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Abstract: Wireless energy harvesting, a technique to generate direct current (DC) electricity from
ambient wireless signals, has recently been featured as a potential solution to reduce the battery
size, extend the battery life, or replace batteries altogether for wearable electronics. Unlike other
energy harvesting techniques, wireless energy harvesting has a prominent advantage of ceaseless
availability of ambient signals, but the common form of technology involves a major challenge of
limited output power because of a relatively low ambient energy density. Moreover, the archetypal
wireless energy harvesters are made of printed circuit boards (PCBs), which are rigid, bulky, and
heavy, and hence they are not eminently suitable for body-worn applications from both aesthetic
and comfort points of view. In order to overcome these limitations, textile-based wireless energy
harvesting architectures have been proposed in the past decade. Being made of textile materials,
this new class of harvesters can be seamlessly integrated into clothing in inherently aesthetic and
comfortable forms. In addition, since clothing offers a large surface area, multiple harvesting units
can be deployed to enhance the output power. In view of these unique and irreplaceable benefits,
this paper reviews key recent progress in textile-based wireless energy harvesting strategies for
powering body-worn electronics. Comparisons with other power harvesting technologies, historical
development, fundamental principles of operation and techniques for fabricating textile-based
wireless power harvesters are first recapitulated, followed by a review on the principal advantages,
challenges, and opportunities. It is one of the purposes of this paper to peruse the current state-
of-the-art and build a scientific knowledge base to aid further advancement of power solutions for
wearable electronics.

Keywords: wireless power harvesting; textile-based energy solution; self-sustainable wearable
electronics; high-frequency circuit design; electrical and dielectric properties

1. Introduction

With ever-increasing interest in anytime anywhere access to various electronic func-
tionalities, electronic textiles (e-textiles) have been featured in recent research. Having
both functions as electronics and comfortable apparel, textile-based electronics have been
advocated to remove the technical hurdle for long-term detection and sensing, data analysis
and transmission for various healthcare [1–3], military [4], space [5] and entertainment [6]
applications.

One major challenge with the current e-textile technology is power supply [7]. Most
e-textile products are powered by conventional rechargeable or disposable batteries that
are heavy and bulky [8]. It has been pointed out, for instance, that batteries could account
for nearly 20% of the carry-on load for U.S. soldiers on mission [8,9]. Although efforts
have been made to develop lightweight, flexible, and small form-factor power storage
devices [10], these substitutes have not yet reached the capacity of conventional ones [8].

As an alternative approach, ambient energy harvesting has been spotlighted. Am-
bient energy harvesting is a technique to generate direct current (DC) electricity from
ambient energy. Several energy sources have been identified for ambient energy harvest-
ing, including wireless energy from telecommunication (e.g., mobile, satellite and Wi-Fi)
signals [11–13], light energy from the sun and artificial light [14,15], kinetic energy from
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vibrations, body motions and airflow [16–18], and thermal energy from body and waste
heat [19–21]. Although each source has reasons to support and oppose [22], wireless
energy has a prominent advantage of ceaseless availability—wireless signals are almost
always available regardless of the location and time [12]. In addition, it has recently been
demonstrated that wireless energy harvesting units can be produced in inherently aesthetic
and comfortable forms by using textile materials, making this option perfectly viable for
powering body-worn electronics that are expected to function in both indoor and outdoor
settings without interruption [23–27]. Moreover, multiple textile-based energy harvesters
can be incorporated into clothing, which offers a large surface area for such integration, to
enhance the output power. To date, various textile-based wireless energy harvesters have
been proposed for these reasons.

Given this context, this paper reviews the textile-based wireless energy harvesting
technology for powering wearable electronics with respect to the early concept and fun-
damental principles, advantages and challenges of using textile materials, fabrication
techniques, recent research mainstream, and future perspectives. It is one of the purposes
of this paper to summarize the current state-of-the-art and build a scientific knowledge
base for this rapidly expanding realm of research.

2. Comparison of Various Ambient Energy Harvesting Techniques for Powering
Wearable Electronics

Light, kinetic, thermal, and wireless energies are the four major categories of ambient
sources from which electricity can be harvested (Figure 1). Light energy is one of the most
popular ambient energy sources and can be converted into electricity by a photovoltaic
cell. Photovoltaic cells have been successfully rendered into textile forms for wearable
applications, and a high power output was proven to be attainable in areas where there
is consistent sunshine (Figure 2 and Table 1) [28–30]. However, during dark hours or in
indoor environment, the output power is considerably reduced [31].
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Table 1. Ambient energy sources and harvesters for wearable applications.

Energy
Category

Ambient
Energy Source

Ambient Power
Density

Harvesting
Mechanism

Non-Textile Solution Textile-Based Solution

Harvestable
Power Density Efficiency (%) Harvestable Power

Density Efficiency (%)

Light
energy

Outdoor
(irect sun light) 0.1 W/cm2 [48]

Photovoltaic cell
15 mW/cm2 [14]

19.44 [49]

2.15–4.6 mW/cm2

[32–34]
0.6–4.6 [29,30,33]

Indoor light 0.01–1.8 mW/cm2

[14,33,50]
0.22 mW/cm2

[15] 0.14 mW/cm2 [33]

Kinetic
energy

Body motion –

Piezoelectric
generator

7.8–
81.25 µW/cm3

[51,52]
0.5–50 [53,54] 2–87 µW/cm3

[35,36] 27–40 [35]

Electrostatic
generator

50–193.6
µW/cm2 [55,56]

50–69.3
[56–58]

1.56–46.6 µW/cm2

[37–39] 24.94 [39]

Thermal
Energy

Body heat
(at rest)

1–10 mW/cm2

[20,59]
Thermoelectric

generator

15.8–97.6
µW/cm2

[20,60,61]
5–24 [62,63] 5.15–7 µW/cm2

[40,41]

Wireless
energy

Radiofrequency
and microwave

radiation

0.00018–1 µW/cm2

[64,65] Rectenna 0.08 nW/cm2–1
µW/cm2 [66] 30–88 [66] – 28.7–50 [24,67,68]

Kinetic energies in the form of vibrations, body motions, and airflow are the second
category of ambient energy and can be converted into electricity by piezoelectric, electro-
static, or electromagnetic generators. Although kinetic energy harvesting has been widely
examined for wearable applications [69], one of the major disadvantages of kinetic energy
is discontinuous availability—kinetic energy from human motions is often intermittent and
unpredictable [70].

Thermal energy, such as body or waste heat, can also be transformed into electric-
ity, and a thermoelectric material is generally used to achieve energy conversion. Some
of the commonly investigated thermoelectric materials are bismuth telluride [71], an-
timony telluride [72], and copper sulfides [73–76], but because of their bulkiness and
brittleness, these substances are not ideal for wearable applications [8,76–78]. In view
of these limitations, textile-based flexible thermoelectric generators made of poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) have recently been pro-
posed for on-body harvesting applications [8,77,79]. Yet, thermal energy harvesting has a
major drawback of low efficiency—an efficient thermoelectric material needs to have both
low electrical resistivity and low thermal conductivity, but such combinations are hardly
achievable [80,81]. In addition, because the amount of harvestable energy depends on the
temperature difference between the human body and ambient temperature, the power
output is critically affected by the climate [82].

The last category of ambient source is wireless energy, which is electromagnetic
radiation from telecommunication base stations (e.g., television and radio towers, cell sites,
satellite stations and Wi-Fi routers), wireless mobile devices (e.g., smart phones, personal
data assistants, and tablet and laptop computers), or any other wireless systems [82,83].
Unlike solar, kinetic, and thermal energies, whose availability depends on the location,
time, climate, and/or other relevant factors, wireless signals are ceaselessly available in
present times [12]. In wireless energy harvesting, ambient signals are converted into
electricity by a rectifying antenna (or rectenna) that can be produced in an inherently
aesthetic and comfortable form from textile materials; therefore, wireless energy harvesting
is a propitious solution to continuously power body-worn electronics [23–27].

There is, however, a major challenge in wireless energy harvesting. Compared with
the other ambient sources, the available ambient power density is much lower for wireless
signals (Table 1) [66]. Nevertheless, wireless energy harvesting has practical significance
because of its high energy conversion efficiency (Table 1). In addition, if a higher output is
required, multiple rectennas could be incorporated into clothing to support more power-
demanding electronics [24,84].
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3. Major Milestones in Wireless Power Transfer and Wireless Energy Harvesting

As summarized in Figure 3, the history of wireless power transmission, an essential
phenomenon in wireless energy harvesting, could date back to 1873, when James Clerk
Maxwell unified the theories of light and electromagnetism and predicted the transmission
of electrical energy in free space [85]. This prediction was, for the first time, attested
in 1899 by Nikola Tesla, who lighted a fluorescent lamp from a distance of 25 miles
by using a low-frequency electrical resonant transformer circuit, commonly known as
Tesla coil [86]. Although the Tesla’s innovation never found an applicable route to its
commercialization [87], the concept of wireless power transmission has led to various
consequential applications—it requires no physical element between the source of energy
and the point of consumption, and the energy can be transferred at the speed of light with
almost neglectable attenuation losses [85].
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Figure 3. Major milestones in wireless power transfer and wireless energy harvesting [85,88–93].

One of the most revolutionary inventions that are based on wireless power transmis-
sion is a rectenna. A rectenna is an antenna integrated with a rectifying circuit to absorb
(i.e., receive) wireless signals and convert them into DC electricity [85]. The rectenna
was conceived by William Brown in 1963, and a year later, a rectenna-based, microwave-
powered helicopter system was developed for demonstration of wireless power transfer on
television [85,90]. As illustrated in Figure 4, the helicopter system was transiently charged
by the embedded rectenna that absorbed microwave energy emitted from the power source
(reflector antenna) placed on the ground. This system could be seen, in one view, as one of
the earliest examples of wireless energy harvesting.
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Although the initial motivation for developing a rectenna was to power a high-altitude
atmospheric platform by a focused microwave beam under the Raytheon Company and
the United States Air Force sponsorship, the rectenna technology has soon led to various
industrially important investigations and applications [90]. Those include the power trans-
fer exploration for space vehicles by the National Aeronautics and Space Administration
(NASA) in 1968 [90], development of radiofrequency identification (RFID) tag by Mario
Cardullo in 1973 [93,94], and invention of smart card technology by Roland Moreno in
1974 [95,96]. Currently, various rectenna-based wireless power transmission techniques
are used for charging smartphones and smartwatches [97], electric vehicles [98–100], and
medical implants [101].

As a potential method to power textile-based electronics, the rectenna technology
has also been spotlighted in the textile industry. In 2001, P.J. Massey developed the first
textile-based antenna, which was constructed by combining a copper-plated ripstop nylon
fabric as a conductor and a breathable foam as a dielectric spacer [88]. Although this
very first example had a considerable thickness (i.e., the breathable foam alone had a
thickness of 12.5 mm), significantly thin designs were soon devised [102–105]. One of
the first textile-based rectennas was reported by Monti et al. in 2013 and was made of
a copper-plated nylon non-woven fabric as a conductor and pile and denim fabrics as
dielectric substrate [24,25,67]. The rectification circuit was on the denim layer attached to
the ground plane of the antenna, and the energy conversion efficiency was as high as 50%
at the frequency of 876 MHz [67].

Since then, it has been well-documented that textile-based rectennas could be an
ideal candidate for powering body-worn electronics because of their innately wearable
form factors [23–26], but equally importantly, textile materials could have a relatively low
electrical permittivity owing to their highly porous nature, and therefore, the use of textile
materials has great potential in ameliorating the gain, efficiency and frequency bandwidth
of the conventional materials such as printed circuit boards (PCBs) [106–109]. The latter
aspect is exceedingly invaluable for ambient wireless energy harvesting applications,
where available energy is limited and enhancement of the energy conversion efficiency is of
paramount importance [24]. To date, myriads of textile-based designs have been proposed
for these reasons.

4. Principles of Wireless Energy Harvesting
4.1. Antennas

The principal components in wireless energy harvesting are drawn in Figure 5 and
are a receiving antenna, an impedance matching circuit, a rectifier (or a voltage multiplier),
and a load (or a power management unit). A receiving antenna is the unit that receives
ambient wireless signals and converts them into alternating current (AC) electricity as
depicted in Figure 6. Receiving antennas can generally be classified into wire, traveling
wave, log-periodic, microstrip, aperture, and reflector antennas (Figure 7) [110], and the
antenna performance, form factors and design strategies or rules are primarily dependent
on the antenna type. For instance, wire antennas can be designed in a simple linear (dipole,
folded dipole, sleeve, and monopole) or curved (loop) geometry with dimensions directly
related to the wavelength (λ), although there are several exceptions [111]. The radiation
pattens of wire antennas are typically omnidirectional and hence are commonly used to
receive broadcast and cellular signals. This class of antennas was, for instance, employed
by Nguyen et al. to develop a wireless energy harvesting necklace to power a fitness
monitor pendant in stand-by mode [112]. In their design, a dipole antenna was bend to
form a U-shape to be part of the neckless, and good comfort and aesthetic appearance were
achieved in addition to the required energy harvesting performance [112].
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Traveling wave antennas such as spiral, helical, and Yagi-Uda antennas are based on a
traveling wave on a guided structure as the main radiating mechanism [116]. Although
some of these antennas can operate in the normal (omnidirectional) mode, they are usually
employed as a directional antenna for better efficiency. Among various traveling wave
antennas, spiral antennas have been frequently investigated in wearable wireless energy
harvesting research for their low-profile planar structure and wide bandwidth [117,118]. In
addition, the radiation characteristics of spiral antennas can be easily adjusted by changing
the circular radius, number of turns, spacing between turns, and width of the spiral arm,
making this class of antennas a great option [118].

Log-periodic antennas such as bowtie and log-periodic array antennas are wide-
band antennas, which exhibit essentially constant characteristics over a broad frequency
range [114,119,120]. In addition, they can be produced in planar forms [121–124], and
hence, log-periodic antennas are suitable for wireless energy harvesting applications that
require reception of broadband frequencies, although characterized by a relatively low
gain [125–127].

Microstrip antennas are planar antennas consisting of a conductive layer mounted
on a grounded substrate, and patch antennas and planar inverted-F antennas are grouped
into this category. Although microstrip antennas have several drawbacks such as narrow
bandwidth, low power handling capabilities, high dielectric and conductor losses, they are
the most commonly used antennas in wireless energy harvesting as they are lightweight,
low-cost, high-efficiency, easy to produce from a PCB [128–130]. It is also favorable for
rectenna applications that the ground plane layer of the patch antenna could eliminate the
possibility of undesirable interference between the antenna and human body [131,132]. The
dimensions of the patch antennas can be easily determined from the wavelength and the
dielectric properties of the substrate by simple analytical formulas [114,133,134], but for a
better accuracy, an electromagnetic simulator is often used [135].

Aperture antennas contain some sort of opening through which wireless signals
are received or transmitted, and the representative examples are horn, slot, and Vivaldi
antennas [114]. Among these antennas, slot and Vivaldi antennas have been studied for
wearable wireless energy harvesting applications as they can be produced in compact,
planar shape [136–141]. On the other hand, horn antennas are usually not considered
for on-body applications because of their heavy weight and bulkiness—they are mostly
employed for spacecraft and aircraft applications with the opening (aperture) covered
by a dielectric material for minimization of aerodynamic impact and protection from
environmental conditions [114].

Reflector antennas such as parabolic and corner reflector antennas are antennas that
uses a reflector to direct wireless signals to the receiver (feed antenna) in its focal point.
Hence the major advantage is their high gain [110], which is ideal for radio astronomy,
satellite tracking, and deep-space communication applications [114]. On the other hand,
because the reflector and feed antenna are placed physically apart, the antenna size is
usually large and opted out for wearable applications [114].

4.2. Impedance Matching Networks

The second essential element in wireless energy harvesting is the impedance matching
circuit, which ensures that the power received by the antenna is fully delivered to the
rectifying unit without reflection [142]. For wireless energy harvesting applications, design
of an impedance matching network involves complications. This is because the input
impedance of the rectifier depends not only on the frequency of the input signal but also
on its power level, which is fairly complex to predict as the instantaneous wireless signal
available in the environment is constantly changing [24]. Consequently, designing a highly
efficient impedance matching networks is of great challenge particularly for wideband
applications [142], and even elimination of matching circuit has been suggested [142,143].

While various impedance matching techniques have been devised, three of the most
common structures for wireless energy harvesting applications are the quarter-wave trans-
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former, tuning stub, and lumped element networks (Figure 8). The quarter-wave trans-
former network is an intermediate section of length l (=λ/4) that can be placed between
two systems of different impedances to match the impedance (Figure 9) [82]. Although
this type of network can only match the real part of the impedance at a single frequency,
they have been commonly employed for the simplicity in design and fabrication [82]. The
characteristic impedance of a quarter-wave transformer (ZQ) required to match the input
transmission line impedance (Z0) and the load impedance (ZL) is given by [144]:

ZQ =
√

Z0ZL (1)

The width of the trace (WT) can then be determined by plugging the value of ZQ into
Equation (2) and solving it for WT [114]:

ZQ =


60√
ε′r,e f f

ln
(

8hS
WT

+ WT
4hS

)
for WT

hS
≤ 1

120π√
ε′r,eff

[
WT
hS

+1.393+0.667 ln
(

WT
hS

+1.444
)] for WT

hS
> 1

(2)

where ε′r,eff and hS are the effective dielectric constant and thickness of the substrate,
respectively. For WT/hS � 1, ε′r,eff can be calculated by [114]:

ε′r,eff =
ε′r + 1

2
+

ε′r − 1
2

(
1 +

12hS

WT

)−1
2

(3)

where ε′r is the dielectric constant of the substrate.
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The stub tuning network is an impedance matching technique based on another
transmission line connected to the main transmission line, and some of the topologies
are shown in Figure 10 [146]. Among these configurations, open-circuit shunt stubs are
predominantly used in wireless energy harvesting applications as they are the simplest to
fabricate [144]. In order to determine the appropriate position and dimensions of a tuning
stub, analytical formulas can be used. For the position of the tuning stub, its distance from
the load (d) is chosen so as to cancel the real part of the load impedance (or admittance)
and hence can be calculated by [144]:

d =

{
λ

2π tan−1 A for A ≥ 0
λ

2π

(
π + tan−1 A

)
for A < 0

(4)

where A is given by [144]:

A =



XL±

√
RL[(Z0−RL)

2
+X2

L]
Z0

RL−Z0
for shunt stubs with RL 6= Z0

−XL
2Z0

for shunt stubs with RL = Z0

BL±

√
GL[(Y0−GL)

2
+B2

L]
Y0

GL−Y0
for series stubs with GL 6= Y0

−BL
2Y0

for series stubs with GL = Y0

(5)

where RL and XL are the real and imaginary parts of the load impedance, respectively; GL
and BL are the real and imaginary parts of the load admittance, respectively; and Y0 is the
input transmission line admittance.
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Figure 10. Schematic illustration of (a) an open-circuit shunt stub, (b) its equivalent circuit model,
and circuit models of (c) short-circuit shunt, (d) open-circuit series, and (e) short-circuit series stubs,
redrawn from [146] (pp. 11–12) and [147] (p. 3).

The stub length (l), on the other hand, is chosen to introduce a capacitive or inductive
reactance (or susceptance) that has the same magnitude but in opposite sign to match the
imaginary part [146,148]. Hence, the stub length is given by [144]:
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l =



λ
2π tan−1

(
BS
Y0

)
for an open− circuit shunt stub

−λ
2π tan−1

(
Y0
BS

)
for a short− circuit shunt stub

−λ
2π tan−1

(
Z0
XS

)
for an open− circuit series stub

λ
2π tan−1

(
XS
Z0

)
for a short− circuit series stub

(6)

where XS and BS are the imaginary parts of the stub impedance and admittance, respectively.
Although the stub-based method can match both real and imaginary parts of the

impedance [82], a single stub will only achieve a perfect match at one specific frequency.
This is because the reactance is a function of the frequency, but such compensation can be
only done by changing the physical position (d) of the stub [146]. For variable matching
circuits, therefore, a second stub is required to provide an additional degree of freedom.
More details on the multi-stub strategies are described in [149,150].

Lumped elements can also be used to achieve the impedance matching. Based on the
topology, lumped elements can be categorized into L-type, Π-type, and T-type networks
(Figure 11). The L-type network, which has a simple architecture that resembles the letter
L, usually consists of a series capacitor with a shunt (parallel) inductor (or vice versa) [148].
The function of the shunt component is to transform a larger impedance down to a smaller
value equating the real part of the impedances between the source and the load. Thus, the
shunt susceptance (B) is given by [144]:

B =


XL±

√
RL
Z0

√
R2

L+X2
L−Z0RL

R2
L+X2

L
for Z0 < RL

±

√
Z0−RL

RL
Z0

for Z0 > RL

(7)

On the other hand, the series component cancels out any reactive components by resonating
with equal and opposite reactance [151], and accordingly the series reactance is given
by [144]:

X =

{
1
B + XLZ0

RL
− Z0

BRL
for Z0 < RL

±
√

RL(Z0 − RL)− XL for Z0 > RL
(8)

Therefore, these two elements of the L-type network together leave the source driving an
equal load for the maximum power transfer.

One of the major drawbacks of the L-type network is its inability to control the
matching bandwidth. For applications that require a narrow bandwidth such as to match
a narrowband antenna, the Π-type or T-type networks can be formed by introducing an
additional element [152]. The Π-type network has a configuration resembling the Greek
letter Π, whereas the T-type network has a T-like configuration and is a dual of the Π-
type network; the third element provides an additional degree of freedom that enables
the bandwidth control [151]. However, because of the additional element, the Π-type
or T-type networks usually have a higher component loss than the two-element (L-type)
network [151].
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4.3. Rectification Circuits

The third component in wireless energy harvesting is the rectifier, which converts
AC electricity into DC electricity. There are two classes of rectifiers: half-wave and full-
wave rectifiers. The half-wave rectifier comprises of a single diode (Figure 12a), through
which only the positive half of the AC input voltage is passed and the negative half is
removed [12]. Consequently, the half-wave method leaves the discontinuity in the output
voltage and has a low efficiency [12].
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In order to improve both ripple factor and conversion efficiency, the full-wave rectifier
was conceived. As depicted in Figure 12b, the full-wave rectifier may consist of four
alternatively blocking pairs of diodes to rectify both positive and negative cycles [12].
Although structurally more complex, the full-wave configuration is more preferable for
wireless energy harvesting applications, where available energy is limited, and a higher
efficiency is of crucial factor.

A voltage multiplier is a special kind of rectifier circuit that converts AC electricity
into higher-voltage DC electricity and is widely used in ambient wireless energy harvesting
applications, where an enhancement of the output voltage is crucial [12,83]. Voltage
multipliers can be generally divided into half-wave and full-wave multipliers and their
common topologies are shown in Figure 13. In the half-wave voltage multiplier (Figure 13a),
the first capacitor (C1) is charged during the negative cycle, whereas the second capacitor
(C2) is charged during the following positive cycle; consequently, the output voltage is
doubled as it sees two capacitors in series [12]. The similar mechanisms is due for the
full-wave voltage multiplier (Figure 13b), however, because of a higher current driving
capability, the full-wave architecture has an advantage of better stability in exchange for
structural complexity [153].
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4.4. Loads

The last component in wireless energy harvesting is the load, which can be an applica-
tion device such as a wireless sensor node [142,155]. However, if a higher power is necessary,
the harvested energy can be stored in a buffer such as a rechargeable battery or a super-
capacitor until there is sufficient power to support the application device (Figure 5) [155].
Details on the wearable batteries and supercapacitors are available in [156–159].

5. Textile Materials for Wireless Energy Harvesting
5.1. Electrically Insulating and Condcutive Textile Materials

Textile materials offer unique advantages over the conventional, rigid materials such
as PCBs, and those include the flexibility, tenacity, breathability, and aesthetic appearance
that are exceedingly suitable for wearable applications [106,107,160–163]. In addition,
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because clothing offers a considerable surface area, more than one textile rectenna could be
integrated into clothing to uplift the harvestable energy.

As described in Section 4, a rectenna, an enabling element of wireless energy harvest-
ing, consists of a receiving antenna, an impedance matching network, and a rectification
circuit. In order to fabricate these components with textile materials, two types of materials
are necessary: electrically insulating and conductive textiles.

Electrically insulating textile materials are ordinary (conventional) fibers, yarns, and
fabrics that do not actively support a flow of electrons but provide an electrical insula-
tion. Some examples of electrically insulating textiles are cotton, wool, silk, polyesters,
polyamides, and polyurethanes, whose electrical conductivities are practically negligi-
ble [164]. Electrically insulating textiles have a consequential role of preventing electrical
leakage between conductors but also serve as a dielectric medium to store (or dissipate)
electrical energy under an applied electric field [165]. The latter function has found a
variety of uses in microwave engineering including wireless energy harvesting, where the
properties of dielectric materials (i.e., dielectric constant and loss tangent) largely determine
the end-product performance [114,133,134].

One of the key features of using textile-based dielectrics in rectenna development is
that they typically offer a relatively low dielectric constant and loss tangent because of
their highly porous nature (Table 2) [107–109,165–169]. Since the antenna parameters such
as gain, efficiency and bandwidth can be improved by lowering the dielectric constant
and/or loss tangent, the use of textile materials could improve the overall energy harvesting
efficiency [107,114,133,134,165,170,171].

Table 2. Dielectric properties of electrically insulating materials.

Material Construction
Characterization

Frequency
(GHz)

Relative
Humidity

(%)

Dielectric
Constant Loss Tangent References

Textile
(fabric)

Cotton

Plain weave
~2.45

80 ± 2.5 1.24–1.46

– [170]

65 ± 5 1.24–1.43

50 ± 2.5 1.26–1.38

35 ± 2.5 1.21–1.35

20 ± 2.5 1.18–1.31

1.1 65 1.875–2.499 0.0950–
0.1355 [172]

Twill weave

2.45 1.71 0.020 [173]

1.1 65 1.858–1.940 0.1012–
0.1053 [172]

Satin weave 1.1 65 1.649 0.0859 [172]

Single jersey ~2.45

80 ± 2.5 1.37–1.62

– [170]

65 ± 5 1.35–1.59

50 ± 2.5 1.30–1.50

35 ± 2.5 1.28–1.47

20 ± 2.5 1.23–1.40

Polyester

Plain weave 2.26 – 1.55 0.0087 [108]

Fleece 2.45 – 1.15 0.000 [173]

3D spacer
knit 2.25 – 1.10–1.13 0.004–0.018 [169]
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Table 2. Cont.

Material Construction
Characterization

Frequency
(GHz)

Relative
Humidity

(%)

Dielectric
Constant Loss Tangent References

Cordura® – 2.45 – 1.93 0.015 [174]

Kevlar®
3D

orthogonal
weave

1.9 – 1.96 0.042 [175]

E-glass
3D

orthogonal
weave

1.5 – 3.2 0.008 [176]

Non-textile

Cellulose film – 7.3 (Dry
condition) ~3.2 ~0.03 [177]

Poly(ethylene
terephthalate) – 2.45 – ~2.1–2.4 ~0.016–0.04 * [178]

Standard FR4 – 2.08–3.70 – 4.5 0.035 [179]

Rogers
RT/duroid®

5870
–

8–40 (dielectric
constant) and 10

(loss tangent)
– 2.33 0.0012 [180]

* Calculated by the formula tan δ = ε
′′
r /ε′r , where tan δ is the loss tangent, ε

′′
r is the imaginary part of the relative

permittivity and ε′r is the real part of the relative permittivity (dielectric constant).

Yet, the use of textile materials brings a latent concern for rectenna development. The
dielectric properties of moisture-absorbing materials such as cotton are reported to be highly
susceptible to the relative humidity of the environment (Table 2); consequently, rectennas
made of hygroscopic textiles may experience a shift in the resonant frequency and a reduc-
tion in the conversion efficiency during operation. Therefore, although moisture absorbing
materials may be preferable from the sensorial comfort point of view [106,162,181,182], the
effect of the relative humidity must be well-assessed in the rectenna design stage.

Electrically conductive textile materials, on the other hand, are fibers, yarns, and
fabrics with a significant electrical conductivity. Because a higher electrical conductivity
leads to lower conductor-related losses [183,184], improvement in the electrical conductivity
has been a primary research interest for textile materials over the past several decades.

Since the ordinary textile materials do not possess a tangible electrical conductivity,
a special preparation is required to attain good conductivity. A variety of fabrication
methods have been developed for electrically conductive fabrics, but the most fundamental
approach is to produce electrically conductive fibers, which can then be transformed into
yarns for integration into fabrics. There are four general routes to electrically conductive
fibers and are depicted in Figure 14.

In the first route, electrically conductive metals such as silver and copper are converted
into metal fibers by wire drawing [185]. The advantages of this method include the high
electrical conductivity and a high-temperature stability of bulk metals (Table 3), in exchange
for a high rigidity and fatigue-related concerns [186].
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Table 3. DC electrical properties of electrically conductive materials.

Material Construction Conductivity
(S/m)

Sheet
Resistance
(Ω/Square)

References

Textile (Fabric)

Copper/nickel-plated
polyamide Ripstop 4.17 × 106 0.03 [183]

Silver/copper/nickel-plated
polyamide Ripstop – 0.009 [187]

Silver-plated polyamide Single jersey 2.08 × 10−1 – [188]

Carbon-nanotube-coated
cotton Knit 1.25 × 104 <1 [189]

PEDOT-coated polyester Woven – 52 [190]

Silver-printed polyester Nonwoven – <0.025 [191]

Silver-printed Evolon® Nonwoven 1.3 × 106 – [192]

Lycra® with silver yarn Woven – 0.6 [193]
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Table 3. Cont.

Material Construction Conductivity
(S/m)

Sheet
Resistance
(Ω/Square)

References

Non-textile
(Bulk material)

Silver – 6.3 × 107 * – [194]
Copper – 6.0 × 107 * – [194]

Gold – 4.4 × 107 * – [194]

PEDOT – 1 × 105 – [190]

* Calculated by taking the reciprocal of electrical resistivity.

The second approach is based on conductive polymers, which exhibit a good electrical
conductivity. Since the discovery of the first conductive polymer by Shirakawa et al. in
1977 [195], a variety of conductive polymers such as polyaniline, polythiophenes, PEDOT,
PEDOT:PSS, and polypyrrole have been synthesized. The underlying mechanism respon-
sible for electrical conduction by these polymers is a conjugated structure that enables
the delocalization of π electrons across adjacent p orbitals and hence electrical conduction
is achieved [196]. Fibers can be formed from conductive polymers by conventional spin-
ning methods such as melt spinning, wet spinning, or electrospinning [197], and those
fibers have excellent flexibility as a soft yarn [198] but typically with a limited electrical
conductivity (Table 3) [199].

Being well-recognized for their exceptional conductivities and mechanical strengths,
carbon nanotubes have also been transformed into fiber forms by various spinning tech-
niques such as forest spinning, direct spinning, or solution spinning [200]. However, one of
the current challenges with carbon nanotube fibers is the limited industrial scalability for
high quality, continuous carbon nanotube fiber production due to the complex fabrication
procedure [201].

The last category of electrically conductive fibers is coated fibers, which can be pro-
duced by coating the surface of a conventional, electrically insulating fiber with an electri-
cally conductive substance. Two of the most widely used coating methods are electroplating
and electroless plating usually with a high-conductivity metals such as silver, copper, or
gold, and finished fibers have advantages of good electrical conductivity, flexibility, dura-
bility, and processability [202,203].

An electrically conductive yarn is a monofilament yarn or a bundle of fibers, where
the latter can be produced by twisting electrically conductive fibers alone for an enhanced
electrical conductance or with conventional fibers for a better processability (Figure 14) [204].
Additionally, electrically conductive yarns can also be produced by coating conventional
yarns with electrically conductive materials such as metals [205].

Electrically conductive fabrics can be produced in two different ways. In the first
way, electrically conductive yarns are converted into fabric forms by a conventional textile
processing technique such as weaving [176,206], knitting [204], stitching [207,208], or
embroidering [209–211]. While these processes have an advantage of seamless integration
as the electrically conductive components are inherently embedded into a fabric, relatively
strict requirements are imposed on the yarn mechanical properties. For instance, warp
yarns for weaving need to have a higher tenacity to withstand a high tension during
weaving, whereas yarns for knitting, stitching, and embroidery are required to be of lower
bending modulus to be able to form small loops [212,213]. Therefore, while these processes
could realize a sufficiently high conductivity (Table 3), yarns that do not have suitable
mechanical properties may not be processed by these techniques.

The second method involves coating with an electrically conductive substance. Similar
to the preparation of electrically conductive fibers and yarns, electrically conductive fabrics
can also be produced by coating conventional fabrics with an electrically conductive
material to attain good electrical properties (Table 3) [183,188–190]. In addition, a highly
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conductive coating layer can also be formed by screen or inkjet printing with an electrically
conductive ink (Table 3) [191,192,214–216].

5.2. Textile-Based Antennas

Textile antennas can be produced by a variety of techniques from electrically conduc-
tive and insulating fibers, yarns, and fabrics. For instance, a patch antenna, which is the
most widely investigated antennas for wearable energy harvesting applications [128–130],
can be fabricated in aesthetic and comfortable form factors simply by stacking conductive
and dielectric fabrics [106,108,109,162] (Figure 15a) but also by a fundamental textile process-
ing technique such as weaving [175,176,217,218], knitting [219], or embroidery [220–222] with
conductive and insulating threads, or by printing electrically conductive inks on electrically
insulating fabrics [192]. In a similar way, many of the other antenna structures such as
dipole (Figure 15b) [211,223,224], bowtie (Figure 15c) [225], spiral (Figure 15d) [226], slot
(Figure 15e) [187,227], Vivaldi [228], Yagi-Uda [193], log-periodic array [229], antennas can
also be produced in textile forms by adapting these techniques.
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Yusuke Mukai, Vivek T. Bharambe, Jacob J. Adams and Minyoung Suh, (b) textile dipole antenna
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embroidered with an electrically conductive thread, adapted under a Creative Commons Attribution
4.0 License from [223] (p. 373) © 2015 Asimina Kiourti and John L. Volakis, (c) textile bowtie antenna
embroidered with a silver-plated copper thread, adapted under a Creative Commons Attribution 4.0
License from [225] (pp. 3–4) © 2021 Theodoros N. Kapetanakis, Martin Pavec, Melina P. Ioannidou,
Christos D. Nikolopoulos, Anargyros T. Baklezos, Radek Soukup and Ioannis O. Vardiambasis,
(d) textile spiral antenna stitched with a silver/polyimide-coated silica fiber, adapted under a Creative
Commons Attribution 4.0 License from [226] (p. 7) © 2018 Mourad Roudjane, Mazen Khalil, Amine
Miled and Younés Messaddeq, and (e) 3D-knitted slot antenna screen-printed with a silver paste
and sewn with a conductive thread, adapted under a Creative Commons Attribution 4.0 License
from [227] (pp. 3, 9) © 2022 Miroslav Cupal and Zbynek Raida.

5.3. Textile-Based Impedance Matching Networks

As discussed in Section 4, a variety of impedance matching techniques have been
developed in the literature, and in theory, any of them could be employed for rectennas.
However, for textile rectennas, tuning stubs are probably the most widely employed
matching networks since they involve a small number of components and soldering points;
they are relatively simple to fabricate [24]. An example of a textile-based single tuning
stub is given in Figure 16a. The open-circuit shunt stub made of a highly conductive
copper-plated polyester fabric was placed between the microstrip feed line and rectification
circuit to maximize the energy transfer from the receiving antenna to the rectifier.

Electron. Mater. 2022, 3, FOR PEER REVIEW 19 
 

 

 
Figure 16. Textile-integrated matching networks: (a) open-circuit single stub made of a copper-
plated polyester fabric and a felt, adapted under a Creative Commons Attribution 4.0 License from 
[24] (pp. 7, 11) © 2021 by Juan-Manuel Lopez-Garde, Ruben Del-Rio-Ruiz, Jon Legarda and Hendrik 
Rogier, and (b) open-circuit double stubs made of a PCB (RT/Duroid® 5880) integrated with textile 
materials, adapted under a Creative Commons Attribution 3.0 License from [68] (p. 385) © 2018 by 
Salah-Eddine Adami, Plamen Proynov, Geoffrey S. Hilton, Guang Yang, Chunhong Zhang, Dibin 
Zhu, Yi Li, Steve P. Beeby, Ian J. Craddock and Bernard H. Stark. 

A double stub tuning network, which was fabricated on a textile-integrated PCB, is 
shown in Figure 16b. Although the double-stub network requires fabrication of the second 
stub and is more space-demanding, this additional component was demonstrated to sup-
port the second harmonics; consequently, the output power was calculated to be im-
proved by about 1% (compared with a single-stub counterpart) [68]. However, because of 
the rigidity of the PCB-based impedance matching network, the flexibility and conformity 
of this structure was impaired. 

5.4. Textile-Based Rectification Circuits 
Among the various rectification circuit options available, the full-wave (bridge) rec-

tifier (Figure 12b) and voltage doubler (Figure 13a) are commonly used in textile-based 
wireless energy harvesters as they are a good compromise between the circuit complexity 
and rectification efficiency [24]. In realizing a rectification circuit on a textile platform, 
diodes and capacitors can be soldered to electrically conductive textile materials. For in-
stance, Lopez-Garde et al. soldered commercially available Schottky diodes and capaci-
tors to an electrically conductive copper fabric to create a voltage doubler (Figure 17) [24]. 
The dimensions of the textile voltage doubler were optimized by using a computer-aided 
software (Keysight Advanced Design System) to achieve a rectification efficiency of 56%. 

Figure 16. Textile-integrated matching networks: (a) open-circuit single stub made of a copper-plated
polyester fabric and a felt, adapted under a Creative Commons Attribution 4.0 License from [24]



Electron. Mater. 2022, 3 319

(pp. 7, 11) © 2021 by Juan-Manuel Lopez-Garde, Ruben Del-Rio-Ruiz, Jon Legarda and Hendrik
Rogier, and (b) open-circuit double stubs made of a PCB (RT/Duroid® 5880) integrated with textile
materials, adapted under a Creative Commons Attribution 3.0 License from [68] (p. 385) © 2018 by
Salah-Eddine Adami, Plamen Proynov, Geoffrey S. Hilton, Guang Yang, Chunhong Zhang, Dibin
Zhu, Yi Li, Steve P. Beeby, Ian J. Craddock and Bernard H. Stark.

A double stub tuning network, which was fabricated on a textile-integrated PCB,
is shown in Figure 16b. Although the double-stub network requires fabrication of the
second stub and is more space-demanding, this additional component was demonstrated
to support the second harmonics; consequently, the output power was calculated to be
improved by about 1% (compared with a single-stub counterpart) [68]. However, because of
the rigidity of the PCB-based impedance matching network, the flexibility and conformity
of this structure was impaired.

5.4. Textile-Based Rectification Circuits

Among the various rectification circuit options available, the full-wave (bridge) rec-
tifier (Figure 12b) and voltage doubler (Figure 13a) are commonly used in textile-based
wireless energy harvesters as they are a good compromise between the circuit complexity
and rectification efficiency [24]. In realizing a rectification circuit on a textile platform,
diodes and capacitors can be soldered to electrically conductive textile materials. For in-
stance, Lopez-Garde et al. soldered commercially available Schottky diodes and capacitors
to an electrically conductive copper fabric to create a voltage doubler (Figure 17) [24].
The dimensions of the textile voltage doubler were optimized by using a computer-aided
software (Keysight Advanced Design System) to achieve a rectification efficiency of 56%.
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Another textile-based rectification circuit was presented by Vital et al. and was fabri-
cated by soldering a Schottky diode to an organza fabric embroidered with an electrically
conductive thread (silver-plated copper strands) [84]. The diode was connected to a trans-
mission line on each end, but one of the transmission lines was shorted to generate a
standing wave. In this configuration, by optimizing the lengths of these two transmis-
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sion lines, the power stored in the standing wave was successfully transformed into DC
electricity with a rectification efficiency of 70% (at 8 dBm), which was far greater than the
theoretical limit of half-wave rectifiers. Therefore, this strategy of extracting the negative
half of the AC input electricity with a single diode not only improves the rectification effi-
ciency of half-wave rectifiers but also enables a more minimalistic and hence mechanically
flexible architecture particularly invaluable for wearable applications.

6. Current Research Mainstream and Future Perspectives

As reviewed so far, the use of textile materials in wearable wireless energy harvesting
applications offers a variety of unique and often irreplaceable features, such as lightweight,
flexible, breathable, low-profile, comfortable, and aesthetic form factors, and textile-based
wireless energy harvesters can be inherently integrated into clothing with minimum alter-
ation of its performance as an apparel product. In addition, several harvesting units can
be incorporated into clothing, which offers a large surface area for such integration. This
aspect is of particular interest for wireless energy harvesting applications, where the avail-
able ambient energy is limited and the amount of harvestable energy from a single rectenna
element could be insufficient. For instance, Lopez-Garde et al. developed a 4-element
(2 × 2 array) rectenna made of a copper-plated polyester fabric and a felt (Figure 18). It
was reported that this 4-element rectenna was able to harvest 1.1 mW of DC power from
an input power of 14 µW/cm2, while only 0.26 mW of DC power was harvested with a
single-element rectenna [24].
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a copper-plated polyester fabric and a felt, reproduced under a Creative Commons Attribution 4.0
License from [24] (pp. 8, 10) © 2021 by Juan-Manuel Lopez-Garde, Ruben Del-Rio-Ruiz, Jon Legarda
and Hendrik Rogier.

The use of multi-element rectenna was also reported by Vital et al., who developed
2 × 2 and 2 × 3 rectenna arrays made of an organza fabric embroidered with an electrically
conductive thread (Figure 19) [84]. Under a natural ambient environment, it was demon-
strated that the 2 × 2 rectenna array can harvest up to 100 µW, which was significantly
higher than that of a single-element rectenna made of the same materials. In addition,
the 2 × 3 rectenna array was tested with Wi-Fi signals boosted by an external amplifier
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and was able to generate a DC output power of up to 600 µW. These results indicate that
textile-based rectenna arrays could be a promising solution to power wearable electronics
under a natural ambient environment, and if a higher power output is required, ambient
signals could be amplified by an external device.

While textile-based rectenna arrays are propitious, there are also challenges. For
instance, Estrada et al. developed T-shirt-integrated 16-element and 81-element rectenna
arrays. The receiving antennas were bow-tie arrays that were produced by screen-printing
an electrically conductive silver ink on a cotton fabric [230]. Although, a higher DC output
is generally expected from a larger array, the measured output powers of these textile
rectenna arrays were nevertheless not significantly different. The authors elucidated this
observation that the resistivity of the screen-printed ink was relatively high and as such
the efficiency have dropped as the array was scaled up in size. Therefore, an improvement
of the electrical conductivity of textile materials is crucial for further advancement of
multi-element arrays made of textile materials.
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In addition, rectification circuits of textile rectennas found in the literature are predom-
inantly constructed with commercially available rigid diodes, and as such the flexibility and
conformity of current textile rectennas are impaired by these components. In addition, it
has been pointed out that the rectification efficiency is largely capped by the relatively high
cut-in voltage of commercial diodes under low ambient power conditions [231]. In order
to overcome these limitations, an investigation on flexible (and preferably textile-based)
diodes that enable a highly efficient rectification is pivotal in future work.

Another vital research topic is on the improvement of aesthetic appearance of textile-
based wireless energy harvesters. As an apparel product, it is essential to have an aestheti-
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cally pleasing design but this facet was often overlooked in early development of wearable
electronics [232]. Currently, a variety of approaches have been proposed to accommodate
both functionality and aesthetic look. For instance, Kiourti and Volakis developed a logo
antenna made of textile materials [223]. As shown in Figure 15b, the slightly bent dipole
antenna was seamlessly integrated into a fabric by embroidering an electrically conductive
thread, and this was followed by another embroidery process with ordinary color threads to
ensure that the antenna form part of logo and invisible from outside. The finished antenna
was flexible, lightweight, and mechanically robust to withstand daily wear and repetitive
washing and drying cycles [223], evidencing that functional and fashionable requirements
could be met without a compromise. Further journey to improve the aesthetic performance
and meet the essential criteria as apparel products would make the textile-based solutions
to strongly appeal to healthcare, military, entertainment, and other relevant sectors.

7. Conclusions

This paper reviewed unmissable recent progress in textile-based wireless energy
harvesters for powering body-worn electronics. Textiles are flexible, lightweight, breathable
materials and could be ideal for the fabrication of wireless energy harvesting devices with
excellent comfort and aesthetic appearance. Moreover, because clothing offers a substantial
surface area, multiple harvesting units can be seamlessly integrated into clothes to enhance
the output power.

For further advancement of the textile-based wireless energy harvesting technology,
several future research topics were suggested. First, it is essential to improve the electrical
conductivity of textile materials to reduce the conductor-related losses and increase the
overall conversion efficiency. In addition, development of flexible (and ideally textile-based)
diodes with a high rectification efficiency is vital to improve both conversion efficiency
and wearability. Lastly, product design and aesthetics research is crucial for a broader
acceptance of this emerging technology in various key sectors.
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