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Abstract: The etiological diagnosis of diabetes conveys many practical consequences for the care of
patients, and often of their families. However, a wide heterogeneity in the phenotypes of all diabetes
subtypes, including Type 1 diabetes, Type 2 diabetes, and monogenic diabetes, has been reported and
contributes to frequent misdiagnoses. The recently revised WHO classification of diabetes mellitus
includes two new classes, namely “hybrid forms” and “unclassified diabetes”, which also reflect the
difficulties of this etiological diagnosis. During the last years, many studies aiming at identifying
homogenous subgroups on refined phenotypes have been reported. Ultimately, such subtyping may
improve the diagnosis, prognosis, and treatment of patients on a pathophysiological basis. Here, we
discuss the concepts of typical vs. atypical diabetes in the context of autoimmune Type 1 diabetes,
Type 2 diabetes, and its monogenic forms. We discuss the contributions of clinical markers, biological
tests, particularly islet cell auto-antibodies, and genetics to improving accurate diagnoses. These data
support a systematic evaluation of all newly diagnosed diabetes cases.

Keywords: type 1 diabetes; type 2 diabetes; monogenic diabetes; MODY; phenotypic heterogeneity;
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1. Introduction

According to the World Health Organization, diabetes is a defined by the presence
of chronic hyperglycemia, which can be considered as a symptom as well as a disease.
Indeed, it has been long recognized that multiple etiologic and pathogenic pathways can
lead to diabetes. As in other pathologic conditions (e.g., chronic fever) the etiological
diagnosis of chronic hyperglycemia has important consequences for the care of patients,
and for their families, and is a critical step in “precision medicine” or, more humbly, less
imprecise medicine [1].

For a long time, the etiological diagnosis of diabetes was based solely on the clinical
presentation of the patients upon their diabetes diagnosis (lean vs. obese, young vs. older),
on a strict insulin dependency, or on the need, or not, for insulin therapy to treat the patient,
the latter being obviously dependent on the availability of new and more efficient drugs
to treat Type 2 diabetes. It has also been shown that most diabetes subtypes, including
autoimmune Type 1 diabetes, Type 2 diabetes, pancreatic diabetes, and gestational diabetes,
may progress from mild hyperglycemia to non-insulin dependent overt diabetes, then to
a requirement for insulin therapy, depending on the progression of the beta cell disease
and the deterioration of the residual insulin secretion [2]. Beyond these criteria, which
remain widely used in clinical practice, technical advances, such as measurements of insulin
secretion and insulin sensitivity, the identification of pancreatic beta cell autoimmunity, and
genetic susceptibilities to several diabetes subtypes, have led to more refined classifications
of diabetes.
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These observations led to the WHO 1999 classification, which distinguished Type 1
diabetes, accounting for 5–10% of all diabetes cases, the vast majority being of autoimmune
origin, Type 2 diabetes, accounting for 90% of cases, a series of “specific” forms, accounting
for a minority of diabetes cases (e.g., pancreatic diabetes), and gestational diabetes. How-
ever, this classification still used both phenotypic and pathogenic criteria, did not account
for the phenotypic variability of each diabetes subtype, and left some forms unclassified,
such as ketosis-prone (Type 2) diabetes (KPD).

Following studies showing the heterogeneity of diabetes pathogeny and phenotypes
(reviewed in [3]), the WHO classification was again revised in 2019 [4] and introduced two
new categories:

• “Hybrid forms” of diabetes, including Slowly Evolving Immune-Mediated Diabetes
(previously named Latent Autoimmune Diabetes in Adults, LADA) and Ketosis-
Prone Type 2 Diabetes, the latter still being considered as a “non-autoimmune Type 1
diabetes” by the American Diabetes Association [5];

• “Unclassified Diabetes”, i.e., cases with no ascribable definite etiology, particularly at
the time of diagnosis.

Here, in this short, non-systematic review, we discuss the concept of typical/atypical
forms of diabetes and highlight the difficulties in the etiological diagnosis of diabetes,
which requires a systematic approach. These issues will be discussed in the context of
Type 1, Type 2, and monogenic diabetes subtypes, as summarized in Figure 1.
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Figure 1. Suggested algorithms for etiological diagnosis of diabetes, based on clinical presentation at
onset. 1 T1D genetic scores not yet available in routine practice. 2 Insulin secretion is informative
when measured at a distance from diabetes onset and can be assessed by C-peptide plasma or urinary
concentration. 3 Combination of criteria at onset/diagnosis of diabetes, such as age, body mass index,
symptoms at diagnosis, non-insulin dependency at diagnosis, markers of metabolic syndrome, family
history of T2D, history of gestational diabetes, and high-risk ethnicity. 4 Unless isolated low titers
GADA. 5 In patients with no islet antibodies. Various phenotypes may suggest MgD, depending on
genetic subtypes.
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2. What Are the “Typical” Phenotypes of Type 1 and Type 2 Diabetes?
2.1. The Phenotype of Type 1 Diabetes Is Heterogenous

Type 1 autoimmune diabetes (T1D) is usually defined by a near-complete deficiency
in insulin secretion due to the autoimmune destruction of beta cells, which is associated
with the presence of anti-beta cell autoimmunity markers, particularly the autoantibodies
directed to insulin, GAD, IA-2, and ZnT8. T1D occurs in the context of genetic susceptibility,
mainly defined by certain HLA class II alleles [6]. Other genes or genetic markers have
been shown to confer an increased T1D risk and have led to defining T1D genetic scores
that may improve its diagnosis or prediction [7,8]. Insulitis is the pathologic hallmark
of T1D and it is characterized by the presence of immune (mainly CD8+ T lymphocytes
and B lymphocytes) and inflammatory cells within and around the pancreatic islets [9]. It
has been shown to affect a small fraction of islets (10–30%), more often those containing
insulin-positive beta cells, and to vary with age at the onset of diabetes and the disease
duration. While autoantibodies are unlikely to play a direct role in beta cell destruction,
their presence is highly predictive of the risk of diabetes in the relatives of T1D patients
and in children from the general population, and has a good sensitivity and specificity for
T1D [10]. It is now recommended that all adult patients with a phenotype that may suggest
T1D should be tested for the presence of diabetes-associated antibodies, in order to confirm
the diagnosis [11].

T1D is classically described as the rapid onset of the marked symptoms of hyper-
glycemia (polyuria) and weight loss in a lean child or young adult, or even a diabetic
keto-acidosis (DKA) in 30–50% of cases, which is related to a profound deficiency in insulin
secretion. This “typical” phenotype is probably restricted to a minority of patients with
autoimmune T1D, and all of its characteristics may vary widely.

Indeed, although the incidence of T1D is increasing in very young children, the age
of diagnosis is over 20 years in at least 50% of cases [12,13]. A study performed in a Euro-
Caucasian population from Great Britain further showed that T1D, here defined by a high
T1D genetic risk score [14], can occur at any age, with 40% of cases being revealed after the
age of 30 years, accounting for 5% of all diabetes cases diagnosed after this age [15].

Such observations are not implemented in routine practice, as the same group reported
that, among the patients with T1D occurring after 30 years of age, here identified by a
marked loss in insulin secretion and the eventual need for insulin therapy, 40% had not
received insulin from the onset of their diabetes and half of them thought they had T2D.
The phenotypes of these patients at the onset of diabetes were, however, similar to those of
patients in whom diabetes had occurred before 30 years, and 80% of them had anti-beta cell
antibodies, even at a distance from diabetes onset [16]. Conversely, in another study, among
722 adult patients newly diagnosed with T1D on clinical grounds, 25% were antibody
negative. Compared to those with antibodies, these patients had a lower T1D genetic risk
score, a lower rate of loss of insulin secretion, and insulin could be stopped in 23% of
them, with HbA1c values similar to those of antibody-positive patients [17]. Together, these
studies show that differential diagnosis between T1D and T2D may be difficult in adults
when based only on clinical features.

With regard to body weight, patients with T1D are not spared from the increased
incidence of overweight and obesity observed in the general population. For example,
in the USA, 30–35% of adolescents with T1D were overweight/obese at the time of their
diabetes diagnosis and in the following years, a prevalence similar to or higher than that
of the general population [18,19]. This may explain why young subjects with T1D may
be misdiagnosed as having T2D and the increased frequency of diabetic ketoacidosis in
these patients [20].

The degree of insulin deficiency at the diagnosis of T1D is also highly heterogenous,
depending, for example, on the stage of the natural history or on the existence of regula-
tory mechanisms (inhibition) of the autoimmune anti-beta cell process itself. The clinical
symptoms observed at the diagnosis of T1D may also vary according to the presence of
some degree of insulin resistance. The “typical” revelation of T1D by DKA is probably
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biased, too restricted, and a source of misdiagnoses. Indeed, diabetic ketoacidosis is not
specific to T1D, which may lead to a spurious diagnosis of T1D. For example, DKA is,
by definition, observed in Ketosis-Prone Diabetes, which is not associated with anti-beta
cell autoimmunity [21]. The frequency of DKA at the onset of autoimmune T1D is highly
variable. For metabolic reasons, it is higher in children (30–50%) and during puberty than
in adults (10%), and higher in the presence of intercurrent infections. Moreover, risk factors
for DKA independent of the pathogeny of T1D play a major role in its frequency. In a
review of 24,000 T1D cases occurring in children, the frequency of DKA was increased by
factors that affected care delivery: belonging to an ethnic minority, an absence of medi-
cal insurance, a low education level of the parents, misdiagnoses, and delayed diabetes
treatment; two factors were protective: a family history of T1D and living in a region
with a high prevalence of T1D [22]. In the same vein, studies in children at a high risk
for T1D (relatives of patients with T1D or children at high genetic risk from the general
population) have shown that the frequency of DKA at the onset of diabetes was reduced
by a 5–10 factor when these children were regularly followed [23,24]. Thus, one frequent
(“typical”?) phenotype of T1D could be the systematic discovery of mild hyperglycemia
in a clinically asymptomatic individual, followed because of the presence of anti-beta cell
autoimmunity on a high-risk genetic background [25].

2.2. The Case of LADA/Slowly Evolving Immune-Mediated Diabetes

At the other end of the clinical spectrum of T1D, slowly evolving forms have been de-
scribed. In various populations, 5 to 10% of adult patients in whom the clinical presentation
of diabetes at diagnosis suggests T2D, particularly in the absence of an insulin dependency,
have anti-beta cell autoantibodies, mainly isolated anti-GAD antibodies (GADA) [3]. These
observations have led to the description of Latent Autoimmune Diabetes in Adults (LADA),
a diabetes subtype that is as prevalent as T1D and characterized by a progression to insulin
requirement more rapid than that in T2D, suggesting a pathogenic role of autoimmunity.
When patients are not systematically tested for the presence of autoantibodies and for
residual insulin secretion, this diabetes subtype remains often misdiagnosed as T2D [26].

Similar observations have been made in children and adolescents. Two American
studies (SEARCH and TODAY) reported the presence of GADA and/or IA-2 antibodies
in 10 to 20% of children/adolescents aged 10–19 years in whom a diagnosis of T2D had
been made on clinical grounds [27,28]. The phenotype of these patients was close to that of
LADA, leading to the description of Latent Autoimmune Diabetes in the Young (LADY).
As has been reported for adults, the clinical and metabolic phenotypes were different in
the patients with and without antibodies, the phenotype of those with antibodies being
closer to that of T1D. However, due to the overlap of these phenotypes, it was not possible,
at the individual level, to distinguish the patients with autoimmune diabetes from those
with T2D [28].

The genetics of LADA is characterized by an increased frequency of the susceptibility
alleles associated with T1D (HLA class II) and of certain alleles associated with T2D [29,30].
A study showed that T1D-asssociated HLA class II genotypes, T2D-associated genotypes
(in TCF7L2 and FTO), and the presence of overweight/obesity synergistically interact to
increase the risk of LADA [31].

Although these data led to the classification of this diabetes subtype as a hybrid form,
namely “Slowly Evolving Immune-Mediated Diabetes”, the existence of this subtype as
a pathogenic entity remains controversial. For some authors, this diabetes subtype is
considered as the pauci-symptomatic end of the pathogenic spectrum of T1D, while others
favor the deleterious metabolic effects of insulin resistance in patients with a beta cell
destruction less aggressive than that in T1D, or even arrested [3,32].

Indeed, there is some phenotypic heterogeneity among patients considered to have
LADA: the majority have a normal body weight, while some are obese, although they have
a lesser occurrence of metabolic syndrome than patients with classical T2D [26,33,34]. This
led to a subclassification into LADA type 1 and LADA type 2, i.e., true autoimmune diabetes
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with a T-lymphocyte-mediated destruction of beta cells in the former, and type 2 diabetes
with “bystander auto-immunity”, characterized by isolated GADA and no auto-immune
destructive process in the latter [35]).

Data showing an increased loss in insulin secretion associated with the presence of
GADA, as compared to that in patients without antibodies, are not always consistent [3,33].
In the same vein, the predictive value of isolated GADA is low, particularly when at
low titers. In the relatives of T1D patients, those with isolated GADA have a low risk of
progressing to diabetes at three years [36,37], and in subjects from the general population
with no family history of diabetes, progression to diabetes at eight years was increased
only in those with high GADA titers [38]. Additionally, isolated GADA have been shown
to be transient in ~20% of children at high genetic risk for T1D [39], and false positive
results have been suspected in many cases [35,40]. Moreover, histological studies have
shown that asymptomatic subjects with isolated GADA have no insulitis [41] and no
reduction in their beta cell mass [42]. Altogether, these data suggest that the diagnosis of
LADA/Slowly Evolving Immune-Mediated Diabetes could be made by excess. GADA
directed to the C-terminal epitopes of GAD65 or the N-terminal truncated GAD65 could
provide a higher predictive value for GADA when isolated, but this assay is not yet
affordable in common practice [43–45].

In total, many phenotypes may reveal T1D, including a severe DKA, the fortuitous
discovery of moderate hyperglycemia in the context of an infection or a potentially dia-
betogenic treatment, the systematic screening of hyperglycemia in individuals at risk of
T1D because of the existence of antibodies, a phenotype that may suggest T2D, or even
gestational diabetes [46,47]. Thus, there is no unique “typical” phenotype of T1D.

The heterogeneity of T1D has led to consider whether the endotype concept, i.e., the
heterogeneity of the disease phenotypes may result from differences in pathological mecha-
nisms, can be applied to T1D. Many findings argue for this hypothesis (reviewed in [48]).
For example, the degree of the immune infiltrate in the islets is more pronounced and
contains more “hyper-immune” cells in early-onset diabetes, which has been shown to
correlate with the degree of beta cell destruction and insulin secretion defects at diagno-
sis; the nature and number of auto-antibodies present at diagnosis also differ in children
(multiple and predominantly IAA and IA2A) and adults (more frequently isolated and
directed to GAD), and may be associated with different HLA haplotypes; also, the response
to immune interventions may differ according to these traits, as recently suggested in
a trial testing the protective effect of teplizumab in non-diabetic autoantibody-positive
individuals [49]. Obviously, identifying T1D endotypes will have important consequences
for the care of patients and their relatives, particularly with regard to the prediction of T1D
and the immune interventions for preventing or altering the course of the disease.

2.3. T2D Subtyping: Which Consequences for the Clinician?

T2D is by far the most frequent form of diabetes, accounting for 90% of all diabetes
cases, with its incidence increasing in all studied populations. The classical phenotype
of T2D is described, in the absence of anti-beta cell autoimmunity markers, as a mild to
moderate hyperglycemia, that is usually clinically asymptomatic in the early phase of the
disease, with no insulin dependency, but worsens with time, occurring in middle-aged
individuals, most often with a family history of T2D, or a maternal history of gestational
diabetes. The risk factors for T2D include a non-Euro-Caucasian ancestry, an increasing age,
a lack of physical activity, the presence of overweight/obesity, or an increased abdominal fat
mass, and the presence of the insulin resistance markers of “metabolic syndrome”, including
a high blood pressure, high serum triglyceride levels, and low high-density lipoprotein
levels. The occurrence and progression of T2D are due to qualitative and quantitative
abnormalities of insulin secretion, which become insufficient to compensate for insulin
resistances of variable severity [50,51]. Genetic and environmental factors are involved in
the pathogeny of T2D, but the very first cause of the beta cell defect remains elusive.
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All the characteristics of T2D, including its epidemiology, pathogeny, and phenotype,
the prevalence of complications, and the response to treatment, are highly variable [52].
Moreover, there are no sensitive and specific markers that allow for a diagnosis of T2D,
which remains a diagnosis by default.

During recent years, various strategies have been used to identify, among patients with
a diagnosis of T2D, homogenous subgroups characterized by shared phenotypes, risks of
complications, responses to available treatments, and presumably pathogeny (“endotypes”)
(reviewed in [53]).

In 2015, a study using a “topologic” analysis of many clinical and biological markers in
T2D patients identified three clusters that differed in diabetes complications, associated co-
morbidities, and the genetic variants that could account for it [54]. More recently, Swedish
and Finnish investigators studied a population of 8980 adult patients with recent-onset
diabetes. They used a cluster analysis based on six clinical and biological markers available
at the time of diagnosis or at registration (age, BMI, HbA1c, anti-GAD antibodies, insulin
secretion, and sensitivity evaluated using HOMA2 methods) [55]. According to the classical
criteria used for the classification of diabetes, two groups of patients would have been
identified, namely T1D or LADA, defined by the presence of GADA and accounting for 6%
of the total population, with the remaining patients considered as having T2D. Five clusters
were identified, including “severe autoimmune diabetes” (SAID), defined by the presence
of GADA and thought to include patients with T1D or LADA, and four non-autoimmune
clusters, i.e., “severe-insulin deficient diabetes” (SIDD), “severe insulin-resistant diabetes”
(SIRD), “mild obesity-related diabetes” (MOD), and “mild age-related diabetes” (MARD).
These results were reproduced in three independent cohorts [55]. It is interesting to note
that, except for the absence of GADA, the patients in the SIDD cluster had characteristics
very similar to those of the patients in the SAID cluster, underlying the importance of
antibody testing in this context [53]. Moreover, large overlaps of the clinical and biological
criteria between the clusters and, within the same cluster, a large variability of each criterion
were both observed (Figure 2).

Nevertheless, these analyses allowed for the identification of T2D subgroups with
different phenotypes at diagnosis. Importantly, these subgroups could be associated with
different pathogenic mechanisms (e.g., with regard to insulin secretion and insulin sensitiv-
ity), different risks of complications (e.g., retinopathy/neuropathy vs. nephropathy) [56],
and different genetic markers [57]. Moreover, it has been recently reported that the levels
of circulating metabolites or proteins may help to discriminate these clusters [58–60].

Many other studies have replicated these results in populations of various ancestries,
although with differences in the proportions of the clusters in some, and in populations
assessed at a distance from diabetes onset [53]. Whether these clusters could be universally
identified in patients of various ethnicities should be confirmed, since different phenotypes,
which could be associated with different pathogenic mechanisms, are suggested for some
populations [61–63].

Since all these studies included patients with adult-onset T2D, it will be mandatory to
perform studies in pediatric populations. Indeed, data from the USA indicate that, due to
the increasing frequency of obesity and T2D in adolescents, in patients aged 15–19 years,
the incidence of T2D is now higher than that of T1D in ethnic minorities (Afro-Americans,
Hispanics, Indian Americans, and Hawaiians) [27,64]. Moreover, in these young patients,
the progression from minor alterations in glucose tolerance to overt T2 diabetes is faster
than that in adults [65].

Overall, these studies have confirmed the wide heterogeneity of T2D and the potential
for clinical and biological markers available in routine, to identify subgroups among
patients with T2D at diabetes diagnosis, which may respond to different pathological
mechanisms and have different prognoses and responses to diabetes treatments. Thus, they
exclude the existence of a single “typical” form of T2D and suggest that studies on patients
with T2D, particularly intervention trials, should better take into account this heterogeneity,
as mentioned in patients with T1D.
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Figure 2. Body mass index and age at diagnosis in adult patients with diabetes. Using six clinical and
biological criteria five clusters were identified among 8980 patients. The figure shows the distribution
of body mass index (BMI) and age at diagnosis values in each cluster, and their overlaps between the
clusters. Adapted from Ahlqvist et al. [55] with permission.

At the individual level, the clinical benefits of these subtyping studies for routine
practice remain to be determined [1,53]. Particularly, it could be difficult to assign a given
patient to one particular cluster. As an alternative, recent studies have shown that individ-
ual assessment based on the combination of clinical and biological variables can efficiently
predict glycemic progression, the risk of chronic kidney disease, severe retinopathy and
cardiovascular events, and the response to various treatments [66,67]. Additionally, a given
patient may have characteristics belonging to several clusters. In a recent study, using a set
of 32 clinical and biological parameters recorded in 726 patients with newly diagnosed T2D,
four extreme phenotypes (“archetypes”) were defined. They were associated with different
genetics and omics profiles, different pathophysiological processes, and differences in dis-
ease progression (HbA1c values or a need for diabetes treatment). However, in the majority
of the patients, a combination of at least two archetypes contributed to the phenotype [68].
Since the identification of these archetypes required in-depth phenotyping at the diagnosis
of diabetes, which is not usually performed in a clinical setting, the relevance of these
findings in routine care is not defined yet.

2.4. The Case of “Ketosis-Prone Diabetes”

Ketosis-prone diabetes (KPD) has been described in African American children who
presented with DKA, but with no detectable anti-islet cell antibodies or HLA class II alleles
associated with T1D, followed by remission of insulin dependency, in the context of weight
excess and a strong family history of diabetes [69]. The same phenotype was reported
under the term “Flatbush Diabetes” in patients of Sub-Saharan origin [70]. Thereafter, many
studies have reported similar observations in patients with various ethnicities (reviewed
in [71]).

The case of KPD, sometimes termed “atypical diabetes”, illustrates well the limits of
the etiological diagnosis of diabetes when it is based solely on clinical grounds. Indeed,
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when patients presenting with DKA were more carefully phenotyped, by assessment of T1D
antibodies, insulin secretion, and genetic markers, etiological heterogeneity was demon-
strated. In a multiethnic study of 103 patients with DKA [72], four different subgroups were
identified according to the presence or the absence of autoantibodies (A+ and A−) and of
residual beta cell function (B+ and B−). The patients in the A+B− group (accounting for
21% of cases) had clinical and genetic features characteristic of T1D, including the absence
of an improvement in beta cell function in the long term. Those in the A+B+ group (11%)
had a phenotype suggesting T2D, but presented with DKA and were thought to have
LADA. In this group, GADA were predominantly directed against the N-terminal epitope
of GAD65, which was previously shown to correlate with preserved beta cell function [73].
The majority of the patients (50%) fitted into the A−B+ group, characterized, in this series,
by a high frequency of Hispanic origin, a late onset (40 years on average), a high preva-
lence of overweight/obesity (70%), a family history of diabetes (88%), a low frequency of
T1D at-risk HLA alleles, a high level of C-peptide at diagnosis that was even increased
6 months later, and a high rate of weaning off insulin at 6 months from the diagnosis, all of
which were suggestive of T2D, leading further to the designation of “Ketosis-Prone Type 2
diabetes” (KPT2D). The A-B+ subgroup was further subdivided into two groups according
to the presence, or not of a precipitating factor of DKA. The patients with “unprovoked”
DKA may have a distinct syndrome with clinical and biological characteristic suggesting
T2D, a better long-term beta cell function, and a long-term insulin independence with good
glycemic control [74].

Whether KPD should be considered as a definite hybrid form of diabetes, sharing both
T1D, but not autoimmunity, and T2D clinical characteristics, or only represent a severe
presentation of T2D, is still under debate [21,75]. Several pathophysiological hypotheses
have been investigated to determine whether KPD represents a discrete subtype of diabetes,
but no firm conclusion has been attained [75]. Some authors have suggested that, in these
patients, ketosis could be the result of a decrease in ketolysis, rather than an increase in
ketones production [76].

3. Monogenic Diabetes: A Multi-Faceted Diabetes Subtype

Monogenic diabetes (MgD) has been first described under the term Maturity Onset
Diabetes of the Young (MODY), as the specific phenotype of a non-ketotic, non-insulin-
dependent diabetes of young onset, usually before 25 years of age, generally occurring
in lean individuals, with an autosomal dominant transmission suggesting the molecular
abnormality of a single gene. All these features have long been considered as diagnostic
criteria for MODY. Abnormalities in many genes have been associated with MgD, among
which three genes account for the most frequent genetic subtypes with a MODY phenotype,
some are involved in neonatal diabetes or diabetes of infancy, and some are involved
in syndromic diabetes (e.g., HNF1B syndrome, Wolfram syndrome, and mitochondrial
diabetes). Abnormalities in other genes may be responsible for insulin resistance syndromes
and syndromes of monogenic obesity, which may both be associated with diabetes, and
for monogenic autoimmune diabetes [77]. Thus, beyond the “classical” MODY phenotype,
MgD can be associated with multiple phenotypes.

Correlations between a patient’s phenotype and the involved gene have been re-
ported [78], but are questioned by the heterogenous phenotypes observed in patients
harboring abnormalities of the same gene, and by the overlap of the diabetes phenotypes
associated with different genes [79] (Figure 3). Moreover, next generation sequencing
(NGS), which allows for the simultaneous screening of multiple genes and even the entire
genome, leads to genetic diagnoses not predicted by the phenotypes [79–82]. Thus, from
a clinical point of view, the main challenge for the clinician is to identify, among patients
with diabetes, those who deserve genetic testing, i.e., to achieve the differential diagnosis
with other diabetes subtypes.



Endocrines 2023, 4 445

Endocrines 2023, 4, FOR PEER REVIEW 9 
 

 

a clinical point of view, the main challenge for the clinician is to identify, among patients 

with diabetes, those who deserve genetic testing, i.e., to achieve the differential diagnosis 

with other diabetes subtypes. 

 

Figure 3. Distribution of the phenotypes according to genetic subtypes in patients with monogenic 

diabetes. Age (years), body mass index, BMI, (kg/m2), HbA1c (%), ancestry (EuroC., Euro-Caucasian), 

numbers of affected generations, and presence of clinical symptoms. Except from symptoms and 

HbA1c in the patients with GCK-MODY, there are wide overlaps in all phenotypes among the ge-

netic subtypes. Adapted from Donath et al. [79] with permission.  

3.1. Epidemiology of MgD 

In children and adults, population studies have shown that MgD accounts for at least 

1–2% of all diabetes cases [80,83,84]. In most studies, molecular abnormalities of seven 

genes account for the majority of cases: glucokinase, GCK; transcription factors of the 

hepatocyte nuclear factor family, HNF1A, HNF4A, and HNF1B; ABCC8 and KCNJ11, en-

coding the SUR-1 and Kir6.2 subunits of the ATP-dependent potassium channel of the 

pancreatic beta cell, respectively; and the m.3243A>G variant in the MT-TL1 gene, which 

is responsible for Maternally Inherited Diabetes and Deafness (MIDD) syndrome. 

3.2. Genotype/Phenotype Correlations of the Most Frequent MgD Subtypes 

3.2.1. GCK-MODY  

GCK-MODY is the most frequent MgD, with an estimated prevalence of 0.3–1‰ in 

the general population [85,86]. The phenotype of GCK-MODY is very homogenous, which 

is unique among all diabetes subtypes. It is limited to a mild hyperglycemia (7 mmol/L on 

average) and a 6.5% average HbA1c, present from birth, very stable in the long term, and 

detected in the proband and all the family members harboring the GCK pathogenic vari-

ant, i.e., a complete penetrance. However, the highly suggestive family history can be lack-

ing, because the very mild hyperglycemia may have gone unrecognized. The prognosis of 

GCK-MODY is usually excellent, with no clinically significant complications of chronic 

Figure 3. Distribution of the phenotypes according to genetic subtypes in patients with monogenic
diabetes. Age (years), body mass index, BMI, (kg/m2), HbA1c (%), ancestry (EuroC., Euro-Caucasian),
numbers of affected generations, and presence of clinical symptoms. Except from symptoms and
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3.1. Epidemiology of MgD

In children and adults, population studies have shown that MgD accounts for at
least 1–2% of all diabetes cases [80,83,84]. In most studies, molecular abnormalities of
seven genes account for the majority of cases: glucokinase, GCK; transcription factors of
the hepatocyte nuclear factor family, HNF1A, HNF4A, and HNF1B; ABCC8 and KCNJ11,
encoding the SUR-1 and Kir6.2 subunits of the ATP-dependent potassium channel of the
pancreatic beta cell, respectively; and the m.3243A>G variant in the MT-TL1 gene, which is
responsible for Maternally Inherited Diabetes and Deafness (MIDD) syndrome.

3.2. Genotype/Phenotype Correlations of the Most Frequent MgD Subtypes
3.2.1. GCK-MODY

GCK-MODY is the most frequent MgD, with an estimated prevalence of 0.3–1‰ in
the general population [85,86]. The phenotype of GCK-MODY is very homogenous, which
is unique among all diabetes subtypes. It is limited to a mild hyperglycemia (7 mmol/L
on average) and a 6.5% average HbA1c, present from birth, very stable in the long term,
and detected in the proband and all the family members harboring the GCK pathogenic
variant, i.e., a complete penetrance. However, the highly suggestive family history can be
lacking, because the very mild hyperglycemia may have gone unrecognized. The prognosis
of GCK-MODY is usually excellent, with no clinically significant complications of chronic
hyperglycemia and no treatment is required [85]. However, up to 20% of patients with
GCK-MODY are unnecessarily treated with oral hypoglycemic agents or even insulin,
illustrating the frequent misdiagnosis of this MgD subtype [87]. Pregnancy is a privileged
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situation to raise the diagnosis of GCK-MODY in women diagnosed with “gestational
diabetes”, although with no risk factors.

3.2.2. HNF1A-MODY

HNF1A-MODY is often diagnosed in adolescents or young adults, with a median
age at onset of 20 years. Its penetrance increases with age, being nearly complete after
50 years. Clinical presentation at onset may suggest T1D in 25% of cases, but DKA is rare
and the diagnosis can be made on the absence of T1D-associated antibodies and on the
family history. In the majority of cases, the phenotype may suggest T2D, but usually with
no features of metabolic syndrome [88]. A good sensitivity to sulfonylureas or glinides is
maintained in most patients, allowing for weaning off insulin therapy [89]. The phenotype
of HNF1A-MODY, particularly age at onset of diabetes, is highly variable, depending on
the type and position of the HNF1A pathogenic variant [90], on genetic variants in HNF1A
itself [91] and in other genes [92], the presence of body weight excess, and fetal exposition
of the patient to maternal hyperglycemia [93,94].

3.2.3. HNF4A-MODY

HNF4A-MODY is a less frequent MgD subtype (5–10%). Its main characteristics
are close to those of HNF1A-MODY, including a good sensitivity to sulfonylureas [95].
However, 50% of the neonates harboring an HNF4A variant have macrosomia, with a
syndrome of hyperinsulinism and neonatal hypoglycemia in some. In the long term,
hyperinsulinism vanishes and these children may develop diabetes. This sequential course
is highly suggestive of HNF4A-MODY and can be observed in children who inherit the
variant from their father, as well as their mother [96]. Thus, a personal or family history of
neonatal severe hypoglycemia can help to raise this diagnosis.

3.2.4. HNF1B-Syndrome

HNF1B-syndrome is a rare MgD subtype (5% of cases), first described as the asso-
ciation of diabetes, suggesting a MODY phenotype, and renal cysts (RCAD phenotype)
(reviewed in [97]). Beyond diabetes, this syndrome may include renal morphological abnor-
malities, renal functional defects that often progress to end-stage renal failure, abnormalities
of the genital tract, morphological and functional abnormalities of the exocrine pancreas,
abnormalities in liver tests, and an intellectual disability or autism spectrum disorder [98].

Over 50% of its cases are related to the microdeletion of chromosome 17 (17q12), which
involves 15 genes, including HNF1B [99]. In 50% of cases, point pathogenic variants or the
microdeletion occur de novo. Thus, an absence of family history should not exclude the
diagnosis of HNF1B-syndrome.

The reported phenotypes of HNF1B-syndrome are highly variable, probably in part
because of selection bias: for example, in children, the renal phenotype is in the foreground,
with no overt diabetes. In contrast, among patients screened for MgD because of a pheno-
type suggesting classical MODY, cases of HNF1B-MODY have been diagnosed in patients
with no renal phenotype [81,82].

Diabetes occurs in 50% of patients with an HNF1B molecular abnormality, at a mean
age of 28 years. It can mimic T1D, with some cases being revealed by DKA, or T2D, with
a more severe presentation in patients with the 17q12 deletion than in those with a point
HNF1B variant [98].

3.2.5. Diabetes Associated with Pathogenic Variants of the Genes Encoding the K-ATP
Channel Sub-Units

Pathogenic variants of ABCC8 and KCNJ11 have been associated with various pheno-
types. Gain-of-function mutations in these genes may be responsible for severe neonatal
diabetes, either permanent or transient, with a remission and a relapse during infancy
or adolescence [100].
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Patients with ABCC8 pathogenic variants may present with a wide range of diabetes
phenotypes, including mild abnormalities in glucose tolerance tests, gestational diabetes,
late-onset diabetes suggesting T2D, or a severe presentation suggesting T1D [101,102].

Patients with diabetes related to the pathogenic variants of ABCC8/KCNJ11, even of
a neonatal occurrence, are highly sensitive to sulfonylureas, even after insulin therapy of
long duration [103,104].

3.2.6. Maternally Inherited Diabetes and Deafness Syndrome

The clinical presentation of this diabetes subtype is variable with an onset age between
20 and 40 years and a phenotype suggesting T1D in 20% of cases, but without diabetes-
associated antibodies, or T2D in 80% of its cases, particular by the absence of metabolic
syndrome and a BMI that is usually normal or even low [105]. Two main characteristics
may help diagnosis: the disease is maternally transmitted, and diabetes may be associated
with a wide array of extra-pancreatic manifestations, including neurosensory hearing loss,
retinal macular dystrophy, myopathy, cardiomyopathy, glomerular nephropathy, peripheral
neuropathy, and central nervous system defects [106]. However, the phenotype may be
much more restricted because all these manifestations may be mild requiring a systematic
evaluation to be detected, or even absent. Accordingly, the m.3243A>G variant of the
MT-TL1 gene can be evidenced in patients referred for a clinical suspicion of MODY, in the
absence of other overt manifestations [81,82].

3.3. Monogenic Diabetes Often Remain Misdiagnosed

In children [107,108] and adults [109], 50 to 90% of MgD cases are not diagnosed or
misdiagnosed as T1D or T2D.

Several reasons may explain this situation, e.g., a lack of belief in the clinical benefits
for the patients [110], a lack of access to genetic screening, a lack of knowledge about these
rare diabetes subtypes, and the costs of genotyping, although studies have shown that it
may be cost-effective [111]. One should note that the majority of MgDs are revealed in
adults, with a phenotype that may suggest T2D, and these patients are usually followed by
general practitioners who may not be well informed about MgD. A recent study showed
that self-referral by the patients was the most efficient way to increase the diagnosis rate of
MgD [112], underlying the potential for educating patients with diabetes on this topic.

While the extra-pancreatic features associated with diabetes may clinically suggest
specific causes, the challenge of identifying patients who present with isolated diabetes,
in whom genetic screening is warranted is probably one major pitfall that explains the
frequent misdiagnoses of MgD. This raises two issues, i.e., the differential diagnosis with
common diabetes subtypes and the strategy for genetic screening.

3.4. Differential Diagnosis with “Common” Diabetes Subtypes

In children and young individuals, mainly of Euro-Caucasian origin, algorithms based
on the absence of beta cell autoantibodies at diabetes diagnosis and the persistency of
insulin secretion (evaluated by plasma or urinary C-peptide concentration) at a distance
from diabetes onset have been used to select patients who should be genotyped. In this
context, the main differential diagnosis is T1D, and a MgD has been found in 4–15% of
patients with no antibodies, or no antibodies and detectable insulin secretion [83,84,113,114].
Thus, it is recommended to exclude diagnoses of T1D in the absence of GADA, IA-2, and
ZnT8 antibodies before genetic screening [115]. The long-term persistency of GADA and/or
anti-IA-2 antibodies allows confirm a diagnosis of T1D in some patients, even long after
the onset of diabetes, thus avoiding genetic screening [116,117].

In the recent years, polygenic scores have been developed to assess the risk of T1D.
Models including T1D genetic risk scores have been proven efficient to identify children
at a high risk for developing T1D [7,118] and to discriminate T1D from T2D in adult
Euro-Caucasian patients [14,119]. These scores may also help to differentiate the fraction of
patients with young-onset T1D but with no antibodies at onset, or those in whom antibodies
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have disappeared at a distance from diagnosis, from those with MgD [120]. Moreover, they
can help to identify patients in whom a diagnosis of MgD is likely but not confirmed by
current techniques, who may benefit from extensive genotyping.

Differential diagnosis is more complex in patients with adult-onset diabetes, which is
the most frequent situation. In a study, seven genes associated with MgD were screened
using targeted NGS in 1564 patients, aged 15 years or more at diagnosis of diabetes, who
were referred for a clinical suspicion of MgD, based on the absence of diabetes-associated
antibodies, an age at diabetes diagnosis below 40 years, the absence of familial obesity, and
the presence of a family history of diabetes [79]. MgD was identified in 16% of the patients,
i.e., 15 times the expected prevalence in unselected adults with diabetes [80]. Using more
stringent criteria would have led to a better specificity, but at the cost of a much lower
sensitivity (Figure 4) [79].
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Figure 4. Diagnosis rate of monogenic diabetes according to the selection criteria used for genetic
screening. Among 1564 patients referred for a clinical suspicion of monogenic diabetes, 254 (16%)
cases (pathogenic/likely pathogenic variants) were confirmed. The total numbers of tested patients
(upper part of the figure), frequency, and actual numbers of the patients with an identified monogenic
diabetes (black boxes) are indicated according to the number of criteria used to select the patients to
be genotyped, increasing from column 1 to 5. Using the most stringent criteria (column 5) would
have led to reducing the number of patients to be tested by 90% and to increasing the diagnosis rate
up to 44%, but would have led to missing 70% of the actual number of monogenic diabetes cases.
Adapted from Donath et al. [40] with permission.

The great variability and overlaps between the phenotypes of MgD and common dia-
betes subtypes explain the difficulties of this differential diagnosis (Figure 5). For example,
in the mentioned study, depending on the MgD subtype, 40–65% of the patients with an
MgD were over 25 years of age at the onset of diabetes and 20% were overweight/obese [79].
In another study, among 4016 patients with adult-onset diabetes considered as T2D and no
criteria suggesting MgD, a MgD was identified by systematic screening in 1.2%. Using the
classical criteria for MgD screening, these cases would have been missed [80].
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(M−, 1305 patients) monogenic diabetes, at the time of diabetes diagnosis. (A). Age (years); (B). Body
mass index (kg/m2); (C). HbA1c (%); (D). Presence of clinical symptoms of diabetes; (E). Ancestry
(EuroCaucasian vs non EuroCaucasian); (F). Number of generations with diabetes. Adapted from
Donath et al. [40] with permission.

Similarly, a large study reported that the pathogenic/likely pathogenic variants (P/LP)
of five actionable MODY genes (GCK, HNF4A, KCNJ11, HNF1B, and ABCC8, but surpris-
ingly not HNF1A) were significantly more frequent in patients with adult-onset T2D (2%)
than in non-diabetic controls (1%) [121]. At diagnosis of T2D, those with P/LP variants
were younger and leaner than those with no variants, but no case occurred before the
age of 25 years and there were no differences in the family history of T2D between the
two groups. Therefore, these cases would not have been identified by the classical MODY
criteria. Moreover, the patients with P/LP variants, including those with GCK variants,
were more frequently treated with insulin and less with metformin, suggesting that, in
some cases, the treatment was spuriously orientated by the phenotype of the patients, not
by the etiology of the diabetes [121].

3.5. Which Strategy for the Genetic Diagnosis of MgD?

Next generation sequencing techniques are now available in routine practice and allow
for the screening of multiple genes (targeted NGS), or even the whole exome/genome.

One approach, mostly used in practice, consists of selecting patients with “atypical”
phenotypes for genetic testing. For example, in the Rare and Atypical Diabetes Network
study (ClinTrials.gov, NCT05544266), whole genome sequencing will be performed in
patients with diabetes harboring one or several phenotypes, such as T2D diabetes of early
onset; T2D, gestational diabetes, lipodystrophy, insulin resistance or polycystic ovary
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syndrome occurring in lean individuals; Mendelian inheritance; syndromic diabetes;
KPD. Those with no identified pathogenic variant will undergo extensive clinical and
biological phenotyping, and cluster analyses will be performed to define “atypical
diabetes” subtypes [122].

As mentioned, NGS techniques may identify MgD cases not predicted by the pheno-
type of the patients and may identify pathogenic variants in the patients with “common”
phenotypes. Since an accurate diagnosis conveys benefits for patients, some authors have
suggested that whole genome sequencing could be performed in all patients with dia-
betes. Such genotyping could generate additional data, e.g., a predisposition to diabetes
complications or other diseases and pharmacogenetic information [123].

Yet, these approaches are limited in routine practice by the difficult and time-consuming
processes of confirming the pathogenicity of an identified variant [124]. According to cur-
rent recommendations [125], this crucial step in diagnosis is based on a series of analyses,
such as the type of the variant, the prevalence of the variant in the general population,
the use of several prediction algorithms, co-segregation studies of the variant and the
phenotype in families, analysis of previous reports of the variant, and bioassays.

4. Conclusions

Many epidemiological, clinical and pathophysiological data show that the “typical”
forms of diabetes (namely T1D, T2D, and monogenic diabetes) are historical and too
restrictive. Clinical and biological traits reveal a large heterogeneity in the phenotypes
of each of these diabetes subgroups and large overlaps in their phenotypes, which make
the etiological diagnosis of diabetes difficult. In recent years, diabetes subtypes have
been identified within each diabetes subgroup, which may be associated with distinct
genetic and pathophysiological backgrounds, and with different rates of progression, risks
of complications, and responses to treatment, leading to the application of the endotype
concept to diabetes. The clinical consequences of these sub-classifications in routine practice,
especially the opportunity to obtain precision medicine in diabetes, remains, however,
to be determined. Yet, these observations should lead to a systematic approach to the
etiological diagnosis of diabetes, including careful clinical and biological phenotyping at
onset of diabetes.
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