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Abstract: Dysmetabolic iron overload syndrome (DIOS) corresponds to the increase in iron stores
associated with components of metabolic syndrome (MtS) and in the absence of an identifiable cause
of iron excess. The objective of this work was to review the main aspects of DIOS. PUBMED and
EMBASE were consulted, and PRISMA guidelines were followed. DIOS is usually asymptomatic
and can be diagnosed by investigating MtS and steatosis. About 50% of the patients present altered
hepatic biochemical tests (increased levels of γ-glutamyl transpeptidase itself or associated with
increased levels of alanine aminotransferase). The liver may present parenchymal and mesenchymal
iron overload, but the excess of iron is commonly mild. Steatosis or steatohepatitis is observed in half
of the patients. Fibrosis is observed in about 15% of patients. Hyperferritinemia may damage the
myocardium, liver, and several other tissues, increasing morbidity and mortality. Furthermore, DIOS
is closely related to oxidative stress, which is closely associated with several pathological conditions
such as inflammatory diseases, hypertension, diabetes, heart failure, and cancer. DIOS is becoming
a relevant finding in the general population and can be associated with high morbidity/mortality.
For these reasons, investigation of this condition could be an additional requirement for the early
prevention of cardiovascular diseases.

Keywords: dysmetabolic iron overload syndrome; metabolic syndrome; hyperferritinemia;
cardiovascular diseases

1. Introduction

Cardiovascular diseases (CVD) are responsible for most causes of death worldwide
and are strongly associated with metabolic syndrome (MtS), which comprises risk factors
related to high morbidity. The primary underlying mechanism related to the onset and
maintenance of CVD is atherosclerosis [1–6].

In addition to MtS, authors have described the occurrence of another condition, the
dysmetabolic iron overload syndrome (DIOS) corresponds to the increase in the body
iron stores, associated with components of MtS, and in the absence of identifiable cause
of iron excess [7–13] (Figure 1). Most DIOS patients also possess nonalcoholic fatty liver
disease (NAFLD), a condition that is best defined as metabolic associated fat liver dis-
ease (MAFLD) [14]. Although MAFLD, which is also a result of insulin resistance and
MtS, is usually but not invariably followed by expanded body iron stores, iron depletion
can attenuate steatosis in MAFLD [10,15–17]. The histological patterns found in DIOS
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associates both mesenchymal and parenchymal areas. The iron deposition on the hepatic
reticuloendothelial system cells is implicated with increased hepatic apoptosis in MAFLD
patients, additionally to higher percentages of advanced hepatic fibrosis, higher portal
inflammation, and augmented hepatocellular ballooning [18–23]. Figure 1 summarizes
DIOS definition visually.
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Figure 1. Definition of dysmetabolic iron overload syndrome (DIOS). ↑: increase, ↓: decrease.

Iron is a fundamental element for the maintenance of homeostasis. It is essential
to electron transport, oxygen transport, DNA synthesis, and several other actions, but
it may also be toxic. Disruption in iron metabolism as observed in patients with DIOS
may be multifactorial. Diets rich in iron associated with genetic factors may trigger the
overload condition, related to crosstalk observed between liver and visceral adipose tissue.
Macrophages seem to be especially important in the homeostasis of systemic iron levels,
and ferroportin is the iron exporter and plays a role in mediating the exit of iron from
macrophages to circulation [24–27].

DIOS is closely related to oxidative stress (OS), and this condition is closely associated
with several pathological conditions such as inflammatory diseases, hypertension, diabetes,
heart failure, and cancer [28–31].

The presence of MtS factors, hyperferritinemia, and altered transferrin saturation
are disorders that represent a serious global problem. Both MAFLD and its aggressive
form, nonalcoholic steatohepatitis (NASH), are linked with higher morbidity and mortality.
The incidence of NASH is estimated to increase by more than 50% in the next ten years.
Moreover, MAFLD incidence nowadays may vary from up to one-quarter of the world
population and may be higher than 60% in diabetic patients and about 90% in patients who
underwent bariatric surgery [10,32–38].
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As DIOS has increased in incidence and due to its clinical importance, the aim of this
study is to review the main aspects of this condition and perform a review of the existing
studies with human beings.

2. Materials and Methods
2.1. Information Sources

We searched the electronic databases PubMed (Medline) and EMBASE. The keywords
and MeSH (Medical Subject Headings) terms were dysmetabolic iron overload syndrome
or DIOS or hyperferritinemia and insulin resistance or metabolic syndrome or obesity or
dyslipidemia or NAFLD or NASH or cardiovascular diseases. The search included articles
published until November 2022.

2.2. Study Selection

Only studies in English and with humans were included. Two independent reviewers
(S.M.B. and L.F.L.) consulted the databases, and according to titles and abstracts, we
independently retrieved relevant studies. Full-text articles were retrieved to support
decision-making. Discordance between the two reviewers were evaluated by the other two
reviewers (M.D.B. and R.d.A.G.).

2.3. Inclusion Criteria

We included the articles that investigated the presence of DIOS related to MtS, obesity,
insulin resistance/diabetes, and oxidative stress.

2.4. Exclusion Criteria

Studies not in English, abstracts, poster presentations, reviews, and clinical guidelines
were excluded from our search.

3. Results

Fifteen studies involving humans (totaling 1227 individuals) were included. Selection
criteria included observational studies (cross-sectional, cohorts, and case-control) and
interventional studies (quasi-experimental studies, randomized trials, open-label, and
double-blind clinical trials). There was complete agreement among the reviewers regarding
the selection of the studies. The results of this search are shown in Table 1.

Table 1. Studies that investigated dysmetabolic iron overload syndrome in humans.

Reference Study Design Sample Evaluations Results

[39] Case-control
study.

60 participants (20 with
MtS without iron
overload, 20 with DIOS,
and 20 healthy
controls).

Monocytes of the included
participants were phenotyped
and differenced in inflammatory
(M2) through the presence of
response for IL-4. 38 genes
related to inflammation were
also assessed, additionally to
genes related to iron metabolism.

No differences between the monocytes
phenotypes were assessed.
Inflammatory genes related to IL-4 M2
response were activated in DIOS
monocytes and in MtS, which
correlates with impaired M2
polarization. Iron metabolism genes
were higher expressed in DIOS
monocytes than in MtS.

[40] Cross-sectional
analytical study.

50 overweight
participants and with at
least one more MtS
risk factor.

Anthropometric parameters,
body composition, lipids,
Glycemia, BP, insulin, leptin,
CRP, ferritin, transferrin,
transferrin saturation, and
soluble transferrin receptor
were evaluated.

Iron transport and iron storage were
altered in individuals affected by
overweight/obesity that at the same
showed IR.
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Table 1. Cont.

Reference Study Design Sample Evaluations Results

[41] Prospective
study.

276 participants with
hyperferritinemia
(135 with MS, and
141 without MtS).

In all participants, magnetic
resonance images were made to
determine liver iron
concentration.

No significant differences were found
for liver iron concentrations of both
MtS and non-MtS groups. Therefore,
participants with hyperferritinemia
and MtS presented increased liver
iron concentrations.

[42]

Experimental
double-blind,
randomized
controlled trial.

40 patients (20 with HH
and 20 with DIOS).

Basal levels of serum iron were
evaluated (overnight fast).
Patients consumed a
standardized test iron-rich meal
with 43 mg of iron and placebo
capsules or Proanthocyanidin
supplement every three days.

The iron-rich meal showed a
significant increase of serum iron
compared with baseline at 120, 180,
and 240 min in DIOS (8–9.1%) and HH
(15.8–25.7%). The use of procyanidin
did not significantly interfere in iron
absorption in DIOS or HH.

[43] Cross-sectional
study.

94 participants
diagnosed with MtS.

All participants had weight,
waist circumference, and height
measures, additionally to
dosages of ferritin, iron,
transferrin saturation, hepcidin,
lipids, and glycemia.

Hyperferritinemia prevalence was
27.7% among the participants and was
associated with transferrin saturation
and serum hepcidin. Hepcidin is
helpful to assess ferritin increases.

[44]
Observational
Case -Control
study.

84 patients with liver
disease, 26♀, 58♂/62
with elevated ferritin
levels and 22 with
normal levels (54 with
iron overload, 38 with
NAFLD, 29 with
chronic liver disease
(no NAFLD), and 17
had untreated HH.

Serum hepcidin was measured
in all patients. HAMP mRNA
was determined in liver tissue
with PCR in 36 patients.

Serum hepcidin was higher in NAFLD
with DIOS and other chronic liver
diseases with iron overload (but not
with genetic hemochromatosis).
HAMP mRNA (liver tissue) and
serum hepcidin were correlated to the
liver iron content in NAFLD patients
but not to BMI, NAFLD activity score,
and serum lipids. There was a
correlation between HAMP mRNA in
liver tissue and serum hepcidin.

[45]

Experimental
Multicenter
Randomized,
controlled trial.

274 patients (adult
subjects with
nondiabetic DIOS and
with hepatic iron
>50 µmol/g).

146 patients received
Phlebotomy lifestyle(LFDA) and
diet advice and 128 with LFDA
only. 1st phase consisted of
bi-monthly phlebotomies (to
reach serum ferritin <50 µg/L
with hemoglobin levels
>11 g/dL). 2nd phase:
maintenance phase with
bi-monthly phlebotomy by
serum levels
of ferritin.

Comparison of iron-depleted patients
and the control group showed a
significant reduction of ferritin levels
after blood-letting as well as a
significant reduction of body weight
and HOMA. In patients with DIOS,
iron depletion by bloodletting is not
related to the improvement of
metabolic and hepatic features.

[46]
Observational
Cross-sectional
study.

163 patients divided in
lean and healthy
controls (n = 53);
MtS without
hyperferritinemia
(n = 54) and MtS with
hyperferritinemia
(n = 56); group with
29 patients with biopsy
showing iron overload
before and after
iron removal.

Patients were submitted to
phlebotomies bi-weekly until
ferritin concentrations were
between 50 and 100 mg/L.
Clinical and metabolic
parameters before and after iron
removal therapy
were performed.

Patients with MtS and elevated ferritin
showed significantly higher glycemia,
HbA1c, and oral glucose tolerance
tests compared with MtS without iron
overload. Results suggested that high
serum ferritin is linked to impaired
glucose homeostasis in patients
with MtS.
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Table 1. Cont.

Reference Study Design Sample Evaluations Results

[47] Observational
Cohort Study.

58 DIOS patients
underwent venesection
for a median follow-up
of 5.75 years.

Patients received dietetic
counseling. Venesection was
performed fortnightly until
reaching body iron stores of less
than 100 ng/L.

After initial removal of this element,
iron loading does not support
systematic maintenance therapy but
requires periodical follow-up of
patients with iron overload recurrence.

[48] Quasi-
experimental.

18 individuals with
DIOS, 18 with NAFLD,
23 healthy controls, and
10 with hereditary HH.

Patients were compared after a
24-h oral iron tolerance test
(hepcidin evaluations and iron
metabolism modeling).

DIOS patients presented higher
transferrin saturation (and higher
hepcidin levels) than patients with
normal iron status and lower values
than HH patients. Hepcidin resistance
index was correlated with ferritin.

[49]
Observational
Case-control
Study.

24 individuals: 12 with
DIOS and 12
overweight controls
and normal serum
ferritin levels.

All patients were submitted to
venesection program
(phlebotomies of 7 mL/kg/
14 days until serum ferritin
dropped < 50 µg/L).

All patients were comparable
regarding the metabolic abnormalities
but differed according to serum
ferritin levels. The amount of
mobilized iron was higher, and serum
transferrin was lower in DIOS
patients. The authors concluded that
total iron stores of the body are highly
increased in DIOS.

[50] Pre-clinical
study (animal).

46 patients with
NAFLD (23 with
uncomplicated
steatosis and 23 with
NASH; ten individuals
with suspicious
NAFLD (without
histological
abnormalities) were
considered as controls.

Patients were subjected to
percutaneous liver biopsy.

The levels of hepatic TfR-1 mRNA
were upregulated in subjects with
fatty liver and DIOS. Augmented
exposition to fatty acids interferes
with hepatic iron metabolism,
stimulating iron uptake despite iron
accumulation in hepatocytes.

[51]
Observational
Case -Control
study.

24 adult Italian patients
(21 men and three
women) with DIOS.

Evaluation of glycemia, insulin,
hemoglobin, C-reactive protein,
TS, SF, cholesterol, HDL-c,
triglycerides, AST, ALT, and
γ-glutamyl-transferase, BMI,
abdominal waist and
iron depletion.

In the beginning, hepcidin levels were
significantly higher than in controls.
After iron depletion, hepcidin
decreased to normal values. In
iron-depleted subjects, urinary
hepcidin increased after the oral iron
test suggesting that in DIOS patients,
the progression of iron accumulation
is related to the increase in hepcidin
release and progressive reduction of
iron absorption.

[52]
Observational
Case-control
study.

Six men with DIOS
(53 ± 11 years) and
age-matched controls
with normal iron stores
(lean and overweight
subjects).

Administration of a single dose
of a stable iron isotope. Ferritin
and hepcidin were evaluated.

Intestinal absorption of iron was lower
in DIOS compared to controls.
Intestinal absorption of iron was
inversely correlated with plasma
hepcidin and CRP. Overweight
subjects with normal stores of iron
show decreased absorption through
hepcidin upregulation, and in DIOS
subjects, this reduction is more
important due to an extra effect of iron
excess on circulating hepcidin levels.
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Table 1. Cont.

Reference Study Design Sample Evaluations Results

[53]
Observational
Case-control
study.

10 cases with
dysmetabolic
Hyperferritinemia.

Comparison of serum iron levels
and urine hepcidin levels to
healthy controls. Other
evaluations were: glycemia,
creatinine, AST, ALT, lipids, CRP,
SF, and TS.

Patients showed higher serum ferritin
than controls, but the median
transferrin saturation was not
different. Urinary hepcidin was
augmented in dysmetabolic
hyperferritinemia.

BMI: body mass index; ALT: alanine transaminase; AST: aspartate aminotransferase; DIOS: dysmetabolic iron
overload syndrome; 4; CRP: C reactive protein; HbA1C: glycated hemoglobin; HOMA-IR: homeostatic model
assessment for insulin resistance; HH: hemochromatosis; HAMP: Hepcidin antimicrobial peptide; HFD: high-
fat diet; IRP: iron regulatory protein; IL-4: interleukin; IR: insulin resistance; LFDA: lifestyle and diet advice;
MtS: metabolic syndrome; NAFLD: Nonalcoholic fat liver disease; PCR: Poli-chain reaction; SF: Serum ferritin;
TRF1: liver transferrin receptor 1; TS: transferrin saturation.

4. Discussion

The results of the revision are included in Table 1 and discussed at the end of this
section. In addition, we have searched the literature for the survey of key points related to
DIOS that are briefly commented below.

4.1. Ferritin and Hyperferritinemia

Iron is a crucial element for all living systems, essential for oxygen transport in
hemoglobin and cellular energy production and serving as a cofactor or catalyst in several
enzymatic processes. The iron-containing protein ferritin reflects the homeostasis of human
iron storage and iron delivery, which is crucial for the maintenance of the anteriorly
mentioned biological processes [54–57]. Figure 2 summarizes the iron metabolism in the
human body.
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Hyperferritinemia is a condition where excessively high levels of ferritin are observed,
indirectly indicating iron overload, which damages the myocardium, the liver, and several
other tissues, increasing morbidity and mortality (Figure 3). Nevertheless, more than 90%
of hyperferritinemia cases are derived from four major causes: inflammatory conditions,
cytolysis, alcoholism, and MtS. Another critical cause that should be seen separately is
genetic hemochromatosis. The differentiation of these conditions can be performed with
laboratory tests such as hemogram, transferrin saturation, liver function tests, creatinine
phosphokinase (CPK), C reactive protein, glycemia, total cholesterol, and triglycerides.
Immune and autoimmune affections can also possibly cause hyperferritinemia [54,58–62].
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Figure 3. Consequences of hyperferritinemia. Hyperferritinemia and normal or reduced saturation
of transferrin and metabolic syndrome risk factors result in dysmetabolic hyperferritinemia. If the
saturation of transferrin is elevated, the condition is probably hemochromatosis. MtS: metabolic
syndrome, ↓: decrease.

Ferritin seems to play an essential role in angiogenesis, cells proliferation, and im-
munosuppression. Additionally, it can also be considered as an inflammatory acute-phase
protein. Some studies suggested an association between high ferritin levels and chronic dis-
eases, such as CVD and cancer. In CVD, ferritin can lead to a dual pro-inflammatory effect
because high levels can represent an acute phase similar to C reactive protein. Low levels
can also precipitate inflammation and, thus, increase the pro-inflammatory cytokines. These
conditions can be related to CVD progression [54,59,63–65]. Hyperferritinemia has also
been associated with NAFLD/MAFLD and with polycystic ovary syndrome [8,16,66,67].

4.2. Hepcidin

Hepcidin is a peptide hormone released by liver hepatocytes involved in regulating fer-
roportin expression, which is the major iron export protein presented in cells. Hepcidin can
bind to ferroportin, leading to its internalization and degradation, which only reduces iron
export from different vias. This process inhibits cellular iron exportation from macrophages.
Hepcidin also inhibits iron uptake in the gut that, together with inhibition of recycling
iron from macrophages, decreases iron levels in plasma. The axis hepcidin-ferroportin has
a central regulatory role in iron homeostasis. In hereditary hemochromatosis, both the
expression and function of hepcidin are disturbed and lead to increase in ferroportin due
to the low circulating hepcidin levels resulting in augmentation of iron absorption in the
gut and pathological deposition of this element in tissues [29,44,68–70].

Stimulation of hepcidin in the liver reduces ferroportin levels, resulting in the in-
hibition of cellular iron mobilization to the plasma. Acute inflammatory and infectious
conditions may also increase hepcidin expression. Induction of hepcidin resulting from
inflammatory processes possibly interferes with iron metabolism in acute or chronic inflam-
mation disorders. In case of infections, hepcidin induction is associated with sequestration
of intracellular iron, depriving microorganisms of this important factor. In chronic in-
flammation, hepcidin expression is increased principally due to interleukin 6 (IL-6) and
Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) expres-
sions [69,71,72].

A disrupted low synthesis of hepcidin has been associated with NAFLD and could
help the iron uptake and increase predisposition for DIOS. Furthermore, both obesity
and diabetes are related to augmenting hepcidin release. Marmur et al. [44], showed
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that in NAFLD subjects, hepcidin levels in serum and liver correlate to body iron stores.
These authors found no association with body mass index (BMI), lipid parameters, the
degree of steatohepatitis, or C reactive protein. In patients with DIOS and NAFLD, serum
hepcidin levels are close to those observed in other hepatic diseases with iron overload,
except for hereditary hemochromatosis. Authors postulate that an adequate hepcidin
production in NAFLD in comparison to iron stores and the accumulation of iron in DIOS
cannot be explained by a deficiency of hepcidin, differently from what is observed in
hereditary hemochromatosis.

In animal models, the expression of hepcidin is inhibited in insulin resistance con-
ditions. After administration of glucose, levels of hepcidin are elevated as well as in
overweight and patients with NAFLD. The levels of hepcidin are also increased in patients
with DIOS when comparing to obese patients with regular levels of ferritin. Elevated levels
of hepcidin in DIOS may suggest hepcidin resistance [48].

4.3. Metabolic Syndrome

MtS is a cluster of conditions associated with the development of CVD. These factors
may include insulin resistance, low levels of HDL-c, high levels of triglycerides, hyperten-
sion, altered values for waist circumference (WC), and obesity. These factors are associated
with a complex dysregulation of iron homeostasis. Ferritin concentrations in serum increase
with the number of risk factors of the MtS, especially insulin resistance, visceral fat mass,
BMI, and hypertension. For these reasons, high ferritin levels have been related to a higher
risk for the development of DM2 [5,46,60,73–78].

Furthermore, in subjects with morbid obesity, ferritin is strongly associated with IR
and waist circumference. This may indicate that serum ferritin levels are closely related
to important insulin resistance in overweight or obesity patients independent from other
risk factors of the MtS. Particularly, serum ferritin concentrations can indicate severe liver
insulin resistance and a higher risk for progression of relevant clinical hard endpoints such
as cardiovascular death [79–81].

Serum ferritin levels are moderately elevated in MtS, but serum iron and transferrin
saturation are usually normal, although transferrin saturation can be increased in up to
35% of cases. It is estimated that a third of MtS patients suffer from hyperferritinemia,
although with normal transferrin saturation levels. The levels of hepcidin in serum can
also be elevated in MtS [82,83].

An observational study with 1391 subjects (616 men and 775 women) showed that
patients with MtS present significantly higher serum levels of ferritin and hepcidin than
subjects without the syndrome. Iron regulatory feedback is preserved in MtS, and hepcidin
tends to progressively augment in response to the augmented iron stores [84].

Risk factors of the MtS can also be related to inflammatory processes. Regardless of
its cause, acute or chronic inflammation can augment ferritin levels in serum. Transferrin
saturation may decrease or remain normal depending on DIOS parameters in this condi-
tion. In inflammatory processes, several cytokines are released, and especially IL-6 has
a particular role in stimulating the production of ferritin and hepcidin. When there is an
increase in hepcidin levels, iron sequestration in macrophages and enterocytes results in
ferritin synthesis [26,58,80,83].

4.4. Oxidative Stress

OS in the cells is related to a significant imbalance of a plethora of biological signaling
pathways. Reactive oxygen species (ROS) release usually happens via the reduction of
molecular oxygen or due to oxidation of water. In balanced conditions, mitochondria
produce ROS in consequence of aerobic respiration. Three to five percent of the oxygen is
converted to ROS during this process. These molecular events require endogen enzymes
such as superoxide dismutase, catalase, and glutathione peroxidase. When the ROS pro-
duction surpasses the cell’s antioxidant capacity, a disrupted condition (OS) starts and
causes cellular macromolecules damages such as nucleic acids, lipids, and proteins may
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occur. Increased levels of ROS can also accelerate cell apoptosis and necrosis due to the
activation of poly (adenosine diphosphate ribose) polymerase related to the development
of several pathological conditions. On the other hand, ROS are needed in the heart under
basal conditions for regulating myocyte growth, maintaining vascular smooth muscle tone,
and other critical cellular responses. OS is also related to the development of incapacitant
and degenerative conditions, such as neurological and cancer [85–92].

OS is the main reason why iron and IR damage the liver tissue in both animals and
humans. The consequences are related to damage to DNA, lipids, and protein, glutathione
depletion, energy loss, increased release of pro-inflammatory cytokines, fibrogenesis, steato-
sis, and cell death. Iron may also induce liver injury due to its role in the up-regulation
of cholesterol production, stress induction in the endoplasmic reticulum, and activation
of macrophages and stellate cells [8,93,94]. Furthermore, iron is also associated with an
increase in the release of inflammatory cytokines, associated with fibrosis, steatosis, and
hepatocellular carcinoma [8,92,95,96]. Figure 4 shows the correlation between iron overload
and OS leading to increased hepcidin levels.
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Figure 4. Iron overload increases oxidative stress and is related to the increase in hepcidin levels.
Furthermore, oxidative stress is associated with lipidic peroxidation that interferes in insulin secretion
and may lead to insulin resistance (IR), diabetes (DM), fibrogenesis, and endothelial dysfunction.
Iron overload is also associated with hyperinsulinemia and subclinical inflammation. ROS: reactive
oxygen species, MtS: metabolic syndrome, ↑: increase, ↓: decrease.
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The hepatic steatosis seems to result in an environment of the augmented OS, as well as
IR, and necrotic signalization in obese patients leading to hepatic damage [92,97]. DM2 and
fluctuations in glycemia may be related to several micro and macrovascular complications
that may result from OS and inflammatory processes leading to endothelial dysfunction
and aberrant angiogenic capacity. Furthermore, atherosclerosis is a chronic process that
affects large and medium-sized arteries and is also a consequence of OS [93,98–100].

Iron is also now related to a new non-apoptotic form of cells-death, called ferrop-
tosis. This phenomenon is caused mainly by redox imbalance and can occur through
two mechanisms: transporter-dependent (extrinsic) and enzyme-dependent (intrinsic). In
resume, when a cell produces more oxidants than antioxidants, an abnormal presence of
ROS. In iron-overload syndrome, the production of ROS and lipid peroxidation are all
events mediated by iron ions. Extrinsic ferroptosis is caused mainly by elevation of iron
uptake in consequence of decreased cysteine or glutamine uptake. The intrinsic form is
caused principally by inhibition of glutathione peroxidase 4 (GPX4). All these forms lead
in final analyses to the accumulation of ROS and this accumulation to oxidative damage.
Ferroptosis is finished if oxidation reaches the cell membrane. Although ferroptosis is a rel-
atively new concept, it is implicated in various human diseases, such as neurodegenerative
diseases, CVD, infectious, and cancer [57,101,102].

4.5. Dysmetabolic Iron Overload Syndrome

DIOS was defined in the 1990s and shows a close relationship between hepatic
iron overload and features of MtS in subjects without apparent cause of iron overload.
It is more frequent than genetic hemochromatosis, and most patients are middle-aged
males [8,12,13,22,39,41,62,103]. Now that MtS is increasing worldwide, the presence of
DIOS follows this tendency. Figure 5 shows some consequences of iron overload in β-cell,
muscle, and adipocyte.
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Figure 5. Consequences of iron overload in β-cell, muscle, and adipocyte. Iron overload is related to
a decrease in insulin release in β-cells. In muscle, it is associated with decreased glucose disposal
and an increase in the oxidation of free fat acids (FFA). In adipocytes, there is a reduction in glucose
uptake. This scenario contributes to insulin resistance (IR), diabetes mellitus (DM), and cardiovascular
diseases (CVD). ↑: increase, ↓: decrease.

DIOS is usually asymptomatic and can be diagnosed in the investigation of MtS and
steatosis. Ferritin levels in the serum are increased (up to 1000–1200 ng/mL), but iron levels
and transferrin saturation are usually normal. About 50% of the patients present altered
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hepatic biochemical tests (increased levels of γ-glutamyl transpeptidase itself or associated
with increased levels of alanine aminotransferase). The liver may present parenchymal
and mesenchymal iron overload, but the excess of iron is commonly mild. Steatosis
(defined by the accumulation of triglycerides and fatty acids in the liver) or steatohepatitis
was observed in half of the patients. Fibrosis or cirrhosis are observed in about 15% of
patients [16,39,43,104,105].

The mechanisms of occurrence of an iron overload in DIOS are not entirely understood.
Impairment in hepcidin synthesis and an imbalanced regulation of iron export are involved.
The modification of metabolism of iron observed in patients with DIOS may result from a
complex process triggered by the excess of iron in the diet together with environmental and
genetic factors associated with a crosstalk between the hepatic tissue and visceral adipose
tissue [11,12,22,43,48,52,103].

In a rat model of NAFLD, Fujiwara et al. [13] evaluated the role of iron overload. The
animals were treated with a high-fat and high-fructose diet leading to hepatic steatosis,
dyslipidemia and increase in the body weight. Furthermore, they observed increased
hepatic inflammation represented by iron deposition in sinusoidal macrophages/Kupffer
cells, together with nuclear translocation of nuclear factor-κB (NF κB) and increase of
pro-inflammatory cytokines (such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN γ),
and interleukin (IL)-1β) due to the upregulation of TH1/M1.

Studies with dietary iron loading animals showed increased resistin expression and
reduced leptin levels. Increased resistin and decreased leptin levels contribute respectively
to IR and increased appetite. These two conditions together increase the chances of develop-
ing obesity and DM. The metabolism of adipose tissue results in increased resistin, TNF-α,
IFN-γ, interleukins (IL-6, IL-8, and IL-12), free fat acids (FFA), and a decrease in leptin, and
IL-10 levels. This secretory pattern leads to an increase in the inflammatory activity in obese
patients (low-grade inflammation) [106,107] showed that leptin directly interferes with iron
metabolism. These authors showed that leptin levels were lower in leptin-deficient mice
and higher in leptin receptor-deficient when compared with control. These results of this
study suggest that the activation of the leptin receptor has effects on hepcidin expression.
Authors concluded that this inappropriate signaling of this hormone could nearly link
obesity, MtS, CVD, autoimmunity, and cancer. In this sense, iron-mediated OS could also
be contributing to this unfavorable scenario.

The iron metabolism is commonly imbalanced in obese patients in both cellular and
tissue levels. Moreover, adipose tissue plays an essential role in iron regulation. The
presence of obesity may modify macrophage iron content in visceral adipose tissue in the
liver and adipocytes. Furthermore, iron reduces the expression of adiponectin that is related
to improving IR. The level of this adipokine is reduced in MtS subjects and negatively
correlated with serum ferritin levels [8,83,108–110].

Higher ferritin levels are associated with obesity and overweight children and may
be influenced by a liver injury that, associated with hypertrophied adipocytes and low-
grade inflammation, follow the clinical course of overweight and obesity to modify the
circulating markers of iron status. Still, the decreased absorption of iron observed in obesity
can be the consequence of higher hepcidin levels that are also triggered by inflammatory
processes. On the other hand, the levels of serum transferrin and serum iron decreases
during inflammation [83,111–113].

Modifications in iron metabolism (ferritin or serum iron) are also associated with
altered lipid concentration in adults and children [114]. Gonzalez-Dominguez et al. and
Zhu et al. [73,83] showed that dyslipidemic children and adolescents presented lower levels
of serum iron and increased ferritin levels in the obese.

Figure 6 summarizes the effects of increased visceral fat accumulation and oxidative
stress in the pathogenesis of diabetes and cardiovascular diseases.
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Figure 6. Obesity and oxidative stress in the pathogenesis of Diabetes mellitus and cardiovascular
diseases. Increased abdominal adipose tissue is related to the release of pro-inflammatory cytokines
(such as resistin, TNF-α, IFN-γ, IL-6, and IL-8), an increase of free fatty acids, reduction in adiponectin
release and reduction of the anti-inflammatory IL-10). This scenario leads to an imbalance in the
metabolism of glucose in the liver and muscles resulting in insulin resistance and the installation
of an inflammatory scenario related to the development of DM and CVD. Associated with this
scenario is also installed oxidative stress, which in turn is also associated with DM and CVD. CVD:
cardiovascular disease; DM: diabetes mellitus; FFA: free fat acid; PAI-1: inhibitor of plasminogen
activator; INF-γ: interferon-γ; IL: interleukin; IR: insulin resistance; TNFα: tumor necrosis factor-α,
↑: increase, ↓: decrease.

Dongiovanni et al. [109] showed that an iron-enriched diet supplementation aug-
mented hepatic iron and serum hepcidin in mice. An increment of 40% in fasting glu-
cose is related to insulin resistance and increased triglycerides. Supplemented animals
showed decreased visceral adipose tissue mass plus the accumulation of iron in adipocytes.
These animals also showed reduced insulin signaling in the visceral adipose tissue and
up-regulation of iron-responsive genes and adipokines. These conditions led to insulin
resistance, down-regulation of lipoprotein lipase, and hyperresistinemia. Furthermore,
acute administration of hepcidin down-regulated lipoprotein lipase.

In Table 1 it is shown fifteen studies that investigated the presence of DIOS in humans.
These studies are commented below.

Lahaye et al. [39] conducted a case-control study with 60 MtS, DIOS, or healthy
participants to evaluate if MtS or DIOS alters macrophage profiles. The results showed
no differences between the expression of inflammatory genes, but there were differences
between the expression of genes related to iron metabolism between individuals with
MtS and DIOS. Although iron metabolism was altered in these patients, there was an
up regulatory activity of transferrin receptor 1 (TFRC) expression, which is important in
limiting iron toxicity in patients affected by DIOS. A possible bias to this study is the small
number of included patients.
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Vaquero et al. [40] conducted a cross-sectional study with 50 overweight participants
to evaluate if there was a relationship between iron status and biomarkers for insulin
resistance. Although the results showed that in obese/overweight individuals, the iron
transport and the iron storage are altered, these occurred without iron overload or deficiency.
Although this study presented sample calculation, the sample size was small.

In a prospective study, Castiella et al. [41] evaluated 276 participants with hyperfer-
ritinemia (135 with MtS) and found no significant differences in liver iron concentrations
between individuals with hyperferritinemia affected or not by MtS. This study presented a
large sample size, which can be a strength.

Lobbes et al. [42] showed the use of proanthocyanidin does not interfere in iron
absorption both in DIOS or in hemochromatosis (HH) patients. Since this is a cross-over
trial, the authors did not show the characteristics of the subjects included in the study.

In a cross-sectional study, Rauber et al. [43] found that hepcidin can be assessed to
investigate ferritin increases among MtS patients. However, the included individuals were
not evaluated for iron overload-deposit in hepatocytes, limiting the study’s generalizabil-
ity. Nevertheless, these patients were classified for hemochromatosis C282Y and H63D
genes mutations.

Marmur et al. [44] found that hepcidin levels are higher in patients with liver disease,
both DIOS and NAFLD. In this study, the authors indicated 84 individuals in the Methods
section but then presented 85 patients distributed according to the ferritin level. Although
they used a sample of 84 patients in the study, the number of members in each group was
small (n = 5–22).

Stechemesser et al. [46] showed that patients with MtS and high levels of ferritin
present higher values for glycemia and HBA1c than patients without hyperferritinemia.
The individuals in the control group had lower BMI and waist-to-hip ratio than the other
groups, although at a similar age.

Rametta [48] also verified that DIOS patients present higher levels of hepcidin and
even higher transferrin saturation (these patients show an imbalance in hepcidin’s ability to
control iron absorption, suggesting hepcidin resistance). The control group followed in this
study consisted of members with differences concerning patient groups regarding gender
(more women), age (younger), and nutritional status (BMI and lower waist circumference).
Furthermore, there is a reduced number of individuals in each group (n = 10–18) and less
sensitive techniques in the analysis of some study variables, such as iron absorption and
serum hepcidin dosage.

Ruivard et al. [115] showed that ferritin levels are reduced in patients submitted
to venesection, but they did not observe an improvement of the metabolic and hepatic
characteristics after this intervention. Jézéquel et al. [49] also studied patients submitted to
venesection and noted that transferrin levels were lower in DIOS. This study also included
a small number of patients (n = 24), one half of whom presented with DIOS, and the other
was the control group. Furthermore, the authors used statistical methodology to calculate
the sample; however, at the end of the article, they point out the need for studies with
a larger number of individuals. [103] also investigated the effects of the venesection and
found that individuals with high ferritin levels are at risk of iron overload recurrence. These
authors indicated a limitation of the study that many participants have a genetic mutation,
which may interfere with iron reaccumulation.

Dongiovanni et al. [50] found that the levels of hepatic TfR-1 mRNA were upregulated
in subjects with fatty liver and DIOS. In this study, the authors included a small number
of control patients (n = 10) compared to sick individuals (n = 46). The design of the
study presents differences in several important variables, including gender (more men
than women), age (older), and BMI (lowest). However, they did not apply statistical tests
to infer the magnitude of such differences. Limitations were also observed in the study
by [51], who used a control group with healthy individuals significantly younger than
the group with the disease; in addition, the authors did not present or analyze any other
variable to characterize similarities or differences between the groups, such as BMI or
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waist circumference. In this, the authors showed that hepcidin levels are reduced after iron
depletion. A populational study (Nicola Martinelli et al., 2012) showed that hepcidin levels
tend to be as high as the iron stores, despite using a small number of patients.

Ruivard et al. [52] also developed a study to compare intestinal absorption of iron
in men with or without DIOS and concluded that intestinal iron absorption was lower in
DIOS compared to both overweight and lean controls. However, this study did not control
the dietary intake of iron and its absorptive facilitators or inhibitors. For this reason, bias
should be considered in this research.

We can observe from the studies shown in Table 1 that there are significant limitations
to consider. The main ones can be the small sample number in various studies; male
prevalence, which hinders the perception of the disease in women; the presence of genetic
mutations, which may interfere with the evaluated results; no investigation of daily iron
intake; limitations of laboratory techniques for assessing serum or urine hepcidin levels.

Management of DIOS may involve the treatment of overweight, hyperlipidemia,
hypertension, and insulin resistance/diabetes. Although managing these risk factors is
essential, it is not sufficient to normalize body iron stores that usually excess mildly and
average 100 µmol/g [116–118]. Modifications in lifestyle and iron intake are also in the first
line of therapeutic intervention in patients with DIOS [8].

4.6. Future Directions

An increase in the hepatic and body iron stores and the presence of MtS components
characterizes DIOS. Although increasing evidence suggests an overlap between NAFLD
with iron overload and, therefore, DIOS, the pathogenic pathways involved in DIOS
occurrence are still not completely understood. Due to these reasons, soon, not only animal
models sharing similarities with human patients with DIOS must be designed, but also
non-invasive methods for iron overload evaluation in dysmetabolic human patients must
be improved. Furthermore, there is a need to investigate how iron overload overlaps with
NAFLD and causes dysmetabolic changes in the body’s homeostasis [13,62]. Since a mild
to moderate excess of iron in the liver can aggravate the risk of NAFLD progression to
NASH, it is also necessary to unravel the mechanistic events by which pro-inflammatory
cytokines, ROS, OS, and lipid peroxidation can be related to iron overload toxicity [22].

The pathways of how DIOS affects other diseases, such as inflammatory and im-
munomodulated diseases, must also be a field of study. Authors highlighted that in
DIOS, macrophages might present impaired polarization toward the M2 alternative phe-
notype, which is considered an adaptative role of the up-regulation of the TFRC in DIOS
macrophages that may limit iron toxicity during the dysmetabolic process [39]. However,
these events can affect the occurrence and progression of diseases other than DIOS, like
atherosclerosis, arthritis, cardiometabolic affections, and other degenerative conditions. The
relationship between iron status and obesity is another field that must be highlighted [40],
principally because individuals with augmented visceral adiposity and waist circumference
do not necessarily have increased body mass index.

5. Conclusions

DIOS is becoming a relevant finding in the general population and can be associated
with altered function of adipose tissue, immunological cells, inflammation, oxidative stress,
insulin resistance, diabetes, cardiovascular diseases, and cardiovascular risk factors. In this
context, the need to investigate serum ferritin levels and transferrin saturation in clinical
practice in patients with obesity, MtS, MAFLD, and CVD becomes imperative.

Although the findings of DIOS are still heterogeneous, iron overload degrades cell
functions and survival, principally due to ferroptosis. Mostly in MAFLD and NASH,
excessive iron deposition impairs the liver’s function and leads to organ failure due to
toxicity. Because of these reasons, DIOS investigation should be everyday practice in
clinical care.
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