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Abstract: Covalent organic framework nanosheets (COF nanosheets) are two-dimensional crystalline
porous polymers with in-plane covalent bonds and out-of-plane Van der Waals forces. Owing to the
customizable structure, chemical modification, and ultra-high porosity, COF nanosheets show many
fascinating properties unique to traditional two-dimensional materials, and have shown potential
applications in gas separation, sensors, electronic, and optoelectronic devices. This minireview aims
to illustrate recent progress on two-dimensional covalent organic framework nanosheets, from two
aspects of on-surface synthesis and potential applications. We first review the synthesis of COF
nanosheets at the gas–solid interface. On-surface synthesis under ultrahigh vacuum and on-surface
synthesis under vapor are highlighted. In addition, we also review the liquid–solid interface synthesis
of COF nanosheets at various substrates, i.e., both crystalline and amorphous substrates. Beyond the
synthesis, we highlight state-of-the-art applications of the COF nanosheets, particularly in charge
transport, chemical sensors, and gas separation.

Keywords: on-surface synthesis; covalent organic framework; thin film; device application; scanning
tunneling microscopy

1. Introduction

Covalent organic frameworks (COFs) are long-range, ordered, covalently bonded
polymers, showing crystallinity and porosity [1–3]. COFs form via covalently bonding
molecular building blocks [4]. Due to their fascinating properties, including thermal
stability and rich chemical/physical properties, COFs have shown potential applications in
many emerging fields, such as catalysts [5], sensors [6,7], gas separation [8,9], and energy
storage [10,11]. Furthermore, the pore size of COFs can also be artificially regulated to
achieve the specific properties, which can broaden the scope of their application [12–14].

Covalent organic framework nanosheets (COF nanosheets), derived from COFs, are
two-dimensional materials with in-plane covalent bonds and out-of-plane weak Van der
Waals forces. Due to the rich architecture and ultra-high porosity, COF nanosheets show
many fascinating properties unique to other 2D materials and have been applied in gas
separation [15], sensors [7], and optoelectronic devices [16–18]. COF nanosheets have
attracted extensive research interest, and currently COF reviews mainly focus on the
solution-based synthesis of COF powder and nanosheets [19–21]. Reviews on the substrate-
supported synthesis of COF nanosheets are still rare.

In this minireview, we will summarize recent progress on the on-surface synthesis
and state-of-the-art applications of COF nanosheets. We first review the history of COF
nanosheets in Section 2. In Section 3, we summarize the COF nanosheet synthesis at the
gas–solid interface, including on-surface synthesis under ultrahigh vacuum and on-surface
synthesis under vapor. In Section 4, we illustrate the COF nanosheet synthesis at the
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liquid–solid interface. Lastly, in Section 5, we highlight the applications of COF nanosheets
in charge transport, chemical sensors, and gas separation.

2. The History of COF Nanosheets

The first COF was reported by Yaghi and Adrien P. Côté et al. in 2005 via solution-
based wet chemistry [22]. A condensation reaction of 1,4-benzenediboronic acid (BDBA)
precursors was employed to synthesize COF-1 (Figure 1a) under 120 ◦C by heating for
72 h in the mesitylene-dioxane solution. These circumstances made it possible for the
BDBA dehydration to gradually carry on, which benefits the crystallite growth. The
COF-5 was also synthesized via a dehydration reaction between BDBA and 2,3,6,7,10,11-
hexahydroxytriphenylene (HHTP), as shown in Figure 1a. Powder X-ray diffraction (PXRD)
was carried out to characterize the as-synthesized COFs shown in Figure 1b, which verified
that the crystalline COF-1 and COF-5 were indeed obtained. Based on the powder XRD,
structural models of COF-1 and COF-5 are proposed in Figure 1c by exchanging the place
of certain atoms in graphite. After that, various kinds of COFs have been synthesized by
using various molecular units or different types of chemical reactions [23–28].
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struct organic networks via covalently bonding molecular units on an Au (111) surface 
under ultrahigh-vacuum [29]. The basic principle is that, via exciting molecular units with 
functional substituent groups on the metal crystal by heating, the substituent groups dis-
sociate from molecules, and then cross-linkages form between activated molecular units. 
Figure 2a shows STM images of three kinds of covalent organic nanostructures formed on 
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Figure 1. Two kinds of COFs obtained via traditional solution-based wet chemistry. (a) Condensation
reactions of boronic acids used to synthesize COF-1 and COF-5, respectively. (b) X-ray analysis of
COF-1 and COF-5 structures, and the corresponding calculated powder XRD. (c) Structural models of
COF-1 and COF-5, where carbon, boron, and oxygen are represented as gray, orange, and red spheres,
respectively. Figures are reproduced with permission from Ref. [15], Copyright © 2005, AAAS.

In 2007, Grill and Hecht et al. came up with a method of on-surface synthesis to
construct organic networks via covalently bonding molecular units on an Au (111) surface
under ultrahigh-vacuum [29]. The basic principle is that, via exciting molecular units
with functional substituent groups on the metal crystal by heating, the substituent groups
dissociate from molecules, and then cross-linkages form between activated molecular units.
Figure 2a shows STM images of three kinds of covalent organic nanostructures formed
on the Au (111) surface. By changing molecular units with different substituent groups at
different sites using Br-TPP (5-(4-Bromophenyl)-10,15,20-tri(phenyl)porphyrin), Br2-TPP
(5,15-Bis(4-bromophenyl)-10,20-bisphenylporphyrin), and Br4-TPP (tetra (4-bromophenyl)
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porphyrin) as precursors, respectively, the final organic nanostructures of dimers, one-
dimensional chains, and two-dimensional networks were obtained on the Au (111) sub-
strate. Corresponding chemical structures of the organic nanostructures are presented in
Figure 2b. On-surface synthesis has emerged as a powerful method to obtain 2D COF
monolayers on the surface under high vacuum [30–36]. Since the COF sheets show good
charge transport, these research works help us to design the functionalized nanostructures,
integrating the electronics, optics, and magnetism [37,38]. This will definitely benefit the
application of COFs in molecular electronic devices.
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3. Methods to Prepare COF Nanosheets

The methods to synthesize COF nanosheets can be categorized as the top-down
approach or the bottom-up approach [2,39]. Although bottom-up approaches make it easier
to control the sample thickness and orientation of COF nanosheets, the top-down approach
is chosen more often for practical applications due to its simplicity and scalability.

The basic principle of the top-down strategy is to exfoliate the as-synthesized layered
COF bulk into COF nanosheets [2]. This strategy mainly consists of mechanical exfoliation
(ME) and liquid phase exfoliation (LPE) [40,41]. ME refers to a method of repeatedly
sticking and peeling bulk COFs by transparent tape to obtain 2D thin films. The advantages
of the ME method are low cost, easy operation, and the high quality of materials obtained,
while the drawbacks are low yield and the difficulty to obtain large-scale thin films. By
providing external energy, the LPE method can destroy the Van der Waals force between
layers, so that the layered bulk COFs disintegrate into 2D few-layer nanosheets. The LPE
method shows advantages in simple operation, such as easy expansion and high yield,
while the final products may have a small domain size and structural defects.

On the other hand, the bottom-up strategy is applied on the surface and/or at various
interfaces to synthesize porous nanosheets through various coupling reactions, such as
Ullman coupling, imine coupling, the boronic dehydration reaction, and so on. Several
bottom-up methods, including on-surface synthesis under high vacuum, vapor-assisted
synthesis, and solid–liquid interface synthesis, are illustrated below.
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3.1. On-Surface Synthesis

Zwaneveld et al. reported surface covalent organic frameworks (SCOFs, a kind of
COF nanosheet) in 2008 [35]. The SCOF-1 was synthesized by the dehydration reaction of
BDBA precursors, and another type of COF (SCOF-2) was synthesized by the condensation
reaction between BDBA and HHTP precursors. The precursors were sublimated by heating
under ultra-high vacuum (UHV), and then deposited on an Ag (111) substrate. The side
products, such as H2O, formed on the surface, were finally removed by sample annealing.
The network structures remained intact after annealing, suggesting thermal stability and
structural permanence. The STM technique was employed to in situ-probe the morphology
of the samples. The pore sizes can be directly measured by high-resolution STM images,
which shows that the pore size can be regulated from 15.3 Å to 29.8 Å, as in Figure 3a,b,
respectively. Their work was the early attempt to synthesize a large, stable, and size-
controllable COFs.
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Knudsen effusion cell under UHV conditions, 2-TBQP precursors were deposited onto an 
Au (111) substrate at room temperature to obtain a self-assembly structure, as shown in 

Figure 3. Custom-designed COF monolayers via on-surface synthesis. (a,b) STM images of SCOF-1
and SCOF-2 networks. The apertures of SCOF-1 and SCOF-2 are 15.25 Å and 29.8 Å, respectively.
The insets show the overlaid chemical structures obtained by DFT calculations. Pentagonal and
heptagonal structures, resulting from defects in covalent bond formation, can be observed in (b).
(c) Chemical structure, corresponding STM images of self-assembly, and monolayer carbon nitride
(4N-doping carbon nitride) after annealing, image size: 6 nm × 6 nm. (d) Chemical structure,
corresponding STM images of self-assembly, and monolayer carbon nitride (2N-doping carbon
nitride) after annealing, image size: 6 nm × 6 nm. (a,b) Figures are reproduced with permission
from Ref. [35], Copyright © 2008, American Chemical Society. (c,d) Figures are reproduced with
permission from Ref. [42], Copyright © 2020, American Chemical Society.
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In 2020, a single-layer carbon nitride 2D network with control over the pore sizes and
nitrogen-doping was synthesized by Wang et al. [42,43]. After being sublimated from a
Knudsen effusion cell under UHV conditions, 2-TBQP precursors were deposited onto
an Au (111) substrate at room temperature to obtain a self-assembly structure, as shown
in Figure 3c. After annealing the sample, a 2D carbon nitride monolayer with adjusted
nanopores and expected nitrogen doping was obtained via Ullman cross-coupling of the
precursors. Using a different precursor of 2-TBTBP, another carbon nitride monolayer was
also obtained in Figure 3d. The high-resolution STM images indicate that the carbon nitride
monolayer can be tailored in N-doping level, pore sizes, and dimensions (1D or 2D). An
atomic-scale investigation of the heteroatom-doped carbon was achieved.

3.2. Vapor-Assisted Synthesis

SCOFs obtained via on-surface synthesis are polycrystalline with defects and are
always small in size. To promote the large-area synthesis of COF thin films, reversible
reactions with self-repair ability were employed by Wan et al. [44,45]. The schematic
diagram is shown in Figure 4a,b. Precursor A was drop-casted onto the substrate surface.
Precursor B, with a low vaporization point, and CuSO4-5H2O were also introduced into a
closed reactor. After heating the reactor, precursor B will vaporize and react with precursor
A on the surface. The introduced CuSO4-5H2O can maintain a water vapor environment to
regulate the reversible dehydration reaction. As a result, highly ordered SCOF-1 forms on
the highly oriented pyrolytic graphite (HOPG) substrate. Using a similar vapor-assisted
strategy, other large-area SCOFs were also obtained using various precursors.
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Vapor-assisted on-surface synthesis is also feasible for forming COFs on amorphous
substrates. Dana et al. reported in 2015 that the BDT-COF, COF-5, and pyrene-COF films
were obtained on an amorphous glass substrate [46]. Precursor 1 was dissolved in organic
solvent, and the solution was drop-casted onto the amorphous glass substrate. The glass
substrate was put into a closed reactor containing precursor 2 vapor and reacted for 72 h
at room temperature. The as-synthesized COFs have been characterized by SEM, PXRD,
and sorption isotherm, as shown in Figure 4c–f, suggesting that a crystalline COF film can
be grown on an amorphous substrate. Their work shows that the vapor-assisted synthesis
was an effective way to prepare the COF thin films.

3.3. Solid–Liquid Interface Synthesis

The COF nanosheets can also be synthesized on a solid surface by using a solid–liquid
interface. Zhan et al. recently reported the polymerization and crystallization process of a
2D boroxine covalent polymer at a solid–liquid interface [47]. Figure 5a shows the reaction
pathway of the 2D boroxine covalent polymer, and Figure 5b shows a liquid STM image of
the 2D porous polymer that was synthesized by dropping 5µL of a 1-octanoic acid solution
of pyrene-2,7-diboronic acid (PDBA) onto a clean HOPG surface. Figure 5c presents the
nucleation and growth process of the 2D boroxine covalent polymer over time, suggesting
that a single domain evolved from the oligomeric nuclei to a larger 2D polymer domain. A
statistical investigation was carried out based on the STM observations, revealing the key
parameters for COF crystallization at the solid–liquid interface, such as the growth rate,
critical nucleation size, and nucleation rate. Furthermore, Zhan et al. studied the domain
coalescence process from a kinetic point of view at the single-molecule level. Figure 5d
shows the crystallographic orientations, grain boundary (GB) migration rate, and grain
misorientation of each GB. These investigations help us understand the polymerization
and crystallization parameters for 2D COF nanosheet growth.
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pathway of the 2D boroxine covalent polymer. (b) Liquid STM images of the 2D covalent polymer.
The corresponding chemical structure marked by the white dashed line is shown in (a). (c) Nucleation
and growth process recorded by STM, image size: 12 nm × 12 nm. (d) Liquid STM images of grain
boundaries and their movement. Figures are reproduced with permission from Ref. [47], Copyright ©
2022, Springer Nature.

Using a similar solid–liquid interface, Colson et al. reported the growth of COF films
on a single-layer graphene (SLG) substrate [48]. Firstly, a well-known COF-5 film was
synthesized on a SLG/Cu substrate, as shown in Figure 6a. The SLG/Cu substrate was
prepared by growing SLG on Cu through the chemical vapor deposition method. The
SLG/Cu substrate was inserted into the solution for COF film growth. Grazing incidence
diffraction (GID) shows that the as-synthesized COF film on the SLG/Cu substrate has a
better crystallinity compared with the COF powder (Figure 6b). To prove the universality
of the synthetic method, the COF-5 films were also grown on the SLG/SiO2 and SLG/SiC
substrates, respectively. The diffraction patterns in Figure 6c,d suggest the long-range
order structures, the same as that on the SLG/Cu substrate. The COF films on the SLG/Cu
substrate were thicker than those on SLG/SiO2 and SLG/SiC substrates under the same
reaction time, indicating that the underlying substrate played a key role in controlling the
thickness of the films. As discussed in Figure 4, COF thin films can also be grown on the
amorphous glass substrates.
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4. Applications of COF Nanosheets

Due to their ultra-high porosity, low mass density, rich chemical/physical properties,
and high structure tunability at the atomic level, 2D COF films have shown potential
applications in various emerging fields [49,50], such as field effect transistors (FETs) [51,52],
light-emitting diodes (LEDs) [53,54], gas separation [14,15,55], energy storage [56], and
sensors [57]. A few cutting-edge applications of 2D COFs are illustrated in Figure 7. These
applications of COF nanosheets are in charge transport (a–c), chemical sensors (d–f), and
gas separation (g–i).

4.1. Charge Transport

Due to the high-order molecular array and structural tunability, 2D COF nanosheets
can provide large amounts of channels for charge and exciton transfer, which is essential in
the field of electronic devices. Frey et al. investigated the charge transportation in COFs
by detecting the electrical conductivity in different directions [58]. As shown in Figure 7a,
the in-plane electrical conductivity of the BTT COFs was investigated by analyzing the
relationship between temperature and conductivity, showing a defect-dominated hopping
type of charge transport in the COF film. The out-of-plane charge transport was obtained
by conductive atomic force microscopy measurement, which was smaller than the in-plane
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direction since the conjugated structure is only in-plane (Figure 7b). The pathways of charge
transfer in the COF films were also stimulated in Figure 7c, which suggested that the type
of charge transport in the 2D plane was hopping, and that the grain boundary formation
due to the rotated COF layers reduced charge transport in the out-of-plane direction.

4.2. Chemical Sensor

Owing to their high thermal stabilities, porousness, and structural designability, COF
nanosheets have also shown applications in the field of chemical sensors and biosen-
sors [59,60]. Yuan et al. reported a chemical capacitive sensor that was made of COFs with
interdigitated electrodes (IDEs) [61]. The strategy was to directly grow BTA-TAPT COF
films onto IDEs to detect the benzene since the benzene molecule interacts with the triazine
moieties of the COFs. Figure 7d shows the schematic representation of this chemical sensor.
By monitoring the capacitance of the sensor under benzene, CO2, CH4, and C3H8, respec-
tively, Figure 7e shows that the chemical sensor exhibited a high selectivity towards benzene,
indicating a strong interaction between benzene and the COF nanosheet. The COF-based
sensor was compared with other detectors or sensors, as shown in Figure 7f. The COF-based
sensor shows a relatively higher level of selectivity and a lower operating temperature.
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representation of conductive AFM measurements of the charge transport in the out-of-plane direction.
(c) Simulations of the charge transport in the COF film based on electron affinity. (d) Schematic
representation of the COF-based chemical sensor. (e) Selectivity of the sensor towards benzene,
CO2, CH4, and C3H8. (f) The performance comparison with the latest types of chemical sensors.
(g) Schematic representation of multilayer COF-based membranes. (h) Permeance performance for
different individual-component gases. The insert illustrates the ideal selectivity for different gas mix-
tures. (i) The comparison of H2/CO2 separation performance among the state-of-the-art membranes.
(a–c) Figures are reproduced with permission from Ref. [58], Copyright © 2022, Wiley-VCH GmbH.
(d–f) Figures are reproduced with permission from Ref. [61], Copyright © 2022, American Chemical
Society. (g–i) Figures are reproduced with permission from Ref. [62], Copyright © 2022, American
Chemical Society.

4.3. Gas Separation

In addition, because of the ordered, regular, and adjustable pore structure in the frame-
work, COF nanosheets are ideal functional films for separating gases or liquids [9,55,63–66].
Ying et al. proposed a multi-interfacial strategy to prepare COF heterojunction membranes
for gas separation [62]. As shown in Figure 7g, based on the interfacial reaction between
TpPa-SO3H and Tptgcl, a COF nanosheet was grown on the other kind of COF nanosheet to
form a COF heterostructure with nanopores. The COF heterostructure was interfaced with
a buffer layer of COF-LZU1 film to fight against resistance during gas transport. The COF
bilayer number was optimal to enhance H2 and CO2 separation permeance and H2/CO2
selectivity. The permeance dramatically decreased when the kinetic diameter increased,
suggesting the effective sieving ability of this membrane (Figure 7h). Compared with
other membranes in Figure 7i, the COF membranes exhibited excellent performance on
H2/CO2 separation.

5. Conclusions

COF nanosheets have emerged as a promising porous material for next-generation
functional applications since the first COF-1 was synthesized in 2005. The bottom-up syn-
thesis discussed in this minireview possesses the advantages of adjusting the film thickness,
heteroatom doping, and pore sizes, which are crucial in practical applications. Two strate-
gies of the bottom-up method were included, namely solid–gas interface synthesis and
solid–liquid interface synthesis. For on-surface synthesis, the COF nanosheets are mainly
synthesized under UHV conditions by evaporating the reactants on metal crystals. On-
surface synthesis has been a powerful strategy for the synthesis of novel low-dimensional
COF nanosheets. Combined with STM, the as-synthesized COF nanosheets can be in
situ-imaged at a single-molecule level. However, the order domain size of COF nanosheets
obtained via on-surface synthesis is still very small, and structural defects always exist. To
fix these problems, reversible chemistry was developed in the field of on-surface synthesis.
For the solid–liquid interface, an in situ liquid STM study of the formation mechanism of 2D
COFs growth has been reported. In addition, COF thin-film growth on both the crystalline
substrate and the amorphous substrate was also discussed, suggesting the feasibility of
applying the solid–liquid interface strategy to synthesize COF nanosheets on various other
kinds of 2D materials or substrates for functional devices.

Finally, several examples were highlighted to illustrate the state-of-the-art applications
of COF nanosheets. COF nanosheet-based devices have shown applications in charge
transport, chemical sensing, gas separation membranes, and so on. These works suggest
COF nanosheets as a promising 2D material for next-generation functional devices. Further
research is needed to realize the large-scale preparation of highly ordered COF nanosheets.
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