by the end of the first wave.

2. Methodologies
2.1. Trendline Analysis
2.1.1. Data Collection

The daily number of new COVID-19 cases, together with the respective number of
swab-tests taken, were retrieved from the official website of the Ministry of Health in Malta
issued from 21 February 2020 onwards. The key interventions introduced by the Maltese
government throughout the first wave were also identified, together with the dates when
these interventions were implemented and discontinued. These are summarised in Table 1.
It should be noted that, as foreign and local travel had ceased within the island, together
with an effective track-and-trace practice, the virus spread data were deemed to be solely
related to national cases.

Table 1. Intervention enforcement/relaxation measures & dates.

(A) Lockdown Measures Enforcement Date Relaxation Date

International travel ban 21 March 2020 1 July 2020
Lockdown of vulnerable persons 28 March 2020 5 June 2020

National travel ban
(essential travel only

between the Maltese islands)
3 April 2020 4 May 2020

(B) Social Distancing Measures Enforcement Date Relaxation Date

Public transport measures (daily
decontamination;

passenger screening;
standing passengers disallowed; windows open;
air-conditioning system off; no monetary change)

12 March 2020 4 May 2020

Closure of workplaces and
distancing of workers 13 March 2020 5 June 2020

Closure of sports facilities 13 March 2020 5 June 2020
Closure of law courts and local tribunals 13 March 2020 5 June 2020

Closure of religious places 13 March 2020 13 June 2020
Closure of service outlets and public places 16 March 2020 22 May 2020

Closure of education
establishments 21 March 2020 5 June 2020

Closure of non-essential
retail outlets 23 March 2020 4 May 2020

Closure of non-essential
service outlets 23 March 2020 22 May 2020

Measures to protect elderly
and high-risk groups 28 March 2020 5 June 2020

Prohibition of public gatherings
(limits of 3 persons, 4 persons, and 6 persons) 30 March 2020

4 May 2020,
22 May 2020,
5 June 2020

Suspension of visits to homes
for the elderly and the national hospital 8 April 2020 25 May 2020
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2.1.2. Trendline Functions

In an effort to establish the trend by which the cumulative number of infections varied
over the first pandemic wave in Malta, a trendline analysis was implemented. Primarily,
a linear function (Equation (1)), was utilised upon the case data. Subsequently, logistic
functions, based upon the cumulative distribution functions of the Exponential distribution
(Equation (2)) and the Weibull distribution (Equations (3)–(5)), were implemented. The
Weibull-based logistic function was developed further such that three distinct functions
were coupled, establishing a multi-logistic function.

Nc = Mc1n (1)
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)
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where Nc is the cumulative number of positively diagnosed cases, n is the day number,
Mc1, Mc2, Mc3 are the case-dependent magnitude parameters, λc1, λc2, λc3 are the case-
dependent scale parameters, and kc1, kc2, kc3 are the case-dependent shape parameters.

In relation to the cumulative infected cases, a daily infected case trendline analysis was
undertaken by implementing the arithmetic time-derivative of the cumulative functions
(Equations (6)–(10)). .
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where
.

Nc is the number of positive cases per day.
In a similar manner, the cumulative number of swab-tests over the first wave was

analysed by utilising a linear function (Equation (11)) and a Weibull-based logistic function
(Equation (12)).

Ns = Ms1·(n + 14) (11)

Ns = Ms1·
(

1 − e−( n+14
λs1

)
ks1
)

(12)

where Ns is the cumulative number of swab-tests, Ms1 is the swab-test-dependent magni-
tude parameter, λs1 is the swab-test-dependent scale parameter, and ks1 is the swab-test-
dependent shape parameter.

In relation to the cumulative swab-test number, a daily swab-test trendline analysis
was undertaken by implementing the arithmetic time-derivative of the cumulative functions
(Equations (13) and (14)). .
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where
.

Ns is the number of swab-tests per day.

2.2. Predictive Analysis

A prediction model was derived by utilising a logarithmic growth rate equation for
the daily diagnosed cases (Equation (15)).

Kcn =
∆ ln Ncn

∆n
= ln(Ncn)− ln

(
Ncn−1

)
(15)

where Ncn is the cumulative number of positively diagnosed cases on a given day, n is the
considered day, and Kcn is the daily positive-case logarithmic growth rate.

From the formula, the necessary model output was Ncn , and hence, Kcn was required
to be determined. To statistically predict Kcn , a two-parameter Weibull distribution fit was
implemented upon the logarithmic growth rate data of the previous days to establish the
Weibull scale and shape parameters. The parameters were rolling parameters as the process
was done daily throughout the time period. The scale and shape parameters were then
utilised within an inverse cumulative distribution in the form of a quantile function for the
Weibull distribution to establish a Kcn range (Equation (16)).

Kcn = Q(p; λc; kc) = λc
kc
√
− ln(1 − F(Kcn)) = λc

kc
√
− ln(1 − p) (16)

where p is the occurrence probability, λc is the case-dependent Weibull scale parameter,
and kc is the case-dependent Weibull shape parameter.

In addition, to account for the variation in daily swab-testing, and overcome the
assumption of a constant swab-testing-rate, a swab-test factor (cs) was introduced and
coupled with Kcn (Equation (17)).

Ncn = exp
(
ln
(

Ncn−1

)
+ csKcn

)
(17)

The swab-test coefficient was established to be the ratio between the swab-test log-
arithmic growth rate on day n and the average swab-test logarithmic growth rate of the
considered prior days (Equation (18)).

cs =
Ksn

1
t ·∑n−1

i=n−t Ksi

=
ln(Nsn)− ln

(
Nsn−1

)
1
t ·∑n−1

i=n−t
(
ln(Nsi )− ln

(
Nsi−1

)) (18)

where Ksn is the swab-test daily logarithmic growth rate, t is the number of considered
prior days, and Nsn is the cumulative number of swab-tests on a given day.

By incorporating the prior equations, the predictive model was derived to establish
the daily number of infected cases over a time period (Equations (19)–(21)).
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3. Results
3.1. Trendline Analysis
3.1.1. Positive Infected-Case Function

Applying Equations (1)–(5) to the cumulative dataset attained the data-driven vari-
ables detailed in Table 2. The linear function attained the least similarity, whereas the triple
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Weibull-based logistic function attained the highest similarity, with coefficients of determi-
nation (R2) of 0.860 and 0.998, respectively. The functions were graphically superimposed
upon the dataset, as illustrated in Figure 1.
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Table 2. Cumulative infected cases trendline data.

Equation Mc1 λc1 kc1 Mc2 λc2 kc2 Mc3 λc3 kc3 R2

Equation (1) 6.486 - - - - - - - -
0.80695% CI

6.677 - - - - - - - -
6.296

Equation (2) 885.6 78.32 - - - - - - -
0.97095% CI

940.3 87.12 - - - - - - -
830.9 69.53

Equation (3) 680.0 49.61 1.581 - - - - - -
0.99195% CI

691.2 51.01 1.655 - - - - - -
668.9 48.21 1.508

Equation (4) 434.8 31.38 2.628 234.3 79.05 4.687 - - -
0.99695% CI

472.0 33.12 2.836 273.8 82.32 5.888 - - -
397.6 29.64 2.419 194.7 75.78 3.486

Equation (5) 484.6 33.64 2.486 64.03 100.2 12.25 123.4 73.59 17.98
0.99895% CI

495.6 34.41 2.606 82.83 103.7 20.26 145.1 74.73 23.93
473.6 32.86 2.367 45.23 96.69 4.327 101.7 72.45 12.03

Implementing Equations (6)–(10) to the daily infected cases dataset attained the data-
driven variables detailed in Table 3. The linear-derivative function attained the least
similarity, whereas the triple Weibull-based logistic-derivative function attained the high-
est similarity, with coefficients of determination (R2) of 0.0 and 0.566, respectively. The
functions were graphically superimposed upon the dataset, as illustrated in Figure 2.
Furthermore, as the triple Weibull-based logistic-derivative function attained the highest
similarity, portraying a high correspondence, the key dates on which the nationally im-
posed measures were enforced or relaxed (see Table 1) were additionally incorporated, as
illustrated in Figure 3.

Table 3. Daily infected cases trendline data.

Mc1 λc1 kc1 Mc2 λc2 kc2 Mc3 λc3 kc3 R2

Equation (6) 4.542 - - - - - - - -
0.095% CI

5.427 - - - - - - - -
3.657

Equation (7) 818.4 93.88 - - - - - - -
0.18395% CI

1077 137.1 - - - - - - -
560.0 50.71

Equation (8) 618.8 50.32 1.568 - - - - - -
0.37695% CI

716.3 57.79 1.809 - - - - - -
521.3 42.84 1.327

Equation (9) 371.1 30.77 2.357 222.4 76.42 5.118 - - -
0.45995% CI

476.9 36.07 2.836 273.8 82.32 5.888 - - -
265.3 29.64 2.419 194.7 75.78 3.486

Equation (10) 429.6 33.94 2.168 51.61 99.86 18.60 124.8 74.35 17.37
0.55695% CI

495.6 34.41 2.606 82.83 103.7 20.26 145.1 74.73 23.93
473.6 32.86 2.367 45.23 96.69 4.327 101.7 72.45 12.03
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Figure 3. Comparison between the derived trendline fit (Equation (10)) and the 5-day average,
together with the intervention enforcement/relaxation dates.

3.1.2. Swab-Test Function

Applying Equations (11) and (12) to the cumulative swab dataset attained the data-
driven variables detailed in Table 4. The linear function attained the least similarity, whereas
the Weibull-based logistic function attained the highest similarity, with coefficients of deter-
mination (R2) of 0.901 and 0.999, respectively. The functions were graphically superimposed
upon the dataset, as illustrated in Figure 4.

Implementing Equations (13) and (14) to the daily swab count dataset attained the
data-driven variables detailed in Table 5. The linear-derivative function attained the least
similarity, whereas the Weibull-based logistic-derivative function attained the highest simi-
larity, with coefficients of determination (R2) of 0.0 and 0.762, respectively. The functions
were graphically superimposed upon the dataset, as illustrated in Figure 5. Furthermore,
the infection-rate positivity ratio was established by coupling Equations (10) and (14),
illustrated in Figure 6. The key dates on which the nationally imposed measures were
enforced or relaxed (see Table 1) were additionally incorporated.
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Table 4. Cumulative swab-test trendline data.

Ms1 λs1 ks1 R2

Equation (11) 673.0 - -
0.90195% CI

650.1 - -
695.9

Equation (12) 118,770.3 104.9 2.652
0.99995% CI

117,054.6 103.7 2.612
120,486.0 106.1 2.692
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Table 5. Daily swab-tests trendline data.

Ms1 λs1 ks1 R2

Equation (13) 749.8 - -
0.095% CI

678.8 - -
820.9

Equation (14) 127,657.8 110.0 2.499
0.76295% CI

118,635.2 105.2 2.317
136,680.4 114.8 2.681
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3.2. Predictive Analysis

The forecasting model was applied for the entire first wave (7 March–15 July 2020), and
a portion of the second wave (16 July–31 August 2020), to establish the continuity capacity of
the model. Employed within a one-day (Figure 7) to a five-day (Figures A1–A8) prediction
framework, the statistical model attained good agreement with the dataset, achieving a
global coefficient of determination (R2) of 0.9995 to 0.9955 between the statistical model
median outputs and the actual dataset. Good agreement was also attained for predictions
beyond five days. Particularly for the one-day, two-day, and three-day forecasting, solely
4.5%, 7.8%, and 12.3% of the data-points fell outside of the 0th–95th percentile prediction
band, respectively. The explicit statistical modelling methodology was therefore deemed to
have been validated to a high degree of accuracy.
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4. Discussion

Implementing a trendline analysis upon the daily case dataset, as opposed to a sole
moving average, permitted superimposing the dates of enforcement and relaxation mea-
sures to qualitatively shed light on the effect of the measures along the trend [23]. The
infection rate trend increased exponentially throughout the initial days of the pandemic,



Epidemiologia 2023, 4 44

prior to social measures. Upon the implementation of enforcement measures related to
public transport and closure of workplaces, sports facilities, law courts, religious places,
and service outlets, the rate-of-change of the daily cases diminished. This acknowledged
the effect of the social-distancing enforcement measures, inhibiting the spread of the virus.
The subsequent enforcement measures related to the prohibition of public gatherings,
and closure of education establishments and non-essential retail/service outlets further
decreased the rate-of-change steadily, attaining a peak average infection rate of 11.5 cases
per day on 31 March.

The relaxation of public transport measures, re-opening of non-essential retail outlets,
and increased size of public gatherings (to a maximum of three persons) on 4 May resulted
in the second phase, occurring with an exponential increase in infection rate. The rate,
however, peaked rapidly and diminished to a low value within a short timeframe of six
days. The third phase was evident following relaxation measures of public gatherings (to a
maximum of four persons) and re-opening of service outlets and public places on 22 May.
This had a lower rate-of-change than the second phase and rapidly levelled off by 15 July.

The initiation of the second and third phases was consistent with the relaxation of pub-
lic gathering social distancing measures [24]. As higher numbers of persons were permitted
to be in close contact, the possibility of virus transmission increased. Nevertheless, the
second and third peaks were much lower and a substantial drop in infection-rate number
followed with no new enforcement measures implemented. The reason for this may be
attributed to societal diligence in re-orienting itself to effective social distancing [25]. The
wearing of masks or visors in shops and on public transport had become obligatory by law
on 4 May and may have contributed to the achievement of control in the second and third
peaks [26]. A more likely hypothesis, however, may be the effectiveness of test-and-trace
that, by this time, had been expanded and consolidated [27]. Approximately 110,000 swab-
tests were performed within the first wave, where the peak median swab-tests per day was
found to be approximately 1200 on 18 May 2020. Along the second phase time-period, the
mean swabbing frequency had increased to over 9000 swabs per week, with peak median
positivity ratios of 2.34, 0.95, and 0.34 cases per hundred swabs identified within the first,
second, and third phases, respectively. Every positive case was isolated within 24 h of
testing with concurrent quarantine of significant contacts. This was possible given the low
positivity rate during the second and third phases, which was below 1%. By means of
the trendline, it may be argued that, as testing was increasing, had the relaxation measure
of 4 May been implemented two weeks later, it would have allowed the infection-rate
to level off. Accordingly, the relaxation measure of 1 July would potentially have been
implemented earlier.

With regard to the forecasting model, the derivation of an explicit statistical model
based upon the logarithmic growth rate was found to be an accurate and computationally
feasible methodology, achieving a global R2 of over 0.99 and a total computation time
of less than five seconds on a typical office machine. This methodology attained the
logical implementation of solving for the accumulative number of cases on a particular day
(Nn) by determining the logarithmic growth rate (Kn) via a statistical analysis utilising an
inverse cumulative distribution (quantile) function based on a Weibull distribution, together
with incorporating a swab-test coefficient (cn) to account for the correlation between tests
undertaken and positively infected cases.

Incorporating a Weibull distribution fit was advantageous due to its adaptability,
permitting the comprehension of both symmetric and non-symmetric distributions whilst
interpolating between the exponential distribution and the Rayleigh distribution via a
two-parameter implementation. The Weibull cumulative distribution function put for-
ward an explicit function, encompassing two parameters that can be estimated from a
dataset, and hence efficiently solvable, in contrast to the application of implicit formulation
functionality [28]. This aspect was deemed imperative as high-end statistical approaches
tend to lie beyond the statistical knowledge-capacity of medical professionals and the
processing power of office machines and commonly utilised spreadsheet software [29,30].
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In addition, this model permitted the utilisation of historical data of positive cases and
swab-tests, rather than implementing trends that disregard swab-testing correlation. This
model may distinctively be utilised for short-to-medium term quantitative risk assessments.
Furthermore, week-long facility logistic decisions, such as the number of beds in emergency
wards, ventilators, and on-call staff personnel, may be substantiated utilising the model.

By collating and discussing the different statistical modelling and prediction tech-
niques for COVID-19, Yadav and Akhter [31] pinpointed the significance of utilising a
single distribution to fit and represent the true virus spread, such that effective data-driven
policies may be made. The implemented two-parameter Weibull distribution methodology
implemented within this work succeeded in achieving this critical indication. The model,
however, is limited by the diminishing capacity of the distribution if left-censored data
are utilised [32,33]. Moreover, when furthering the forecasting to a larger timespan, the
deviation from the true result may increase substantially as a result of the fundamental
approach [34]. Nonetheless, Weibull analyses are typically utilised for medical statistics as
the methodology has been acknowledged to sustain accuracy despite an extremely small
dataset [35]. In fact, within the context of SARS-CoV-2 statistical analyses, this approach has
been notably applied to establish the incubation period of the virus [36,37]. As a result, a
rudimentary yet accurate forecasting model was established, encompassing the imperative
capacity of accurately predicting positive cases within the termination of one wave and the
initiation of another.

5. Conclusions

This study presented a novel statistical model, incorporating swab-testing rates cou-
pled with Weibull-distributed historical data of the SARS-CoV-2 positive-case logarith-
mic growth rate, to predict the virus infection rate and establish an accurate projection
through a numerically explicit framework. The model was validated utilising infection
rate data within Malta. Furthermore, an epidemiological elaboration of infection trends
was established utilising trendline analyses for the purpose of evaluating social distancing
enforcement and relaxation measures upon the virus spread within the population.
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