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Abstract: Vaccination strategies to lessen the impact of the spread of a disease are fundamental to
public health authorities and policy makers. The socio-economic benefit of full return to normalcy
is the core of such strategies. In this paper, a COVID-19 vaccination model with efficacy rate is
developed and analyzed. The epidemiological parameters of the model are learned via a feed-
forward neural network. A hybrid approach that combines residual neural network with variants of
recurrent neural network is implemented and analyzed for reliable and accurate prediction of daily
cases. The error metrics and a k-fold cross validation with random splitting reveal that a particular
type of hybrid approach called residual neural network with gated recurrent unit is the best hybrid
neural network architecture. The data-driven simulations confirm the fact that the vaccination rate
with higher efficacy lowers the infectiousness and basic reproduction number. As a study case,
COVID-19 data for the state of Tennessee in USA is used.

Keywords: deep learning; data-driven; COVID-19; ResNet; RNN; vaccination strategy; k-fold cross
validation

1. Introduction

The spread of SARS-CoV-2 virus began in Wuhan, China December, 2019 [1]. The
virus spread across the globe quickly, affecting many lives and causing deaths, thereby
making the World Health Organization (WHO) [1] to declare it a pandemic and naming it
COVID-19 [1,2]. Studies on mitigation measures such as social distancing, quarantining,
and government shut-downs for controlling the disease show the need for an effective
vaccination program. The rate at which the population is vaccinated and its efficacy are
two main factors in an effective vaccination program [3]. There is a need for coordinated
efforts by all stakeholders such as policy makers, pharmaceutical companies, researchers,
epidemiological and health professionals to effectively champion vaccination campaigns
for curbing the spread of the disease [4]. Recent studies on vaccine efficacy [5] and vaccine
confidence [6] show the importance of an effective vaccination strategy.

Mathematical models have been used to study the dynamics of an epidemic using
systems of differential Equations [7–9]. The model used in this work is called the SIR
model: it divides the population into three groups, namely Susceptible (S), Infected (I),
and Recovered (R). The extensions of this basic model have been applied to COVID-19 in
recent times [10]. During a pandemic period, the main challenge in this type of model is
ascertaining the parameters of the model. Conventional least square method can be used
to [11] estimate reasonable constant and time-dependent parameters [12].

Data-driven models that make use of deep learning architectures have been applied
to epidemiological models. Raissi et al. [13] used physics informed neural network (PINN)

Epidemiologia 2021, 2, 564–586. https://doi.org/10.3390/epidemiologia2040039 https://www.mdpi.com/journal/epidemiologia

https://www.mdpi.com/journal/epidemiologia
https://www.mdpi.com
https://orcid.org/0000-0002-7585-0742
https://orcid.org/0000-0001-9896-1333
https://doi.org/10.3390/epidemiologia2040039
https://doi.org/10.3390/epidemiologia2040039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/epidemiologia2040039
https://www.mdpi.com/journal/epidemiologia
https://www.mdpi.com/article/10.3390/epidemiologia2040039?type=check_update&version=2


Epidemiologia 2021, 2 565

to learn constant parameters of the Influenza model. Kharazmi et al. [12] applied PINN
to learn time-dependent parameters of both integer and fractional order epidemiological
models. Long et al. [2] showed how PINNis used to learn the time-dependent transmission
rate for Susceptible (S), Infected (I), and Recovered (R), and Death (D) (SIRD model), while
Grimm et al. [14] presented the effectiveness of using PINN to learn the time-dependent
transmission rate of SIR and Susceptible (S), Exposed (E), Infected (I), and Recovered (R)
(SEIR) models.

Conventional forecasting techniques such as Auto-Regressive Integrated Moving
Average (ARIMA) have been used to make short-term forecasts for confirmed cases of
COVID-19 in different countries [15]. Other studies utilized machine learning algorithms,
such as Support Vector Machine (SVM), Linear regression, and Exponential Smoothing
(ES), to make future predictions of COVID-19 [16]. Recent applications of recurrent neural
networks (RNN) with its variant Long Short Term Memory (LSTM) to forecast COVID-19
in Canada, Italy, and USA showed reasonable performance in prediction [17]. The authors
in [4] applied LSTM, Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU)
for data-driven simulations of COVID-19 data to different countries. Uncertainties arise
from the model, the parameters, and other external factors that impact the accuracy in
prediction [11]. There is a need to quantify the uncertainty associated with models [18] for
forecasting the trend analysis of COVID-19.

Residual Neural Network (ResNet) is considered, which is capable of learning dy-
namical systems [19]. The residual connections help to improve accuracy in training and
prediction, and are considered as time-stepping techniques modelled after adaptive numer-
ical methods using the concept of integration. Chen et al. [20], in their recent work, showed
that the generalized ResNet has the capability of learning intricate unknown dynamic
structures of chaotic systems and predicting results with higher accuracy than the standard
ResNet structure.

In this paper, a hybrid approach based on residual neural network combined with
variants of recurrent neural network for reliable and accurate short-term predictions is con-
sidered. The hybrid approach consists of ResNet-LSTM, ResNet-BiLSTM, and ResNet-GRU.
The impact of COVID-19 vaccination model with efficacy on each group of population is
analyzed. The feed-forward neural network solves the inverse problem which incorporates
the epidemiological parameters in the loss function. Error metrics for data-driven simula-
tions are discussed to support the claim of effectiveness for hybrid approach. Furthermore,
error metrics and a k-fold cross validation with random splitting are discussed. The paper
is organized as follows. Section 2 gives an overview of materials and methods in terms
of mathematical model including the Susceptible, Infected, Recovered Vaccine model,
non-negativity and boundedness of the model, data preprocessing, error metrics and k-fold
cross validation. Section 3 presents the results and discussion of data-driven simulations
along with error metrics. Section 4 summarizes the work and presents conclusions.

2. Materials and Methods
2.1. Mathematical Model

Given the following population groups

S(t): The individuals that are susceptible per time

I(t): The individuals that are infected per time

R(t): The individuals that are recovered per time

N(t): The total population per time



Epidemiologia 2021, 2 566

dS(t)
dt

= −β
S(t)I(t)

N(t)
− vηS(t)

dI(t)
dt

= β
S(t)I(t)

N(t)
− γI(t)

dR(t)
dt

= γI(t) + vηS(t),

(1)

with S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, N(t) = S(t) + I(t) + R(t), β transmission rate, γ
recovery rate, efficacy rate η and vaccination rate v. The population per time is assumed to
be constant throughout the vaccination regime.

2.1.1. Non-Negativity of the Model

Theorem 1. If S0 ≥ 0, I0 ≥ 0, R0 ≥ 0 then the solutions of the model 1 remain non-negative for
all t > 0 [21].

Proof. From model (1)

dS
dt
≥ −vηS. (2)

Integrating Equation (2) leads

S(t) ≥ S0e−vηt ≥ 0.

Thus, S(t) remains non-negative for all t > 0. Similarly, I(t) ≥ 0, R(t) ≥ 0 all remains
non-negative.

2.1.2. Boundedness of the Model

Theorem 2. All the solutions of the model with non-negative initial conditions are bounded and

N(t) ≤ 1
vη

for all t > 0 [21].

Proof. The population growth can be written as

dN
dt

=
dS
dt

+
dI
dt

+
dR
dt

(3)

It can be seen from Equation (3) that

dN
dt

= −vηN (4)

Integrating both sides of (4) gives the solution for N(t)

N(t) = (N0 −
1

vη
)e−vηt (5)

Thus, when t→ ∞, it can be seen

N(t) ≤ 1
vη

(6)

According Theorem 1 and Equation (6),

0 ≤ N(t) ≤ 1
vη
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2.1.3. The Basic Reproduction Number R0

This refers to the number of people expected to be directly infected by one person
who gets the virus [11]. It is defined as

R0 =
β

γ
. (7)

When the value of R0 < 1, then the disease will disappear at some time in the future.
The opposite is true for R0 > 1 with severe effects. A R0 = 1 indicates that the spread of
the virus is stable and persistent. In a vaccination regime, the current reproduction number
Rt is defined as the reproduction number per time. It can be computed as

Rt =
βt

γt
. (8)

This depends on a time-varying transmission rate βt and recovery rate γt. The effective
reproductive number Re f f is defined as

Re f f = R0
S
N

. (9)

where R0 is the basic reproduction number at a period of time and S is the number of
susceptible individuals and N is the population size of a geographical area.

2.2. Deep Learning Algorithms
2.2.1. Feedforward Neural Network (FNN)

The feed-forward neural network (FNN) is a type of deep neural network architecture
whose node connections are simple and straightforward but not cyclic. The network
consists of input, hidden, and output layers. The input layer takes in data and some
neurons are applied then propagated forward to the hidden layers, where some linear
or non-linear activation functions are applied to transform the data. In the first hidden
layer, the weighted sum of the input data through the activation function is computed and
propagated through the rest of the hidden layers. A bias term is added to each output from
each hidden layer. Thus, the output layer processes the net output from the last hidden
layer to produce the desired outcome. If the task is a classification task, then the output
layer will produce discrete outcomes but if the task is a regression task, then the output
layer will produce a continuous-valued outcome [2,22]. The mathematical formula that
transforms the data from one layer to the other is defined as follows [23]:

zl+1
j =

nl

∑
i

wl
ij fl−1(zl

j) + bl , (10)

where wl
ij is the weights between the previous node ith and current node jth, bl is the

bias for the lth layer, f represents the activation function, nl is the number of neurons,
zl

i , i = 1, . . . , nl , shows the output of the ith node in (l − 1)th layer. In this work, the
activation functions used are the the tangent hyperbolic function

tanh =
ex − e−x

ex + e−x , (11)

and softplus function

f (x) = ln(1 + ex). (12)

Different loss functions and optimizers such as Adam or gradient descent method [2]
are used to build and train the network to get the output. The difference between the
network’s output and the actual data is computed as the error.
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Epidemiology Informed Neural Network (EINN)
The epidemiology informed neural network (EINN) is inspired by a physics informed
neural network (PINN) [13] which incorporates the epidemiological parameters of the
model and initial values into the loss function. . The output from EINN satisfies the
differential equations in model (1). This is achieved by encoding the the residuals of
the model (1) into the loss function. The method of automatic differentiation [24] is
used to compute the derivatives of the output with respect to time for each residual
equation. In this study, the mean squared error (MSE) is encoded as the loss function
which consists of

Loss = MSEdata + MSEsir + MSEU0 , (13)

where

MSEdata =
1
M

M

∑
j=1
||I(tj)− Î(tj)||22

MSEsir =
1
M

3

∑
i=1

M

∑
j=1
||ei(tj, β, γ)||22

MSEU0 =
1
M

M

∑
j=1
||S0 − Ŝ0||22

+
1
M

M

∑
j=1
||I0 − Î0||22

+
1
M

M

∑
j=1
||R0 − R̂0||22,

(14)

where the residual ei, i = 1, . . . , 3

e1(tj, β, γ) :=
dS(tj)

dtj
+ β

S(tj)I(tj)

N(tj)
+ vηS(tj)

e2(tj, β, γ) :=
dI(tj)

dtj
− β

S(tj)I(tj)

N(tj)
+ γI(tj)

e3(tj, β, γ) :=
dR(tj)

dtj
− γI(tj)− vηS(tj).

(15)

The Adam optimizer which is a first order gradient-based optimization is employed to
update the networks’ parameters by minimizing the loss function.
Figure 1 shows the schematic diagram of the epidemiology informed neural network
(EINN). The data is preprocessed by using a mini-max scaler factor to allow for smooth
training in the neural network. 80 neurons are used for each of the five hidden layers.
The Adam optimizer is used in all the data-driven simulations. In order to impose the
epidemiological constraints, the Latin hypercube sampling [25] is employed to sample
3000 data points and the spline cubic interpolation is also used to sample 5000 data
points. The tangent hyperbolic activation function is applied to all the hidden layers
while the softplus activation is applied to the output layer. Implementation of EINN is
done in Tensorflow which is run on Python.
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Figure 1. Schematic diagram of Epidemiology Informed Neural Network (EINN). The processed
daily infected data at time t is passed into the network as seen in red diamond input layer. A
hyperbolic tangent activation function is applied to the processed data in the hidden layer. The
loss function is defined to incorporate the initial values, data and the residual from the systems of
differential equations in (1) in yellow circle. The output layer produces the learned β, γ and the
infected group.

The EINN Algorithm 1 for estimating the epidemiology parameters is presented
as follows.

Algorithm 1 Epidemiology Informed Neural Network (EINN)
1: set input arguments

tj, j = 1, . . . , M
vaccination rate v
efficacy rate η
epidemiology parameters β, γ
Initial values of the SIR model

2: construct and run neural network
specify weights, biases and activation

3: compute the residuals
ei = ŷi − yi

4: calculate loss function
encode the epidemiology

Loss = MSEdata + MSESIR + MSEU0

5: train the neural network
set epochs

6: return the solution
the epidemiology parameters β∗, γ∗ and infected data I∗.

In Algorithm 1, a sample code for computing the residuals is given below.

Epidemiologia 2021, 1 7

def residual(t):
s, i, r =sir_network(t) #The network for sir model
s_t =tf.gradients(s,t)[0] #change in susceptible with respect to time
i_t =tf.gradients(i,t)[0] #change in infected with respect to time
r_t =tf.gradients(r,t)[0] #change in recovered with respect to time
e1 =s_t +(beta*s*i)/N +v*eta*s #residual in susceptible
e2 =i_t -(beta*s*i)/N +gamma*i #residual in infected
e3 =r_t -gamma*i-v*eta*s #residual in recovered
return e1, e2 , e3

The tf.gradients is responsible for the automatic differentiation in Tensorflow which
computes the derivatives of the output of the neural network with respect to time. The loss
function in Equation (13) is calculated. The network is trained using different epochs. In
particular, the epochs is set at 1400 for vaccination rate at 0%, and 800 for the rest of the
vaccination rates at 0.5%, 1%, 2%, 3%, 6%, 10%.

2.2.2. Recurrent Neural Network (RNN)

Recurrent neural networks are networks that are used to learn problems involving
sequential data [4]. In this work, all the variants of RNN are implemented in PyTorch.

1. Long Short-Term Memory (LSTM)
The long short-term memory (LSTM) is a variant of recurrent neural network (RNN)
used to handle sequential data like time series data. It was developed to solve the
vanishing gradient problem [26]. The LSTM has three gates that control the flow of
information: input, forget, and output gates. These gates have logistic functions that
control the weighted sums obtained during training by backpropagation [4]. The cell
state manages the input and forget gates. The output comes from either the output
gate or hidden state. The unique feature of this network is that it is able to learn long
dependencies within the data and able to effectively handle time series data. Given
the input data xt, and the number of hidden units h, the gates of the LSTM can be
defined as follows.

• Input Gate: It = σ(XtWxi + Ht−1Whi + bi)
• Output Gate: Ft = σ(XtWx f + Ht−1Wh f + b f )

• Forget Gate: Ot = σ(XtWxo + Ht−1Who + bo)

• Intermediate cell state: C̃t = tanh(XtWxc + Ht−1Whc + bc)

• Cell State (next memory input): Ct = Ft ◦ Ct−1 ◦ C̃t
• New State: Ht = Ot ◦ tanh(Ct),

where

• Wxi, Wx f , Wxo, Who, Wh f are the weight parameters and bi, b f , bo are the bias pa-
rameters of each respective gate.

• Wxc, Whc denote the weight parameters, and bc is the bias parameter and ◦ is the
element-wise multiplication. The value of C̃t is ascertained from the output of
memory cells Ct−1 and the current time step C̃t.

• ◦ is the element-wise multiplication.

Figure 2 shows LSTM architecture. The input, forget, and output gates are represented
by It, Ft, Ot, respectively. The memory cells and memory cell content are denoted,
respectively, as C and C̃.
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state manages the input and forget gates. The output comes from either the output
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where
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• Wxc, Whc denote the weight parameters, and bc is the bias parameter and ◦ is the
element-wise multiplication. The value of C̃t is ascertained from the output of
memory cells Ct−1 and the current time step C̃t.
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respectively, as C and C̃.

Figure 2. LSTM architecture.
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2. Bidirectional LSTM
The improved version of the LSTM is bidirectional LSTM (BiLSTM). The network is
structured in a way that allows for both backward and forward propagation through
the sequential layers [4]. In contrast to LSTM (which only allows for forward pass
through the current state), the BiLSTM’s unique advantage is that there is an improve-
ment in accuracy in state reconstruction. This structure combines two hidden states,
which allows for information flow from the forward layer to the backward layer. The
forward, backward, and output sequences are defined as follows:

• Forward hidden:
−→
H t = L(XtWx

−→
H +
−→
H t−1W−→H−→H + b−→H )

• Backward hidden:
←−
H t = L(XtWx

←−
H +
−→
H t−1W←−H−→H + b←−H )

• Output: Yt =
−→
H tW−→H Y +

←−
H tW←−H Y + bY.

where L is the sigmoid function application which is the LSTM unit in the structure
of BiLSTM.

3. Gated Recurrent Unit (GRU)
GRU is built to improve the performance of LSTM and reduce the number of its
parameters. The input and forget gates from the LSTM model are merged into one
gate called the update gate [4]. It is made up of only two gates, update and reset gates,
instead of three gates in LSTM. The update gate couples the input and forget gates
of the LSTM and the output gate as a reset gate. This gives the GRU an enhanced
improvement in LSTM. The relationships among the gates are defined as follows.

• Update gate: Zt = σ(XtWxz + Ht−1Whz + bz)
• Reset gate: Rt = σ(XtWxr + Ht−1Whr + br)

• Cell State: H̃t = tanh(XtWxh + (Rt ◦ Ht−1)Whh + bh)

• New state: Ht = Zt ◦ Ht−1 + (1− Zt) ◦ H̃t,

where

• Wxr, Wxz, Whr are the weight parameters and br, bz are the bias parameters.
• Wxh, Whh are the weight parameters and bh is a bias parameter. The current

update gate Zt is a combination of the previous hidden state Ht−1 and current
candidate hidden state H̃t.

Figure 3 presents BiLSTM architecture (left) and GRU architecture (right). In BiLSTM,
the forward and backward layers are indicated by yellow and green colors, respec-
tively. In GRU, the reset and update gates are represented by Rt and Zt, respectively.

Figure 3. BiLSTM architecture (left) and GRU architecture (right).
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2.2.3. Residual Neural Network (ResNet)

This type of deep neural network behaves like first order Euler method [19]. In this
work, we cast the ResNet method as an ODE-solver and construct a hybrid approach with
traditional recurrent neural networks. Given a deep neural network of the form

yout = N(yin, θ).

The ResNet is defined as

yout = yout + N(yinθ),

where yout is the output, yin is the input (data from solver or fabricated or real measure-
ment), N is the neural network and θ is the parameter of the neural network. The basic
structure of the ResNet is given in Figure 4.

Figure 4. ResNet architecture.

2.3. Data Preprocessing

The data for this work is obtained from Tennessee Health Department [27]. The avail-
able data as of the time of preparing this manuscript is from 12 March 2020 to 16 September
2021. Cumulative cases are used for the training of the EINN where a 7-day rolling mean is
applied to the data. In particular, the training data is from 12 March 2020 to 16 December
2020. This is the period of no vaccination program. The data is preprocessed using MinMax
scaling. The EINN is implemented in Tensorflow while LSTM, BiLSTM, and GRU as well
as k-fold cross validation are implemented in PyTorch.

2.4. Error Metrics

In this section, error metrics for data-driven simulations are presented. A survey of
the reason and choice of when to use these error metrics is discussed. The metrics used to
measure the performance of regression-based models include: Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), and Explained Variance (EV) [4]. The
values of RMSE are used to compare different models to select the best based on least
values [28]. Suppose y denotes the real data and ŷ is the predicted data from the model.

1. RMSE: By the taking the square root of the mean squared error (MSE), the Root
Mean Squared Error (RMSE) is obtained and defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(y− ŷ)2. (16)
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This error metric scales the mean squared error (MSE) which serves as a normalizer
of large errors. The RMSE serves as a general-purpose error metric and is excellent
for numerical predictions [28]. In terms of measuring model accuracy, the RMSE,
as a scale-dependent variable, is used to compare errors of prediction from different
models or model configurations for a particular variable.

2. MAPE: The Mean Absolute Percent Error (MAPE) is the relative error in the mean
absolute error.

MAPE =
100
N

N

∑
i=1
|y− ŷ

y
|%. (17)

The main advantage of using MAPE is that since it is weighted mean absolute error, it
is useful for quantile regression. Drawbacks include that it cannot have small values
close to zero or zero in the denominator; since percentages cannot exceed 100%, any
values high or low cannot be captured; and high negative errors are penalized [29].

3. EV-The Explained Variance is the measure of variation in the predicted y as explained
by the neural network algorithm [4].

EV = 1− Var(y− ŷ)
Var(y)

, (18)

where Var is the variance between the predicted and the real data. The Explained
Variance (EV) is analogous to the co-efficient of determination R2 used for linear
regression. The EV is ideal for nonlinear regression. When EV gets closer to 1,
it means the algorithm predicted the targets correctly.

2.5. k-Fold Cross Validation

The k-fold cross-validation is the standard method for evaluating the performance of
a deep or machine learning algorithm on a given data [30]. This approach is useful when
the available data is small. In practice the typical choice for k is either 4 or 5. The procedure
consists of a random split of available data into k partitions for training k identical models.
In particular, the training is done on each k− 1 partitions and the remaining set (test set)
is for evaluating the model. The overall score of the model is determined by the average
score from the k test scores obtained. Since this paper is about regression model, the error
metric used for the scoring each fold is Root Mean Squared Error (RMSE).

Given that a value of k = 4 is chosen to perform the k-fold cross validation, the
LSTM, BiLSTM and GRU are each run 4 times. This creates 4 identical outcomes for each
of the three algorithms. The first three partitions of the data are used for training and
the remaining is used for evaluation. The mean squared error (MSE) is used as the loss
function. The root mean squared error (RMSE) is computed for each k run. These errors
are stored in the history of errors.

To ascertain which algorithm performs best, the mean and standard deviations are
computed for comparison purposes. In order to have a more reliable comparison, a number
of simulations is done using different values of k = 5, 6, 7. The parameter settings for cross
validation for real COVID-19 data are: Learning rate 0.01, Epochs 1500, number of hidden
layers 1, number of hidden units 16. Figure 5 summarizes above explanation for k-fold
cross validation.
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Figure 5. k-fold cross validation. The available data is split into 4 random partitions where each fold
has three train sets and one set for evaluating the model. The RMSE is used to score each outcome
from training each fold. The final average score is computed from each test score. The standard
deviation is also computed.

2.6. Proposed System

Figure 6 gives the overall workflow of the deep learning algorithm for prediction.
Available COVID-19 data is obtained from reliable sources. It is randomly split into train
and test sets of 80% to 20%, respectively. For EINN algorithm, see Figure 1; the training is
done using all days before the start of vaccination. The epidemiology parameters, transmis-
sion rate β and recovery rate γ, are learned as well as the infected group. For reliability and
accuracy of the learned parameters, the EINN is run 200 times to quantify the uncertainty
in the learned parameters by constructing a confidence interval bound using Bootstrap
algorithm. The Poisson distribution is used to resample the data [11]. Using different
values of vaccination rates, the EINN learns different β and γ. A standard ODE solver
is used to produce epidemic outcomes at different vaccination rates using the learned
parameters and efficacy rate η. ResNet data is passed into LSTM, BiLSTM, and GRU to
have hybrid method ResNet-LSTM, ResNet-BiLSTM, and ResNet-GRU. The error metrics
are used to compute the deviations in the test data. A short term prediction into the future
is made for 15 days and a confidence interval is constructed. A cross validation is carried
out to evaluate the performance of LSTM, BiLSTM, GRU and the hybrid approach.
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Figure 6. Deep learning forecasting workflow.

3. Results and Discussion
3.1. Data and Parameter Identification

Table 1 gives a statistical summary of Tennessee COVID-19 data, while the skewness is
used to check the asymmetry, the kurtosis assesses the flatness of the time series distribution.
In general, the value of skewness can either be positive or negative and the kurtosis ranges
from −3 to 3. A kurtosis value less than 3 indicates that the distribution is flatter than
Gaussian distribution. The dispersion in the distribution can be explained by the other
statistics such as quartiles and standard deviation. This summary includes the five number
summary, kurtosis, and skewness.

Table 1. Statistical Summary of COVID-19 Data.

State Min Max STD Q − 0.25 Q − 0.5 Q − 0.75 Skewness Kurtosis

Tennessee 1 717,916 279,540.7136 63,503.5 275,565 656,462 0.10058 −1.6981

Figure 7 includes the graphs for real COVID-19 data for Tennessee and the data fitting
for learning constant epidemiology parameters using EINN in Algorithm 1. Figure 7
shows the confidence interval constructed for learning the epidemiology parameters using
Bootstrap algorithm. In order to have a reliable estimate of the learned parameters, the



Epidemiologia 2021, 2 576

EINN algorithm is run 200 times. The Poisson distribution is used to replicate similar
COVID-19 cumulative data in the Bootstrap algorithm. During each independent run of
EINN, the value of each learned epidemiology parameter is stored. The array of each
stored parameter is then graphed in the bar graph as distribution.

(a)

(b)
Figure 7. Data Preprocessing and Data Fitting; (a) the data (top panel) and data fitting (bottom panel) are graphed; (b) the
95% confidence interval is constructed for β and γ for Tennessee.

3.2. Data-Driven Simulations

In this section, the EINN algorithm is used to learn different β and γ for different
vaccination rates: 0.5%, 1%, 2%, 3%, 6%, 10%. The underlying assumption is that these rates
are assumed the same rate per day for ten months of vaccination. The goal is to analyze the
impact of how vaccination with vaccine efficacy makes infections reduce to zero quickly.
These values combined with the learned epidemiology parameter values are used to do
numerical simulation for model (1) using a standard ODE solver.

Figure 8 shows the model without vaccination. The epidemiology informed neural
network is used to find the epidemiological parameters of the model and the values are
passed into the numerical solver to obtain the shape of the graph. It takes 46 days to have a
peak assuming there is no vaccination. Approximately 23.35% of the population will be
infected with the virus.
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Figure 8. Model without vaccination.

Table 2 presents the impact of vaccination with efficacy rate of 80%. In this table, at
the different vaccination rates v, the EINN learns different β′s and γ′s to produce different
basic reproduction number R0 for the entire period. Equation (7) is used to compute the
basic reproduction number. As vaccination rate v increases from v = 0 to v = 0.5%, it leads
to the reduction in R0 value, from 2.5 to 2.05.

Table 2. Impact of vaccination with (80%) efficacy.

Vaccination Rate (%) β γ R0 Infected (%) Days of Peak

0.00 0.35 0.14 2.5 23.35 46
0.5 0.45 0.22 2.05 15.78 10
1 0.4 0.21 1.90 13.19 10
2 0.4 0.22 1.82 11.19 9
3 0.38 0.22 1.73 9.63 7
6 0.3 0.2 1.5 7.30 4

10 0.18 0.13 1.38 6.67 2

In Figure 9a,b, the model with vaccination is presented. The impact on Susceptible,
Infected, and Recovered groups in the population can be seen, while the percentage of
the Susceptible individuals decreases as the vaccination rate increases, the percentage of
Recovered individuals increases. With the choice of fixed vaccine efficacy η = 94%, two
points are significant: (a) With vaccination rate of 1% and 3%, it can be observed that the
percentage of the spread reduces from 13.76% to 10.11% as the rate of vaccination increases
from 1.0% to 3%, respectively; (b) with vaccination rates of 6% and 10%, the percentage of
the spread further reduces to 7.79% and 6.57% for correspondingly.
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(a)

(b)
Figure 9. Model with vaccination. (a) Vaccination rate of 1% and 3%; (b) Vaccination rate of 6%
and 10%.

The impact of vaccination with 94% efficacy is presented in Table 3. It can be observed
from the table that for v = 0.5%, R0 decreased from 2.5 to 2.0. This means that the higher
the efficacy rate, the faster the decline in the spread of the virus. This claim is further
supported by the fact that when vaccination rate v increases to 10%, the R0 in Table 2 is
1.38 and the R0 in Table 3 is 1.31.

Table 3. Impact of vaccination with (94%) efficacy rate.

Vaccination Rate (%) β γ R0 Infected (%) Days of Peak

0.00 0.35 0.14 2.5 23.35 46
0.5 0.44 0.22 2.0 15.04 10
1 0.45 0.23 1.96 13.76 9
2 0.42 0.22 1.91 11.92 8
3 0.43 0.24 1.79 10.11 7
6 0.27 0.16 1.89 7.79 5

10 0.17 0.13 1.31 6.57 1
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Figure 10 shows the impact of vaccination with fixed efficacy at η = 80% on the
infected population and the effective reproduction number that corresponds to the basic
reproduction number computed in Table 2. In particular, it can be seen that as the respective
effective reproduction number for vaccination rates of 0%, 1%, 3% and 10%. The decrease
in the effective reproduction number as shown in the graphs is indicative of the impact
vaccination has on the infected group.

(a)

(b)

Figure 10. Vaccination model with effective reproduction number when efficacy is η = 80%; (a), it
can be seen that as the vaccination rate v increases from 0% to 10%, the level of infectiousness
decreases. The effective reproductive number is shown in (b) for different vaccination rates v with
their respective basic reproduction number. As v = 0%, R0 = 2.5 and vaccination rate increases
from 0% to 3%, the R0 decreases from R0 = 2.5 to R0 = 1.73. When the vaccination rate is increased
further to 10%, it can be seen that the basic reproduction number reduces drastically to 1.38. This
confirms the impact of vaccination in reducing the spread of the virus.

Figure 11 shows the impact of vaccination with fixed efficacy at η = 94% on the
infected population and the effective reproduction number that corresponds to the basic
reproduction number computed in Table 3. In particular, Figure 11b shows the respective
effective reproduction number for vaccination rates of 0%, 1%, 3% and 10%.

Various data-driven simulations (using the real data and ResNet data) are performed
for predicting daily infected cases using LSTM, BiLSTM, and GRU for Tennessee. The
LSTM, BiLSTM, and GRU are used to learn these dynamics of infected cases. The parameter
settings for data-driven simulations are given in Table 4.
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(a)

(b)

Figure 11. Vaccination model with effective reproduction number when efficacy is η = 94%; in (a)
when the vaccination rate increases from 0% to 10%, the level of infectiousness declines; (b) shows
the effective reproductive number for different vaccination rates v with their corresponding basic
reproduction number R0. When v = 0%, R0 = 2.5, and the vaccination rate increases from 0% to 3%,
the R0 decreases from R0 = 2.5 to R0 = 1.79. When the vaccination rate is increased further to 10%,
it can be seen that the basic reproduction number reduces drastically to 1.31. Vaccination impacts the
spread of the virus as seen in this figure.

Table 4. Parameter settings.

Approach Parameter Value

LSTM/BiLSTM/GRU Learning rate 0.01
Training Epochs 500

Batch Size 100
Layers 02

Features 01
Hidden units 24

ResNet Learning rate 0.001
Training Epochs 200

Batch Size 45
Layers 03

Features 01
Hidden units 50

Cross Validation Learning rate 0.01
Training Epochs 1000

Batch Size 100
Layers 01

Features 01
Hidden units 12



Epidemiologia 2021, 2 581

Figure 12 shows the data-driven simulation for learning the infected group using
ResNet compared with the daily infected cases. For comparative analysis, the outcome
from the ResNet is compared with the daily infected cases. The magenta colored graph is
ResNet. The data span a nine-month period: 16 January 2021 to 16 September 2021.

Figure 12. Data-driven simulation for real COVID-19 data and ResNet.

In Figure 13, the output from LSTM, BiLSTM, and GRU are plotted along with the
daily infected cases. The real COVID-19 data is used to train the LSTM, BiLSTM, and GRU
architectures. The results are plotted along with the daily infected cases. The graph of
daily cases is colored blue. The black colored graph shows the output for LSTM, the green
colored graph is the graph for BiLSTM, and the magenta colored graph is the graph for
GRU. The data spans nine months period: 16 January 2021 to 16 September 2021.

Figure 13. Data-driven simulation for LSTM, BiLSTM, and GRU.

A consideration is made for the hybrid approach: ResNet-LSTM, ResNet-BiLSTM,
ResNet-GRU. The outcome ResNet is used as the input data for LSTM, BiLSTM, and GRU.
The parameter settings in Table 4 are applied to the different hybrid approaches to generate
the ensuring outputs.The outcome for the hybrid approach is shown in Figure 14. The
daily new cases are plotted along with ResNet-LSTM, ResNet-BiLSTM, ResNet-GRU. The
outcome from the ResNet architecture is called the ResNet data, which is used to train
LSTM, BiLSTM, and GRU. The daily cases and ResNet-LSTM are both colored blue while
the ResNet-BiLSTM and ResNet-GRU are colored orange and green, respectively. The data
spans nine months period: 16 January 2021 to 16 September 2021.

Figure 14. Data-driven simulation for ResNet-LSTM, ResNet-BiLSTM, and ResNet-GRU.
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3.3. Error Metrics for Data-Driven Simulations

The error metrics from data-driven simulation for real COVID-19 data and for ResNet
data from Tennessee are shown below. The data is split into two train and test sets, while
the train data is used to train the models, the error metrics are obtained from the difference
between the test data of the actual COVID-19 data and the test data from the model.

Table 5 shows the error metrics table for LSTM, BiLSTM, GRU, ResNet-LSTM, ResNet-
BiLSTM, and ResNet-GRU. It can be observed that the RMSE values for LSTM, BiLSTM,
and GRU are 650.141249, 611.468730, 536.244478, respectively. GRU has the smallest RSME
value. Additionally, the MAPE values (relative errors) are 0.159830, 0.150323, 0.131830,
respectively, for LSTM, BiLSTM, and GRU. The model with the least MAPE value is GRU.
Besides, the corresponding EV values for LTSM, BiLSTM, and GRU are 0.891135, 0.91171,
0.922800. The model with the greatest EV value is GRU. This implies that, using real COVID-
19 data, the model with the best error values is GRU. RMSE values for ResNet-LSTM,
ResNet-BiLSTM, and ResNet-GRU are 269.863739, 255.473984, 238.104349, respectively.
The corresponding MAPE and EV values are 0.065988, 0.062470, 0.058222 and 0.981658,
0.981471, 0.983856. The hybrid approach with the overall best error values in terms of
RMSE, MAPE, and EV is ResNet-GRU.

Table 5. Error Metrics.

Approach RMSE MAPE EV

LSTM 650.141249 0.159830 0.891135
BiLSTM 611.468730 0.150323 0.911171

GRU 536.244478 0.131830 0.922800
ResNet-LSTM 269.863739 0.065988 0.981658

ResNet-BiLSTM 255.473984 0.062470 0.983471
ResNet-GRU 238.104340 0.058222 0.983856

Figure 15 presents both the RMSE and MAPE values for each approach. Both error
metrics show that the approach with the least error values is ResNet-GRU.

Figure 15. The graph of RMSE and MAPE values for each approach.
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Figure 16 gives the EV values for each approach. It can be seen that the approach with
the greatest EV is ResNet-GRU.

The outcome of the errors obtained from the ResNet-LSTM, ResNet-BiLSTM, and
ResNet-GRU, LSTM, BiLSTM, and GRU are presented. The error metrics RMSE, MAPE,
and EV are used to determine which algorithm learns the dynamic better. In particular,
the RMSE is deployed. Smaller values of RMSE indicate the best algorithm in comparison
to the others. The values of EV closer to 1 demonstrates lower variation in the predictive
power of the neural network.

Figure 16. The graph of EV values for each approach.

3.4. k-Fold Cross Validation

The mean values of the RMSE for all four values of k are plotted against each value of
k for each model in a bar graph in Figure 17 for real COVID-19 data. The graph colored blue
is LSTM while orange colored and green colored graphs are BiLSTM and GRU, respectively.
When k = 4, BiLSTM has lowest average RMSE value, followed by LSTM and then GRU.
For k = 5, LSTM has the lowest average RMSE value, followed by GRU, then BiLSTM.
It can be seen that as the value of k value increases to 7, the smallest value of RMSE value
is GRU, followed by LSTM, then BiLSTM.

Figure 17. Cross Validation Scores using mean scores for each value of k for real COVID-19 data.

Figure 18 demonstrate the mean value of the RMSE. All four values of k are plotted
against each value of k for each model in a bar graph for ResNet data. The bar graph shows
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the cross validation scores for Tennessee. When k = 4, the model with lowest RMSE value
is ResNet-BiLSTM, followed by ResNet-GRU, then ResNet-LSTM. With k = 5, the model
with lowest RMSE value is ResNet-GRU, followed by ResNet-BiLSTM, then ResNet-LSTM.
When k = 6, it can be observed that ResNet-GRU has the lowest RMSE value, followed
by ResNet-LSTM and ResNet-BiLSTM. As the value of k increases from 5 to 7, it can be
inferred that ResNet-GRU has smallest average RMSE value.

Figure 18. Cross Validation Scores using mean scores for each value of k for ResNet data.

3.5. Prediction and Confidence Interval

Bootstrap algorithm is used to sample a specified number of data samples from a given
data and to replicate it for the purpose of constructing a confidence interval. A short term
prediction for 15 days into the future (16 September 2021 to 1 October 2021) uses ResNet for
Tennessee. Thegraph of confidence interval for ResNet-GRU predicting 15 days into the
future is presented. In Figure 19, the Bootstrap algorithm is used to generate the confidence
interval band after 10 independent runs. The lower 95% and upper 95% are given in the
graph and the mean prediction is also shown. The Bootstrap algorithm is deployed to run
the model 10 times. The Poisson distribution is used to replicate the real COVID-19 data
10 times. For all runs, the mean and standard deviation is computed to ascertain a 95%
confidence interval for the future predictions (15 days ahead). The confidence interval
bound indicates a reasonable bound for the future predictions.

Figure 19. A confidence interval is constructed for a short-term prediction using ResNet-GRU.

4. Conclusions

In this work, a COVID-19 vaccination model with vaccine efficacy has been developed
and analyzed, where the epidemiological parameters of the model were obtained from the
inverse problem solved by epidemiological informed neural network. A hybrid approach
involving residual neural network with recurrent neural network was implemented. Based
on error metric values, the goal of investigating which particular type of the hybrid ap-
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proach produced reliable future prediction of the infected cases was achieved. In particular,
error metric for data-driven simulations demonstrate that ResNet-GRU was the best hybrid
approach because of its smallest root mean squared error and mean absolute percentage
error values and greatest explained variance value. A k-fold cross validation with random
splitting using their average root mean squared error as mean score supported the fact
that ResNet-GRU is the best algorithm. Based on quantified uncertainty of 95% confidence
interval, the results from short-term prediction demonstrated the overall effectiveness of
our approach.

The epidemiological importance of this study was demonstrated in the vaccination
model with vaccine efficacy. The model without vaccination revealed a high peak of
infectiousness. However, the model with vaccination demonstrated a lower peak of
infectiousness. Insights can be drawn from the fact that vaccinating the public using
the same vaccination rate per day will curtail the spread of the disease faster. This was
confirmed by our study.
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