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Abstract: The COVID-19 pandemic has placed an unprecedented burden on public health and
strained the worldwide economy. The rapid spread of COVID-19 has been predominantly driven by
aerosol transmission, and scientific research supports the use of face masks to reduce transmission.
However, a systematic and quantitative understanding of how face masks reduce disease transmis-
sion is still lacking. We used epidemic data from the Diamond Princess cruise ship to calibrate a
transmission model in a high-risk setting and derive the reproductive number for the model. We
explain how the terms in the reproductive number reflect the contributions of the different infectious
states to the spread of the infection. We used that model to compare the infection spread within
a homogeneously mixed population for different types of masks, the timing of mask policy, and
compliance of wearing masks. Our results suggest substantial reductions in epidemic size and
mortality rate provided by at least 75% of people wearing masks (robust for different mask types).
We also evaluated the timing of the mask implementation. We illustrate how ample compliance
with moderate-quality masks at the start of an epidemic attained similar mortality reductions to less
compliance and the use of high-quality masks after the epidemic took off. We observed that a critical
mass of 84% of the population wearing masks can completely stop the spread of the disease. These
results highlight the significance of a large fraction of the population needing to wear face masks
to effectively reduce the spread of the epidemic. The simulations show that early implementation
of mask policy using moderate-quality masks is more effective than a later implementation with
high-quality masks. These findings may inform public health mask-use policies for an infectious
respiratory disease outbreak (such as one of COVID-19) in high-risk settings.

Keywords: COVID-19; masks; mathematical model; ordinary differential equations; reproductive
number; compartment model; Diamond Princess

1. Introduction

COVID-19, the respiratory disease caused by the SARS-CoV-2 virus, has caused
an unprecedented burden on the global economy, health, and general well-being [1].
Face masks, social distancing, hand washing, and frequent testing are the most effective
ways to slow the spread of SARS-CoV-2 until an effective vaccine is widely available [2].
Policymakers and the public need urgent guidance on the use of masks by the general
population as a tool to impede COVID-19 transmission. Recent studies validated that face
masks effectively mitigate the spread of COVID-19 [3]. Even so, the adoption by some
parts of the world, especially the United States, followed in staggered and hesitant steps.
The resistance to wearing a mask is rooted in complex cultural and political considerations,
including an initial global shortage of N95 respirators and surgical masks in hospitals [4].

We now understand that the SARS-CoV-2 virus replicates in the upper respira-
tory tract [5,6], and that viral transmission occurs predominantly through respiratory
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droplets [7]. Droplets emitted from singing, coughing, sneezing, talking, and even breath-
ing [8] have distinct sizes: larger ones (>10 µm) can land on a person’s eyes, nose, or mouth
in near proximity, or quickly fall into surfaces due to gravity; smaller ones (0.2 µm–10 µm,
also termed aerosols) can linger in the air for hours. Even with the lockdown interventions,
the virus can spread through poorly ventilated buildings [7], as shown in the outbreak
on the cruise ship Diamond Princess [9]. Mounting evidence shows presymptomatic and
asymptomatic individuals contribute significantly to the spread of COVID-19 [10].

At the beginning of the COVID-19 pandemic, the support for mask-mitigated reduc-
tion in viral infection was controversial. Although there have been limited clinical trials,
many experimental studies have suggested that masks can reduce viral transmission by
blocking a susceptible person’s exposure to respiratory droplets and reducing the spread
of viral particles from infected people [11–13]. In a study of two hairstylists infected
with COVID-19, they did not infect any of their 139 clients or six coworkers who also
wore masks [14]. This study is far from definitive, but it supports the effectiveness of
consistent face coverings in reducing the spread of SARS-CoV-2. One controlled trial of
mask use found masks have a protective efficacy for influenza of 80% [15]. More studies
have demonstrated the efficacy of face masks in blocking both particles transmitted by the
wearer [16] and particles received by the wearer [17]. Reducing the infectious dose can also
significantly reduce the severity of the symptoms resulting from the infection [18].

Based on the evidence available, it appears that wearing masks in public can reduce
the spread of COVID-19, although the magnitude of reduction in SARS-CoV-2 transmission
is unclear [19]. A few mathematical models have been developed to determine the effective-
ness of wearing face masks in reducing the early spread of the infection [20–25]. One study
used a differential equation model that divided the population into susceptible, exposed,
infected, asymptomatic, and recovered (SEIAR) groups and considered mask wearing in
relation to cumulative mortality and hospitalization [21]. Their results suggest that even
widespread usage of moderate-quality masks is sufficient to reduce hospitalization and
deaths. Another study used a branching process to evaluate the discrete timing of mask
implementation, and statistical analysis of the basic reproductive number [20].

All models showed that increasing the public’s mask use could significantly reduce
the rate of COVID-19 spread, yet they were limited by not considering the timing of mask
policy. Maximum effectiveness was attained when everyone wore a mask in the model,
and minimal effectiveness resulted when less than half of the population wore masks. A
state-level transmission model predicted that hundreds of thousands of lives could be
saved by the end of February of 2021 in the United States if universal mask use could be
achieved [24].

We used a SEIAR model to study the efficacy of masks as a function of the fraction
of the population wearing face masks and the timing of mask implementation in a high-
risk setting. We derived an analytical expression for the basic and effective reproductive
numbers that elaborates the contribution of each infected sub-population.

We chose to apply the model to the Diamond Princess cruise ship outbreak because it
was a dense population in an encapsulated environment, representing a high-risk setting,
and because the time course of the outbreak was carefully documented [9,26]. Since the
cruise ship passengers did not wear masks, the Diamond Princess serves as an experi-
mental control for mask-mediated mitigation of infection. Our model shows that a certain
minimum fraction of people need to wear masks to effectively slow the spread of the infec-
tion. This threshold fraction depends on the types of masks. Although a large population
wearing N95 masks shows the most significant reduction in infection-induced mortality,
moderate-quality masks (e.g., cloth masks) provide similar benefits when worn early and
by a larger fraction of the population.

2. Materials and Methods

We define the stratified COVID-19 transmission model with masks (Figure 1) by
dividing the population into susceptible, S, infected, I∗, and recovered, R. The infected
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group is further divided based on the disease progression. The groups wherein people
wear masks are indicated by the superscript f , and the infected groups are indicated by
the subscript.

Individuals in the susceptible compartments are infected with a force of infection, λ or
rsλ f , that depends on the effectiveness of the face masks. Once infected, they progress into
an early-infected, but not infectious stage, I0. After an average of τ0 days, they progress
into a presymptomatic infectious stage, I1, with rate γ01. We assume that the wearing of
face mask s does not change when a person progresses to a new compartment.

An individual stays in the presymptomatic stage for an average of τ1 days, after which
a fraction, P1a, progresses to the asymptomatic spreader stage, Ia, at the rate γ1a. The re-
maining fraction P1s = 1− P1A progresses and develop mild symptoms at the rate γ1m to
enter stage, Im. After an average of τa days, the symptomatic individuals recover and enter
the recovered state R at the rate of γar. After an average of τm days, individuals with mild
symptoms either severe symptoms, Is, with probability the Pms at the rate γms; develop
critically severe symptomatic, Ic, with probability the Pmc at the rate γmc; or recover (R)
with probability the Pmr = 1− Pmc − Pmc at the rate γmr.

We also include a deceased compartment, D, in the model and distinguish between
symptomatic severe, Is, and critical, Ic based on their mortality. The branching probabilities
Psd and Pcd fractions reflect the different mortality rates γsd and γcd. This flexibility allowed
the model to fit both the Diamond Princess infection and mortality data simultaneously.

The forces of infection in block diagram (Figure 1) represent the rates, λ and rsλ f ,
that the susceptible population is being infected. The forces from infection, αj, represent
the rate at which an infectious person in Ij is infecting others. The force from infection
viewpoint provides better insight into understanding the relative importance of infectious
compartments in an epidemic.

2.1. Differential Equation Model

We formulate the system of ordinary differential equations corresponding to the block
diagram in Figure 1 from both view points as

dS
dt

=− λ S

=− (α1 I1 + αa Ia + αm Im + αs Is + αc Ic)

− ri
(

α1 I f
1 + αa I f

a + αm I f
m + αs I f

s + αc I f
c

)
dI0

dt
=λS− γ01 I0

=(α1 I1 + αa Ia + αm Im + αs Is + αc Ic)

+ ri
(

α1 I f
1 + αa I f

a + αm I f
m + αs I f

s + αc I f
c ]
)
− γ01 I0

dI1

dt
=γ01 I0 − (γ1a + γ1m)I1

dIa

dt
=γ1a I1 − γar Ia

dIm

dt
=γ1m I1 − (γmr + γms + γmd)Im

dIs

dt
=γms Im − (γsr + γsd)Is

dIc

dt
=γmc Ic − (γcd + γcr)Ic
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dS f

dt
=− rsλ f S

=− rs
(

α
f
1 I1 + α

f
a Ia + α

f
m Im + α

f
s Is + α

f
c Ic

)
− rsri

(
α

f
1 I f

1 + α
f
a I f

a + α
f
m I f

m + α
f
s I f

s + α
f
c I f

c

)
dI f

0
dt

=rsλS f − γ01 I f
0

=rs
(

α
f
1 I1 + α

f
a Ia + α

f
m Im + α

f
s Is + α

f
c Ic

)
+ rsri

(
α

f
1 I f

1 + α
f
a I f

a + α
f
m I f

m + α
f
s I f

s + α
f
c I f

c

)
− γ01 I f

0

dI f
1

dt
=γ01 I f

0 − (γ1a + γ1m)I f
1

dI f
a

dt
=γ1a I f

1 − γar I f
a

dI f
m

dt
=γ1m I f

1 − (γmr + γms + γmd)I f
m

dI f
s

dt
=γms I f

m − (γsr + γsd)I f
s

dI f
c

dt
=γmc I f

m − (γcd + γcr)I f
c

dR
dt

=γar(Ia + I f
a ) + γmr(Im + I f

m) + γsr(Is + I f
s ) + γcr(Ic + I f

c )

dD
dt

=γsd(Is + I f
s ) + γcd(Ic + I f

c ) .

2.1.1. Force of Infection

The force of infection, λ, on the non-mask wearing susceptible population, S is the
rate at which the population in S is being infected. This rate can be expressed as the sum of
the forces of infection from each of the infectious compartments:

λ = λ1 + λ
f
1 + λa + λ

f
a + λm + λ

f
m + λs + λ

f
s + λc + λ

f
c .

The force of infection coming from a person in the non-mask wearing k infectious
compartment is

λj = cS × β j × Pj

=


Number of

daily
susceptible

contacts

×


Probability of
transmission

per contact with
susceptible in Ij

×


Probability
that a

random contact
is in Ij

 .

Note that we have used the notation cS for the number of contacts for the susceptible
population to differentiate it from the number of contacts, cs, for someone in Is. A contact
is any activity where an infectious person can infect a susceptible person. The infectious
people in Ij have cj Ij total contacts, and we assume that the mask wearing does not affect
the contact rates.
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Figure 1. Block flow diagram for the COVID-19 transmission epidemic model. The superscript f corresponds to compartments of individuals wearing face masks, and the subscripts
for the infected compartments identify their stage in the epidemic cycle. The susceptible and infected populations are divided into non-mask wearers for the susceptible, infected (not
infectious), presymptomatic infectious, asymptomatic infectious, mildly symptomatic, severe illness, critical illness, and recovered compartments (S, I0, I1, Ia, Im, Is, Ic, R). The susceptible
(S or S f ) is infected at the rate (force of infection) of λ, or rsλ f per day. The transition probability, Pjk, is the propensity that a person goes from compartment j to k at the rate γjk.
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The transmissibility, β j, is the probability of a non-mask-wearing susceptible person
infected by a single contact with a non-mask wearing infectious person in Ij. The infec-
tiousness of infected face-masked individuals decreases since the mask blocks a proportion
of the aerosol particles [20]. We assume that the transmissibility is reduced by the factor ri

for an infectious person wearing a mask. Similarly, the transmissibility of the infection to
susceptible people wearing a mask is reduced by rs.

We assume the population is mixing randomly. The probability that a random contact
is with someone in Ij is the ratio of the number of contacts, cj, that the people in Ij have per
day, cj Ij, divided by the total number of contacts in the entire population,

Ctot(t) = cSS + cSS f + ∑
j

cj Ij + ∑
j

cj I
f
j + cRR .

Here, the sums are over all of the compartments that have contacts. The proportion of
the random contacts that are with someone in Ij is Pj = cj Ij/Ctot(t). We assume that the
number of contacts is independent of wearing a facial mask.

If the susceptible person has contact with a face-mask-wearing infected person,
the transmissible is reduced by ri. The resulting force of infection from infectious mask-
wearing individuals is λ

f
j = cS(riβ j)P f

j , where P f
j = cj I

f
j /Ctot(t) is the fraction of the

contacts with I f
j . The force of infection on the mask wearing susceptible population, S f is

further reduced by rs and can be expressed as rsλ f .

2.1.2. Force from Infection

Evaluating the model from the infectious population viewpoint can help clarify the
roles of the different infectious stages in spreading the epidemic and simplifies the analysis
for the effective reproductive number. The force from infection, αj, is the rate at which an
infectious person in compartment j is infecting susceptible people can be defined for each
infectious compartment as

αj = cj × β j × PS

=


Number of

daily
contacts an

individual of Ij

×


Probability of
transmission per
contact with an
individual in Ij

×


Probability
that a

contact is
susceptible

 ,

where cj is the number of contacts an infectious person in compartment Ij has per day.
The fraction of the contacts with the non-mask- or mask-wearing susceptible is PS = cS/Ctot.
The corresponding force from infection on S from an infectious person wearing a mask, I f

j ,

is reduced by ri and is defined as riαj.
This force will also be reduced by rs if the susceptible person is wearing a face mask.

That is, the force of infection on S f from Ij is rsα
f
j = cj(rsβ j)P f

S , where P f
S = c f

S/Ctot.

The corresponding force-from-infection from an infectious person wearing a mask, I f
j ,

is rirsαj.
The algebraic expression of the all the forces from the infectious are α1 = c1β1PS,

αa = caβaPS, αm = cmβmPS, αs = csβsPS, αc = ccβcPS, α
f
1 = c1β1P f

S , α
f
a = caβaP f

S ,

α
f
m = cmβmP f

S , α
f
s = csβsP f

S , and α
f
c = ccβcP f

S . Here, PS = cSS/Ctot and P f
S = cSS f /Ctot

are the fractions of the contacts with the non-mask- and mask-wearing susceptible popula-
tions. Note that α0 = α

f
0 = 0 since people in I0 are not infectious, β0 = 0.

2.1.3. Contact Rates

We assume a well-mixed population, and the number of contacts per day that in-
fected individuals have depends on their disease progression state. We assume that all
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the individuals who are not showing symptoms have the same contact rates, that is,
cS = c0 = c1 = ca = cR. We assume that the mildly symptomatic reduce their contacts by
a third of the asymptomatic contact rate (Table 1). We distinguish between Is and Ic based
on their mortality and assume that they have the same contact rates that depend on the
household size, cs = cc.

We consider each contact as an independent event and do not consider repetitive
contacts between individuals. The probability of interaction with a susceptible individual
denoted PS, is determined by the effective contacts between infected individuals (Figure 1).
We note that PS 6= P f

S since the probability of running into susceptible non-face mask
wearers S is different from the face mask wearers S f . This probability increases rapidly
for a population with a limited number of mask wearers. One comparative advantage to
using the force generated from the infectious is the probability of running into one of the
stratified susceptible persons is one at the disease-free equilibrium, which corresponds to
patient 0 [27].

2.2. Model Parameters

The progression rates from compartment j to k are defined in terms of the mean
duration that a person spends within compartment j (τj) and the probability (Pjk) of
progression. We assume that the time, τj, that a person spends in a compartment is ex-
ponentially distributed. This assumption results in a constant transition rate between
compartment j to compartment k of γjk = Pjk/τj [27]. That is, γ01 = 1/τ0, γ1a = P1a/τ1,
γ1m = P1m/τ1, γar = 1/τa, γmr = Pmr/τm, γms = Pms/τm, γmd = Pmd/τm,
γsr = Psr/τs, γsd = Psd/τs, γcd = Pcd/τc, and γcr = Pcr/τc. We assume that all pro-
gression rates are independent of wearing a facial mask.

Although we can estimate some of the model parameters from published studies, most
studies are for large populations at the country or large city scale. We base our parameters
on the most appropriate data we could find and estimated others by fitting the model to
the Diamond Princess outbreak data (Figure 2). We first computed the Fisher information
matrix to ensure parameter identifiability. The Appendix A include the details of bootstrap
re-sampling to estimate parameter sensitivity. Table 1 summarizes the published COVID-19
epidemiology parameters and our estimates for the baseline transmission based on the
Diamond Princess outbreak data.

We assume a well-mixed population on board the Diamond Princess cruise ship.
The daily contacts for susceptible, pre-, and asymptomatic (S, I0, I1, Ia) are identical.
Additionally, we assume that people with mild symptoms reduce their daily contact to
one-third of the typical number of contacts per day. People with severe symptoms have a
daily contact rate of a household with two additional people.

A previous transmission model for the Diamond Princess data estimated the effec-
tive contact rate, which is the product between c∗ and β∗, at 1.41 [28]. Since our model
differentiates the presymptomatic, infectious, and asymptomatic infectious, we choose
baseline values of β1 = 0.03 and consider the infectious after the latent period to have
one-third the transmission probability: βa = βm = βs = βc = β1/3. Fitting our model to
incorporate transmission differences between presymptomatic and asymptomatic results
in insignificant differences.

COVID-19 patients without mechanical ventilation have a mean length of hospital
stay (τc) of 4.8 days [29]. Varying τc in our model did not improve the fit. The expected
length of stay (τs) for hospitalized ICU stay was statistically estimated between 15.05 and
19.62 days [30]. We fit the mortality data by stratifying the severe and critical patients into
two compartments and assumed no face masks were being worn (Pmask = 0), with 0.37 out
of 3700 initially infected.
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Figure 2. Fitting model parameters with the COVID-19 outbreak data from the Diamond Princess
cruise ship [9,26] using our stratified transmission model with a non-linear least square method.
(A) The cumulative death data from the ship’s departure on 20 January 2020, to disembarkment
on 1 March 2020 (40 days), were fitted with R2 = 0.983 and further fitted for five more weeks after
disembarkment. (B) The positive COVID-19 cases from the ship’s departure to disembarkment
(40 days) were fitted with R2 = 0.988. Fitting parameters (Table 1) are estimated with 95% confidence
intervals. Details are in Appendix A.

The basic reproductive number, R0, for the Diamond Princess is estimated at values
from as high as 14 [28] to values as low as two [7,31]. Our fitted parameters give a
R0 = 6.31, which closely resembles the R0 observed in Wuhan [1]. We use the complete
case data reported (up to 4 weeks from the initial case). Hence, our R0 includes mitigation
of intervention.

Table 1. Parameters for the stratified transmission mask model with masks. The boldfaced parameters
β1, P1a, Pms, and Psd are fitted from the death data and case data from Diamond Princess using
nonlinear least squares (see Appendix B). We defined the mean daily contacts, c1 = 61, as the square
root of the capacity of the cruise ship [28]. In the citation column, the E and F indicate if the quantity
is estimated or fitted from data.

Parameter Description Value & Range Citation

cS, c0, c1, ca, cR Daily contacts for S, I0, I1, Ia, R 61 E
cm Daily contacts for Im 20 E

cs, cc Daily contacts for Is, Ic 2 E
β0 Transmission rate for I0 0 E
β1 Transmission rate for I1 0.0339; 95% CI: (0.033, 0.034) F

βa, βm, βs, βc Transmission rates for Ia, Im, Is, Ic β1/3 E [28]
τ0 Mean time in I0 3.69 (days); (3.48, 3.90) E [32]
τ1 Mean time in I1 5.1 (days); (4.5, 5.9) E [33]
τa Mean time in Ia τ1 − τ0 (days); (0.60, 2.42) E [34]
τm Mean time in Im 5.59 (days); (4.51, 5.86) E [34]
τs Mean time in Is 4.8 (days); (2.3, 7.4) E [29]
τc Mean time in Ic 16 (days); (15.05, 19.62) E [30]
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Table 1. Cont.

Parameter Description Value & Range Citation
P10 Probability going from I0 to I1 1
P1a Probability going from I1 to Ia 0.793; 95% CI: (0.78, 0.81) F
Pms Probability going from Im to Is 0.325; (0, 0.39) F
Pmc Probability going from Im to Ic 0.39− Pms E [29]
Psd Probability going from Is to D 0.0316; 95% CI: (0.026, 0.037) F
Pcd Probability going from Ic to D 0.117 E [29]
Pmr Probability going from Im to R 1− (Pms + Pmc); (0.60, 1) E
Pcr Probability going from Ic to R 0.883 E [29]
rs Mask reduction in susceptibility (0, 1) E
ri Mask reduction in infectiousness (0, 1) E

Pmask Fraction of population wearing mask (0, 1) E
S(0) Initial susceptible proportion 0.99999(1− Pmask) E
I0(0) Initial exposed proportion 0.0001(1− Pmask E
S f (0) Initial susceptible masked proportion 0.99999Pmask E
I f
0 (0) Initial exposed masked proportion 0.0001Pmask E
R0 Basic reproductive number 6.31; (5.71, 7.23) E [35]

2.3. The Reproductive Numbers

The effective reproductive number, Re, is the number of new cases infected by a newly
infected person during the epidemic. To define Re using the next-generation method [36,37],
we first the vector of infection X containing all the infected compartments in our model,

X =
[

I0, I1, Ia, Im, Is, Ic, I f
0 , I f

1 , I f
a , I f

m, I f
s , I f

c

]t
.

The differential equations for X can be expressed as

dXj

dt
= Fj(X)− Vj(X) .

The function F represents the generation of the newly infected in each compartment,

F = (F1, 0, 0, 0, 0, 0, F6, 0, 0, 0, 0, 0)T ,

where

F1 = α1 I1 + αa Ia + αm Im + αs Is + αc Ic

+rj
(

α1 I f
1 + αa I f

a + αm I f
m + αs I f

s + αc I f
c

)
F6 = rs

(
α

f
1 I1 + α

f
a Ia + α

f
m Im + α

f
s Is + α

f
c Ic

)
+rjrs

(
α

f
1 I f

1 + α
f
a I f

a + α
f
m I f

m + α
f
s I f

s + α
f
c I f

c

)
The basic reproductive number, R0, is a special case for Re when everyone in a

population is susceptible and not wearing a mask. That is, when PS = 1, then R0 = Re.
To calculate R0, we substitute PS = 1 and P f

S = 0 into these formulas and then calculate
the spectral radius of the next-generation matrix, N [37]. This matrix is defined in terms of
the Jacobian matrices as

N = JFJV−1, where JF =

[
∂Fi
∂Xj

]
, and JV =

[
∂Vi
∂Xj

]
.

When PS = 1, the Jacobian matrices are constant since N is linear in Xj .



Epidemiologia 2021, 2 216

The function V accounts for the transfer of individuals out of each compartment,

V =



γ1 I0
−γ1 I0 + (γ1a + γ1m)I1
−γ1a I1 + γa Ia

−γ1m I1 + (γmc + γms + γmr)︸ ︷︷ ︸
γm

Im

−γms Im + (γsr + γsd)︸ ︷︷ ︸
γs

Is

−γmc Im + (γcr + γcd)︸ ︷︷ ︸
γc

Ic

γ1 I f
0

−γ1 I f
0 + (γ1a + γ1m)I f

1
−γ1a I f

1 + γa I f
a

−γ1m I f
1 + (γmc + γms + γmr)︸ ︷︷ ︸

γm

I f
m

−γms I f
m + (γsr + γsd)︸ ︷︷ ︸

γs

I f
s

−γmc I f
m + (γcr + γcd)︸ ︷︷ ︸

γc

I f
c


We use the MATLAB symbolic operator to solve for the eigenvalues of N . We then

express the transition rates, γ∗, in terms of τ∗ and the transition probabilities, Pjk. Next,
we identified products of the transition probabilities and reduced them to a simpler form.
That is, because we have assumed that the transition probabilities are independent, we can
simplify the equations using the relationship, Pik = PijPjk. For example, P0c = P01P1mPmc is
the probability that an infected person in I0 will enter Ic.

After these substitutions, we define R0 as the largest eigenvalue of N ,

R0 = P01c1β1τ1︸ ︷︷ ︸
R0(I1)

+ P0acaβaτa︸ ︷︷ ︸
R0(Ia)

+ P0mcmβmτm︸ ︷︷ ︸
R0(Im)

+ P0scSβsτs︸ ︷︷ ︸
R0(Is)

+ P0cccβcτc︸ ︷︷ ︸
R0(Ic)

. (1)

This basic reproductive number, R0, is the expected number of people that a single
non-mask-wearing newly infected person will infect in a non-mask-wearing susceptible
population. We have decomposed R0 into the sum of the expected number of people
that a newly infected person will infect while in the infectious compartment, j. That is,
R0(Ij), is the product of the probability of reaching compartment j, P0j, times the number
of contacts per day for someone in compartment j, cj, times the probability that a contact
with a susceptible person will result in a new infection, β j, times the number of days spent
in the compartment, τj.

We approximate Re by allowing the probability that a random contact is with a
susceptible person to depend on the current state of the population. The forces from
infection, α∗, in F depend on PS(t) and P f

S(t), and, therefore Re is a nonlinear time-
dependent function. Although N is nonlinear in X, we assume that the fraction of people
in each compartment is slowly varying.

We consider the special case when no one is wearing a mask. For this case, the effective
reproductive number is approximated by

Re = P01α1(t)τ1︸ ︷︷ ︸
Re(I1)

+ P0aαa(t)τa︸ ︷︷ ︸
Re(Ia)

+ P0mαm(t)τm︸ ︷︷ ︸
Re(Im)

+ P0sαs(t)τs︸ ︷︷ ︸
Re(Is)

+ P0cαc(t)τc︸ ︷︷ ︸
Re(Ic)

. (2)

This decomposition for the effective reproductive number, Re, illustrates how much
each infectious compartment in the model contributes to the spread of the infection during
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the course of the epidemic. The Re for each compartment can be decomposed into mean-
ingful terms. For example, Re(Ij) = P0jαjτj = P0jcjβ jPSτj is the expected number of new
infections per day for someone in the infectious compartment Ij. Here, P0j is the probability
of an infected person reaching compartment j, τj is the average length of time in compart-
ment j, and αj is the number of new infections per day from someone in Ij. Therefore, αjτj
is the expected number of infections created by someone in Ij, and P0jαjτj = Re(Ij) is the
expected number of people that a newly infected person will eventually infect while in Ij.

If everyone in the population is wearing a face mask, then the masks reduce the
effective reproductive number to Re = rirs ∑j P0jα

f
j (t)τj, where the sum is over all the

infected compartments. Similarly, if the susceptible individuals are not wearing masks,
but the newly infected person is wearing a mask, then the effective reproductive number is
Re(Ij) = ri ∑j P0jαj(t)τj.

3. Results
3.1. Mask Wearing by the Public Flattens the Curve

To evaluate the contribution of masks in reducing the infectious spread, we measure
the population with peak infection, I1 + I f

1 , which corresponds to the population tested
positive (Figure 3A). As the proportion of mask wearers increases, we observe flattening of
the curve where the peak of the infectious population is delayed, and “flattened” [38,39].

When we implement a universal face mask policy across the entire population, i.e., ev-
eryone wears the same type of mask, we observe a reduction in both the peak infectious
and the dead (Figure 3A,B). As expected, the amplitude of reduction depends on both
the fraction of the population wearing masks and the type of masks used. The peak in
infections and the total number of deaths are both reduced as more people wear masks.
The N95 mask predictions show lower peak infections and fewer deaths than the cloth
masks predictions (Figure 3A,B). The model also confirms that Re is reduced as more
people wear masks (Figure 3C). We reach herd immunity when Re drops below 1 and the
infections start to die out. We define the critical inflection time point, tcrit, as the time
when herd immunity (Re = 1) is achieved. We further analyze how tcrit depends on mask
wearing in section 3.4 below.

Figure 3. Temporal dynamics of our COVID-19 transmission model for varying proportions of the
population wearing the N95 mask (ri = rs = 0.05) at the start of the simulation. The temporal
progression of the peak infectious (A), the dead (B), and the effective reproductive number Re

(C). Solid lines correspond to N95 masks used, and dashed lines correspond to cloth masks used.
Increasing the fraction of the population wearing the mask (Pmask) flattens the curve.



Epidemiologia 2021, 2 218

3.2. Face Masks Reduce Deaths

If wearing face masks starts on the first day (embarkment), the total number of infected
cases on day 40 (disembarkment) is reduced by about 30% (Figure 4A) when only 25%
of the population wear the N95 masks. This reduction in case number quickly increases
to 90% when 50% of the population wears the N95 masks, and the new cases quickly
die out when 75% of the population wears a mask. Similarly, the total deaths on day 40
(disembarkment) are reduced by about 50% even when only 25% of the population wears
the N95 mask. When 50% of the population wears the N95 mask, the reduction in mortality
can be as high as 75% when people use simple face coverings such as bandannas or cloth
masks. At 75% compliance, even such simple face coverings could reduce the total death
by nearly 100% at the time of disembarkment (Figure 4B).

When the proportion of mask wearers exceeds 50%, the reduction in infection and the
reduction in susceptibility offer similar changes in the total cases and deaths, as indicated
by the diagonal symmetry in the middle and right columns (Figure 4). However, when a
low fraction of the population wears the mask (e.g., Pmask = 0.25, left column in Figure 4),
the asymmetrical reduction shows a steeper change along the axis of ri. This suggests that
when fewer people wear the mask, the infectious spreaders’ masks reduce the epidemic
more effectively than if susceptible people wore masks.

When at least 50% of the population wears masks from day 1, we see a significant
reduction in both cases and deaths even with simple face coverings (cloth or better);
both the case numbers and deaths remain low on day 40, the time of disembarkment.
The infection curve is flattened.

Figure 4. The epidemic slows because of wearing face masks from the embarkment (day 1) of the
cruise ship: (A) the cumulative infected, and (B) the total death at the time of disembarkment (day 40),
as a function of reduction in susceptibility rs, and reduction in infection: ri, for three proportions of
mask wearers: Pmask = 0.25 (left), 0.5 (middle), and 0.75 (right).

3.3. A Window of Opportunity to Implement Mask Policy

We evaluate the role of timing of mask policy to see how a delayed response will
impact the epidemic spread. Following the timeline of the Diamond Princess outbreak,
which embarked on 1/25/2020, had the first case of COVID-19 infection identified on
2/3/2020 [28], and started a 14-day quarantine (lockdown) on 2/5/2020 [40], we start
the mask intervention on different days between embarkment and disembarkment. The
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simulations show the reduction in total deaths and cumulative infected at the endemic
stage (200 days after the first case, when the outbreak reached a steady state) (Figure 5).

If 75% of the population wears cloth masks from the time of embarkment (day 1),
the model predicts that the deaths are reduced by 50%; achieving a similar reduction in
mortality with N95 masks needs 50% of the population wearing the mask. When 75% of
the population wears N95 masks, the model predicts the deaths are reduced by 66%.

If the mask policy is implemented on the first day of lockdown (day 14), then 84% of
the population wearing cloth masks will reduce the total death at endemic by approximately
50%. In comparison, about 52% of N95 mask wearers would achieve a similar reduction
(Figure 5A,B). At least 95% of the population needs to wear the mask (cloth or better)
to reduce the total deaths by 90%. This finding suggests that the widespread usage
of moderate masks during the beginning of the epidemic is more effective than a later
application with high-quality masks.

Implementation of mask policy any time between day 1 (embarkment) and day 14
(start of lockdown) does not make a significant change in the reduction of disease spread
(Figure 5A). After day 14, achieving the same reduction would require an exponential
increase in the proportion of mask wearers for any delay in starting time.

This finding suggests a small window of opportunity to implement a mask policy
within 14 days of embarkment for the cruise ship, or within the very narrow window of
two days after identifying the first infection, to curb the disease spread effectively. After a
week of post-lockdown intervention, wearing masks would have little or no effect on the
infectious spread or the mortality on the cruise ship.

C D

Figure 5. Timing of mask policy implementation. (A,B) Reduction in the total deaths at the endemic
stage when the disease spread is at a steady state (200 days after patient 0), and (C,D) the critical
inflection time tcrit when Re drops below 1, as a function of timing of mask implementation and
the proportion of mask wearers; (A,C) for cloth mask (ri = rs = 0.4), and (B,D) for N95 mask
(ri = rs = 0.05).

3.4. At Least 84% Mask Wearers Are Needed to Stop the Epidemic on Diamond Princess

We further evaluate the saturation in the infectious spread by identifying the critical
inflection time point tcrit when Re = 1, where the disease stops spreading. If no one wears
the mask, the critical inflection time point tcrit ≈ 26 days, about two weeks after the start of
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the lockdown. Any mask intervention delays this critical inflection time point (Figure 3C).
When 84% of the population wears the cloth masks from day 1, the disease spreads for 60
days before Re drops to below 1, and the reduction in the total deaths is about 50%; with
N95 masks from day 1, the disease spread takes 4 months until Re = 1, and the total deaths
at endemic is reduced by 100% (Figure 5C,D). If masks were worn within the window of
opportunity (from day 1 to day 14), the saturation point occurs when 84% of the population
wears the masks (Figure 5). In other words, within the window of opportunity, if at least
84% of the population wears masks (cloth or better), there will be no epidemic. This trend
is clear when we examine the basic reproductive number R0 (Figure 6B).

This threshold of 84% can be appreciated more clearly in Figure 6: for a fraction of at
least 84% wearing the mask and mask quality less than ri = rs = 0.3 (i.e., any mask better
than cloth masks), we see tcrit = 0, R0 < 1, and the reduction in total death is 100%. We
have a complete control of the disease: no spread, no epidemic.

This critical threshold point depends on the estimated value of R0. Therefore, our
qualitative threshold point may apply to other situations with similar homogeneous mixing,
although it would not scale linearly with population size. For example, a city or another
cruise ship with half of the population density would theoretically cut the mean contacts
in half, yet tcrit need not scale linearly since the force of infection is nonlinear.

Figure 6. Qualitative phase transition with respect to the fraction of population wearing the mask (Pmask) and mask efficacy
(ri = rs): Colors correspond to (A) tcrit, (B) R0, (C) reduction in total deaths, at the endemic stage (200 days after the first
case when the epidemic reaches a steady-state). At least 84% of the population needs to wear a mask (cloth or better) to
mitigate the epidemic from the start.

When we have complete compliance with the mask mandate from day 1, Pmask = 100%,
a much wider range of mask types can lead to the complete elimination of epidemic spread.
Anything better than rs = ri = 0.45 will work (Figure 6A–C), which includes bandanna and
cloth masks. Bandanna masks have a high variance with an effective reduction between
0.35 and 0.70. The masks made with Cotton Type 3 (cloth) have a narrower range of
reduction between 0.20 and 0.40 [41]. Bandanna masks may fall outside the range when
cloth masks made with tightly woven fabric are sufficient to stop coronavirus spread, even
if the entire population wears them.

For weaker masks, e.g., masks that reduce less than 50% of the air droplets, the disease
propagates across the population. Our results suggest a decisive role of the mask in
impeding COVID-19 spread, where moderate-quality masks are sufficient to completely
stop the epidemic, provided a large proportion of the population wear the masks and are
worn within the window opportunity.
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4. Summary and Discussion

Before April of 2020, the World Health Organization (WHO), the Center for Disease
Control and Prevention (CDC), and the European Center for Disease Control (ECDC)
recommended hand-washing and social distancing as the main approaches to limit the
spread of coronavirus. The guidelines for face masks for the public were enigmatic and
changed quickly [42]. The confusing guidelines reduced public trust in public health
policies and encouraged much controversy regarding mask usage, from medical risks
to political conspiracies. One of the arguments against wearing a mask was that masks
would reduce the oxygen for older mask wearers. Solid clinical data have shown that
older people’s oxygen saturation does not change before, during, and after wearing non-
surgical face masks [43]. We need to better communicate such scientific evidence with the
general public to debunk the myths surrounding face masks and good predictive models
to encourage better compliance in wearing face masks.

Without sufficiently widespread vaccine coverage, the need for non-pharmaceutical
interventions is in high priority [1] to slow down the spread of the COVID-19 pandemic.
Countries across the globe have placed strict restrictions on travel and large public gather-
ings in the form of lockdown interventions [35]. In most cases, travel restriction, school
closure, and lockdown interventions offer a significant reduction in the transmission and
flatten the curve [39], but come with a hefty economic price. Lockdown may also fail in
tightly encapsulated environments with poor ventilation [44]. One convenient, yet contro-
versial, non-pharmaceutical intervention is the mask [7,45,46]. Universal mask usage in
combination with conventional lockdown intervention was proposed to offer the greatest
non-pharmaceutical intervention for disease-related dynamics [21]. With coronavirus cases
still rising, it is important that we settle the debate on masks and that the public uses masks
to fight the pandemic.

Masks of different styles and materials have different efficiencies in filtering respira-
tory particles, including large droplets and smaller aerosols, that carry the coronavirus.
The effectiveness of the mask policy is determined by both the mask’s quality and the
number of people who appropriately wear fitted masks.

We develop an extended transmission model that treats mask filtration efficiency
separately, considering its reduction in susceptibility to incoming particles and infection
of outgoing particles. This feature enables us to model the types of masks, the number of
people wearing masks, the timing of the mask policy, and who wears the masks. The latter
is an important consideration when a low proportion of the population wears the masks,
either due to low compliance or a mask shortage. The most commonly used face filtration
respiratory mask, the N95 mask, is shown to reduce 95% of virus particles exceeding 0.3 µm.
Early at the beginning of the pandemic, many health care institutes reported a shortage of
filtration devices for the protection of health care workers [13].

Recent experimental studies have suggested reducing virus spread depends on mask
type and how well the masks fit [11]. Masks applied to both receiver and source have been
shown to reduce aerosol transmission by up to 96%, while single-fitted medical and cloth
masks may only reduce receiver transmission by roughly 50% [12].

We use infection parameters from the coronavirus outbreak in the beginning months
of 2020 in the Diamond Princess cruise ship. Respiratory infections are among the common
types of outbreaks that occur aboard cruise ships. The outbreak of coronavirus disease in
multiple cruise ships globally in 2020 is another notable example.

The Diamond Princess, a tightly encapsulated environment with a relatively homo-
geneous population, offered a rare set of detailed data of baseline disease transmission
and serves as a virtual test-bed for evaluating the role of the mask in mitigating disease
transmission. We show that wearing face masks flattens the curve in delaying and re-
ducing the cases and the total deaths from COVID-19. In particular, we identify that a
wide supplication of moderate masks homogeneously across all populations at the start
of the infection cycle reduces the disease burden more effectively than delayed timing of
high-quality masks.



Epidemiologia 2021, 2 222

The first 14 days of the itineraries of the cruise ship lay within the window of op-
portunity to effectively reduce the disease spread by the least amount of wearers and
those wearing the lower-quality masks (Figure 5). Furthermore, we demonstrate that the
significance of quality of mask choice is most important in the middle of the epidemic
as a moderate fraction of people begin to wear masks (Figure 4). Within the window of
opportunity, we identify a critical threshold of the percentage of mask wearers at 84%,
robust for a wide range of moderate- to high-quality masks (Figure 6). Our results highlight
the sufficiency of widespread mask usage from the beginning of the infectious cycle in
reducing the infection and the deaths.

5. Conclusions

We analyze a homogeneously mixing compartmental SEIAR model with and without
masks. Our analytical derivation of the reproductive number (Equation (1)) and the effec-
tive reproductive number (Equation (2)) delineates the contribution from each infectious
compartment to the spread of the epidemic. This decomposition of R0 and Re allows for an
analytical understanding of factors influencing the epidemic and efficacy of control policies
targeting each infectious subpopulation.

Because we based our parameters on the COVID-19 data from the Diamond Princess
data, our simulations can be interpreted as virtual mask experiments on the Diamond
Princess. In these virtual experiments, we can vary the fraction of people wearing masks,
the types of masks they wear, and the timing of their mask-wearing. We can then com-
pare the spread of the infection and the cases and deaths to those observed on the Dia-
mond Princess.

We apply a uniform mask-wearing policy to the population and evaluate the timing
of intervention, quality of the mask, and the fraction of the population wearing the mask.
Our results suggest that universal mask is sufficient in reducing the COVID-19 related
death and infection (Figure 4) [21]. Specifically, we identify an endemic threshold at 84%
of the population wearing the mask,which separating disease-free equilibrium from an
endemic state of infection and holds for various mask types (Figure 6). We further evaluate
the implementation of the timing of mask intervention and show that an application
of moderate-quality mask early achieves similar results to a widespread application of
high-quality mask two weeks after initial infection (Figure 5). Our results suggest that in
high-risk settings, we need to implement mask policies early, and a critical fraction of the
population needs to comply in order to have effective control of the epidemic.

Possible future directions include age-structured population, stratified mask-wearing
requirements according to infection status, effect of vaccination, and applying the model to
high-risk healthcare settings where healthcare workers and patients should be considered
as separate compartments.
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Appendix A. Global Sensitivity Analysis

We chose to evaluate the global sensitivity using a non-parametric bootstrapping. We
generated multiple observations about the fitted solution through sampling. We assume
the case count to take on a Poisson distribution with mean at the specific time points ti [47].
We then fit the data using non-linear least squares.

We simulated the model and compared the model predictions with the observed data.
The output of the respective parameters (Figure A1) is the empirical distributions of the
best-fitted parameters. We fit both the death and case data. We considered the uncertainty
in the projection of the death and cases of the best-fitted parameters by computing the
trajectories along with the 95% confidence intervals (Figure A2). Note that P1a is the most
sensitive parameter within the confidence intervals.

Figure A1. Estimated uncertainty of the fitted model for the first 40 days of COVID-19 cases and
deaths in the Diamond Princess: (A–C) The histograms of the empirical distributions of the fitted
parameters β1 (A), psd (B), and p1a (C), using 10000 bootstraps realizations for non-linear least squares
in MATLAB. (D) Estimated daily cases: black line is the best fit; red lines are the 95% confidence bands
about the best fit; blue circles are the daily cases data [26]. The range for each parameter corresponds
to the 95% confidence intervals (Table 1). The uncertainty is determined on the hypothesis that our
model is correct and each parameter assumes values within the range of bounds on the non-linear
least squares solver. Probability of severe to deceased: Psd and mild to severe are the most sensitive
to our fitted curve in Figure 2.
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Figure A2. Uncertainty in global sensitivity analysis: 15,000 samples using an acceptance–rejection
method. (A–F): probability density function and cumulative distribution function of the triangle
distribution according to the parameters β1, βa, P1a, , Pms, and Psd, respectively. The peak of the
distribution corresponds to the mean value estimated using nonlinear least squares.

Appendix B. Local Sensitivity Analysis

We performed local sensitivity analysis (LSA) around our optimal fitted solution
(Table 1) to quantify the level of uncertainty in our model. Uncertainties affect the reliability
of model predictions and can gauge the scope of the model [48]. The goal of local sensitivity
is to evaluate the model’s outputs with respect to key parameters of interest. The most
sensitive parameters have the most potent effects for small deviations from an initial
value [48].

We perturb our fitted parameters of interest (POIs) around the optimal fitted parameter
set and evaluate the change in quantities of interest (QOIs), such as the basic reproductive
number (R0), deaths at disembarkment, and cumulative infected. For each POI, we de-
termine the sensitivity with respect to each QOI through a sensitivity index (Figure A1C).
Comparing parameters of different dimensions is enigmatic unless one quantifies the
sensitivity by computing the partials around a local region [48]. The sign of each sensitivity
index (Figure A1C) corresponds to the qualitative shift with respect to a magnitude change
in the POI. For instance, the sensitivity index of POI βm with respect to the QOI: R0 is
positive, indicating a positive relationship between βm and R0. The magnitude of the
sensitivity index expresses the relative significance of that parameter compared to the
others (Table A1). We define a dimensionless sensitivity index by evaluating the response
in the QOI (q) relative to a POI (p). Take q̃ = q(p∗) where p∗ is the optimal parameter from
Table 1. If p∗ is perturbed locally by θ

q
p, then the QOI generated with the new parameter

set will take the form: q̃ = q̃(p∗ + p∗ × θ
q
p), where θ

q
p is the response generated from a

perturbation about p∗ : θ
q
p = ∂q

∂p . We linearize about q and define the sensitivity index as
p
q ×

∂q
∂p .
The optimal fitted parameters of interest are within 10% of its estimated values.

The deaths at disembarkment are most sensitive to the probability of transition from infec-
tious and presymptomatic to infectious and asymptomatic (P1a). The relative sensitivity
index is −4.1, meaning decreasing P1a by 10% would increase the deaths by 4.1%.

The local sensitivity analysis suggests that the mortality is highly sensitive to the frac-
tion of presymptomatic infections that stay asymptomatic infections. The parameters Pms
and Pmc also significantly contribute to the mortality rate. Our model assumes the identical
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probability of transmission per contact between mild and asymptomatic symptoms. Hence,
we did not choose to vary the value of βm.

Table A1. Parameter sensitivity index for the parameters of interest around the optimal
fitted parameters.

Quantity of Interest β1 βa P1a Pms Psd

Infected at Disembarkment −4.1 −1.5 −0.73 −0.0011 −2.1× 10−5

R0 0.46 0.54 0.33 0 0

Death at Disembarkment 0.86 0.29 −4.1 −2.8 0.43

References
1. Tang, D.; Comish, P.; Kang, R. The hallmarks of COVID-19 disease. PLoS Pathog. 2020, 16, e1008536. [CrossRef] [PubMed]
2. Lerner, A.M.; Folkers, G.K.; Fauci, A.S. Preventing the Spread of SARS-CoV-2 with Masks and Other “Low-tech” Interventions.

JAMA 2020, 324, 1935–1936. doi:10.1001/jama.2020.21946. [CrossRef]
3. Wang, Q.; Yu, C. The role of masks and respirator protection against SARS-CoV-2. Infect. Control Hosp. Epidemiol. 2020, 41, 746–747.

[CrossRef] [PubMed]
4. Peeples, L. Face masks: What the data say. Nature 2020, 586, 186–189.
5. Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.;

Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med.
2020, 382, 1564–1567. [CrossRef]

6. Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.;
et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [CrossRef]

7. Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of
COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [CrossRef]

8. Scientific Brief, SARS-CoV-2 and Potential Airborne Transmission. Available online: https://www.cdc.gov/coronavirus/2019
-ncov/science/science-briefs/sars-cov-2-transmission.html (accessed on 2 February 2021).

9. Global COVID-19 Tracker & Interactive Charts: Available online: https://coronavirus.1point3acres.com/en2020 (accessed on
2 February 2021).

10. He, X.; Lau, E.H.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral
shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [CrossRef]

11. Brooks, J.T.; Beezhold, D.H.; Noti, J.D.; Coyle, J.P.; Derk, R.C.; Blachere, F.M.; Lindsley, W.G. Maximizing Fit for Cloth and
Medical Procedure Masks to Improve Performance and Reduce SARS-CoV-2 Transmission and Exposure, 2021. Morb. Mortal.
Wkly. Rep. 2021, 70, 254. [CrossRef] [PubMed]

12. Brooks, J.T.; Butler, J.C. Effectiveness of Mask Wearing to Control Community Spread of SARS-CoV-2. JAMA 2021, 325, 998–999.
[CrossRef] [PubMed]

13. Schumm, M.A.; Hadaya, J.E.; Mody, N.; Myers, B.A.; Maggard-Gibbons, M. Filtering Facepiece Respirator (N95 Respirator)
Reprocessing: A Systematic Review. JAMA 2021, 325, 1296–1317. [CrossRef] [PubMed]

14. Hendrix, M.J. Absence of apparent transmission of SARS-CoV-2 from two stylists after exposure at a hair salon with a universal
face covering policy—Springfield, Missouri, May 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 930–932. [CrossRef]

15. MacIntyre, C.R.; Cauchemez, S.; Dwyer, D.E.; Seale, H.; Cheung, P.; Browne, G.; Fasher, M.; Wood, J.; Gao, Z.; Booy, R.; et al. Face
mask use and control of respiratory virus transmission in households. Emerg. Infect. Dis. 2009, 15, 233. [CrossRef] [PubMed]

16. Verma, S.; Dhanak, M.; Frankenfield, J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys. Fluids
2020, 32, 061708. [CrossRef]

17. van der Sande, M.; Teunis, P.; Sabel, R. Professional and home-made face masks reduce exposure to respiratory infections among
the general population. PLoS ONE 2008, 3, e2618. [CrossRef]

18. Gandhi, M.; Rutherford, G.W. Facial masking for COVID-19—Potential for “variolation” as we await a vaccine. N. Engl. J. Med.
2020, 383, e101. [CrossRef] [PubMed]

19. Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.; von Delft, A.; Price, A.; Fridman, L.; Tang, L. et al.
Face masks against COVID-19: An evidence review. submitted. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [CrossRef]
[PubMed]

20. Stutt, R.O.; Retkute, R.; Bradley, M.; Gilligan, C.A.; Colvin, J. A modelling framework to assess the likely effectiveness of
facemasks in combination with lock-down in managing the COVID-19 pandemic. Proc. R. Soc. A 2020, 476, 20200376. [CrossRef]

21. Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask or not to mask:
Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect. Dis. Model. 2020,
5, 293–308. [CrossRef]

http://doi.org/10.1371/journal.ppat.1008536
http://www.ncbi.nlm.nih.gov/pubmed/32442210
http://dx.doi.org/10.1001/jama.2020.21946
http://dx.doi.org/10.1017/ice.2020.83
http://www.ncbi.nlm.nih.gov/pubmed/32192550
http://dx.doi.org/10.1056/NEJMc2004973
http://dx.doi.org/10.1038/s41586-020-2196-x
http://dx.doi.org/10.1073/pnas.2009637117
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html
https://coronavirus.1point3acres.com/en2020
http://dx.doi.org/10.1038/s41591-020-0869-5
http://dx.doi.org/10.15585/mmwr.mm7007e1
http://www.ncbi.nlm.nih.gov/pubmed/33600386
http://dx.doi.org/10.1001/jama.2021.1505
http://www.ncbi.nlm.nih.gov/pubmed/33566056
http://dx.doi.org/10.1001/jama.2021.2531
http://www.ncbi.nlm.nih.gov/pubmed/33656543
http://dx.doi.org/10.15585/mmwr.mm6928e2
http://dx.doi.org/10.3201/eid1502.081166
http://www.ncbi.nlm.nih.gov/pubmed/19193267
http://dx.doi.org/10.1063/5.0016018
http://dx.doi.org/10.1371/journal.pone.0002618
http://dx.doi.org/10.1056/NEJMp2026913
http://www.ncbi.nlm.nih.gov/pubmed/32897661
http://dx.doi.org/10.1073/pnas.2014564118
http://www.ncbi.nlm.nih.gov/pubmed/33431650
http://dx.doi.org/10.1098/rspa.2020.0376
http://dx.doi.org/10.1016/j.idm.2020.04.001


Epidemiologia 2021, 2 226

22. Kai, D.; Goldstein, G.P.; Morgunov, A.; Nangalia, V.; Rotkirch, A. Universal masking is urgent in the COVID-19 pandemic: Seir
and agent based models, empirical validation, policy recommendations. arXiv 2020, arXiv:2004.13553.

23. Tian, L.; Li, X.; Qi, F.; Tang, Q.Y.; Tang, V.; Liu, J.; Cheng, X.; Li, X.; Shi, Y.; Liu, H.; et al. Pre-symptomatic Transmission in the
Evolution of the COVID-19 Pandemic. arXiv 2020, arXiv:2003.07353.

24. IHME. Modeling COVID-19 scenarios for the United States. Nat. Med. 2020, doi:10.1038/s41591-020-1132-9. [CrossRef]
25. Bai, F.; Brauer, F. The Effect of Face Mask Use on COVID-19 Models. Epidemiologia 2021, 2, 75–83. [CrossRef]
26. Ministry of Health Labor and Welfare, Japan. Available online: https://www.mhlw.go.jp/content/10200000/Fig2.pdf (accessed

on 2 February 2021).
27. Conrad, J.R.; Xue, L.; Dewar, J.; Hyman, J.M. Modeling the impact of behavior change on the spread of Ebola. In Mathematical and

Statistical Modeling for Emerging and Re-Emerging Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 2016; pp. 5–23.
28. Rocklöv, J.; Sjödin, H.; Wilder-Smith, A. COVID-19 outbreak on the Diamond Princess cruise ship: Estimating the epidemic

potential and effectiveness of public health countermeasures. J. Travel Med. 2020, 27, taaa030. [CrossRef] [PubMed]
29. Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico,

J.D.; Cohen, S.L.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19
in the New York City area. JAMA 2020, 323, 2052–2059. [CrossRef]

30. Hazard, D.; Kaier, K.; von Cube, M.; Grodd, M.; Bugiera, L.; Lambert, J.; Wolkewitz, M. Joint analysis of duration of ventilation,
length of intensive care, and mortality of COVID-19 patients: A multistate approach. BMC Med. Res. Methodol. 2020, 20, 206.
[CrossRef]

31. Mizumoto, K.; Chowell, G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises
Ship, 2020. Infect. Dis. Model. 2020, 5, 264–270. [CrossRef]

32. Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid
dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493. [CrossRef]

33. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation
period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern.
Med. 2020, 172, 577–582. [CrossRef]

34. Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020, 9, e57309. [CrossRef]
35. Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the transmission risk of the 2019-nCoV and its

implication for public health interventions. J. Clin. Med. 2020, 9, 462. [CrossRef] [PubMed]
36. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of

disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]
37. Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A. On the definition and the computation of the basic reproduction ratio R0 in models

for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [CrossRef] [PubMed]
38. OÕDowd, K.; Nair, K.M.; Forouzandeh, P.; Mathew, S.; Grant, J.; Moran, R.; Bartlett, J.; Bird, J.; Pillai, S.C. Face Masks and

Respirators in the Fight against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives.
Materials 2020, 13, 3363. [CrossRef] [PubMed]

39. Worby, C.J.; Chang, H.H. Face mask use in the general population and optimal resource allocation during the COVID-19
pandemic. Nat Commun 2020, 11, doi:10.1038/s41467-020-17922-x [CrossRef] [PubMed]

40. Nakazawa, E.; Ino, H.; Akabayashi, A. Chronology of COVID-19 cases on the Diamond Princess cruise ship and ethical
considerations: A report from Japan. Disaster Med. Public Health Prep. 2020, 14, 506–513. [CrossRef] [PubMed]

41. Fischer, E.P.; Fischer, M.C.; Grass, D.; Henrion, I.; Warren, W.S.; Westman, E. Low-cost measurement of face mask efficacy for
filtering expelled droplets during speech. Sci. Adv. 2020, 6, eabd3083. [CrossRef] [PubMed]

42. Huo, J. Why There Are So Many Different Guidelines For Face Masks For The Public. NPR. Available online: https://www.npr.
org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-many-different-guidelines-for-face-masks-for-the-public
(accessed on 10 April 2020).

43. Chan, N.C.; Li, K.; Hirsh, J. Peripheral Oxygen Saturation in Older Persons Wearing Nonmedical Face Masks in Community
Settings. JAMA 2020, 324, 2323–2324. doi:10.1001/jama.2020.21905. [CrossRef]

44. Tokuda, Y.; Sakihama, T.; Aoki, M.; Taniguchi, K.; Deshpande, G.A.; Suzuki, S.; Uda, S.; Kurokawa, K. COVID-19 outbreak on the
Diamond Princess Cruise Ship in February 2020. J. Gen. Fam. Med. 2020, 21, 95. [CrossRef]

45. Wang, J.; Pan, L.; Tang, S.; Ji, J.S.; Shi, X. Mask use during COVID-19: A risk adjusted strategy. Environ. Pollut. 2020, 266, 115099.
[CrossRef]

46. Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of
the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [CrossRef] [PubMed]

47. Chowell, G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty,
identifiability, and forecasts. Infect. Dis. Model. 2017, 2, 379–398. [CrossRef] [PubMed]

48. Arriola, L.; Hyman, J.M. Sensitivity analysis for uncertainty quantification in mathematical models. In Mathematical and Statistical
Estimation Approaches in Epidemiology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 195–247.

http://dx.doi.org/10.1038/s41591-020-1132-9
http://dx.doi.org/10.3390/epidemiologia2010007
https://www.mhlw.go.jp/content/10200000/Fig2.pdf
http://dx.doi.org/10.1093/jtm/taaa030
http://www.ncbi.nlm.nih.gov/pubmed/32109273
http://dx.doi.org/10.1001/jama.2020.6775
http://dx.doi.org/10.1186/s12874-020-01082-z
http://dx.doi.org/10.1016/j.idm.2020.02.003
http://dx.doi.org/10.1126/science.abb3221
http://dx.doi.org/10.7326/M20-0504
http://dx.doi.org/10.7554/eLife.57309
http://dx.doi.org/10.3390/jcm9020462
http://www.ncbi.nlm.nih.gov/pubmed/32046137
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1007/BF00178324
http://www.ncbi.nlm.nih.gov/pubmed/2117040
http://dx.doi.org/10.3390/ma13153363
http://www.ncbi.nlm.nih.gov/pubmed/32751260
http://dx.doi.org/10.1038/s41467-020-17922-x
http://www.ncbi.nlm.nih.gov/pubmed/32792562
http://dx.doi.org/10.1017/dmp.2020.50
http://www.ncbi.nlm.nih.gov/pubmed/32207674
http://dx.doi.org/10.1126/sciadv.abd3083
http://www.ncbi.nlm.nih.gov/pubmed/32917603
https://www.npr.org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-many-different-guidelines-for-face-masks-for-the-public
https://www.npr.org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-many-different-guidelines-for-face-masks-for-the-public
http://dx.doi.org/10.1001/jama.2020.21905
http://dx.doi.org/10.1002/jgf2.326
http://dx.doi.org/10.1016/j.envpol.2020.115099
http://dx.doi.org/10.1016/j.ijsu.2020.04.018
http://www.ncbi.nlm.nih.gov/pubmed/32305533
http://dx.doi.org/10.1016/j.idm.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/29250607

	Introduction
	Materials and Methods
	Differential Equation Model
	Force of Infection
	Force from Infection
	Contact Rates

	Model Parameters
	The Reproductive Numbers

	Results
	Mask Wearing by the Public Flattens the Curve
	Face Masks Reduce Deaths
	A Window of Opportunity to Implement Mask Policy
	At Least 84% Mask Wearers Are Needed to Stop the Epidemic on Diamond Princess

	Summary and Discussion
	Conclusions
	Global Sensitivity Analysis
	Local Sensitivity Analysis
	References

