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Abstract: X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading
to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hy-
pophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar
mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy),
all of which lead to decreased quality of life. Many molecular and murine studies have detailed the
role of mineral ions and hormones in regulating complications of XLH, including how they modulate
growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral
matrix resorption and canalicular organization, and enthesopathy development. While these studies
have provided insight into the molecular underpinnings of these skeletal processes, current therapies
available for XLH do not fully prevent or treat these complications. Therefore, further investigations
are needed to determine the molecular pathophysiology underlying the complications of XLH.

Keywords: XLH; rickets; mineralization; growth; growth plate osteocyte; enthesopathy; vitamin D;
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1. Introduction

X-Linked Hypophosphatemia (XLH) is the most common inheritable form of rickets
(1:20,000) caused by an X-linked dominant inactivating mutation of the Phosphate Regulating
Endopeptidase Homolog, X-Linked (PHEX) gene [1–4]. PHEX-inactivating mutations lead to
high circulating levels of fibroblast growth factor 23 (FGF23), which results in hypophos-
phatemia, impaired production of the active form of vitamin D, 1,25 dihydroxyvitamin D3
(1,25D) [5], and a mild elevation in serum parathryoid hormone (PTH) levels. Children
with XLH manifest symptoms by 1–2 years of age, including rickets, bone deformities, and
dental caries, while adults develop osteomalacia, osteoarthritis, and painful mineralizations
of the bone–tendon attachment site (enthesis), which is called enthesopathy [6,7]. Both
affected males and females present with similar biochemical characteristics and as children
do not differ in height [8]. As adults, affected males have been reported as having more
severe complications than females, which is possibly due to the X-chromosome inactiva-
tion seen in females. Affected males have been reported to have increased incidence of
dental abscesses and more severe gait abnormalities and lower limb deformities [8,9]. Over
800 mutations in PHEX along the entire gene have been identified, including missense,
nonsense, splicing, frameshift, and copy-number mutations [7]. These mutations have
complete penetrance, but the disorder can manifest from mild to severe complications even
among those who carry the same mutation in males and females and/or within the same
family, suggesting that additional modifying genes or environmental factors impact the
XLH phenotype. Although mutations in PHEX were identified as causing XLH, the direct
targets of PHEX remain unknown, thus limiting the understanding of the variability in
how complications manifest in those affected with XLH [3,10].
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Mice with XLH (Hyp) carry a loss-of-function mutation within the PHEX gene [11,12],
thus exhibiting a phenotype analogous to human XLH patients, including similar biochem-
ical alterations leading to hypophosphatemic rickets, bone abnormalities, and enthesopa-
thy [11,13,14]. Over the past several decades, many studies using Hyp mice and genetically
altered mouse models have contributed to understanding the molecular and hormonal
regulation of XLH complications, including impaired growth, skeletal mineralization, and
osteocyte lacuno-canalicular remodeling as well as enthesopathy development. While
there are review articles discussing the clinical phenotypes of XLH available, there are
few manuscripts which review the molecular mechanisms underlying XLH comlications.
To assure that the currently available basic and translational studies are included in this
review, a search was performed on PubMed and Google Scholar using terms “XLH”, “Hyp”
and/or the complication under discussion such as “growth”, “growth plate maturation”,
“mineralization”, “biomechanics”, “microarchitecture” or “enthesopathy”.

1.1. Phosphate Regulating Hormones: 1,25 Dihydroxyvitamin D3 (1,25D) and FGF23

Vitamin D3 (cholecalciferol) is synthesized from 7-dehydroxycholesterol in the skin
when exposed to UV-B light. In the liver, cholecalciferol is hydroxylated to form 25-
hydroxyvitamin D3 (25(OH)D), which is the predominant circulating form of vitamin
D. Bound to the vitamin D binding protein, 25(OH)D is transported to the kidney, and
in the proximal renal tubule, 25(OH)D is further hydroxylated to form the biologically
active form of vitamin D, 1,25D, by vitamin D 1-alpha-hydroxylase (CYP27B1) [15,16]. The
biological effects of 1,25D are mediated through the vitamin D receptor (VDR), which
is a nuclear steroid receptor. 1,25D binds to VDR, upon which VDR forms an obligate
heterodimer with retinoic X receptor (RXR) and binds to target genes via two cysteine-rich
zinc finger structures [15,17,18]. 1,25D acts to regulate calcium and phosphate homeostasis
by promoting bone resorption as well as intestinal absorption and renal reabsorption
of calcium and phosphate [15]. 1,25D also acts to decrease parathyroid hormone gene
transcription and parathyroid cell proliferation, thus leading to decreased serum levels of
PTH and increased renal reabsorption of phosphate [19,20].

FGF23 is a ligand hormone synthesized predominantly in osteocytes and osteoblasts to
regulate phosphate homeostasis [21]. FGF23 decreases serum phosphate levels by directly
increasing renal phosphate wasting and indirectly decreasing phosphate gastrointestinal
absorption [22,23]. FGF23 increases phosphate renal excretion by downregulating the
expression of sodium–phosphate co-transporters NPT2a and NPT2c in the renal proximal
tubules [24,25]. This phosphate-regulating hormone also decreases the expression of
CYP27B1 and enhances the expression of CYP24A1, which catabolizes 1,25D, resulting
in decreased serum levels of 1,25D. This decrease in 1,25D synthesis in turn leads to the
suppression of intestinal absorption and renal reabsorption of phosphate [26,27].

1.2. Treatment of XLH

Conventional therapy for XLH patients includes a combination of exogenous 1,25D
(calcitriol) and phosphate supplements. Excessive phosphate supplementation leads to
secondary or tertiary hyperparathyroidism; thus, 1,25D therapy is added to phosphate
supplementation not only to increase serum phosphate levels but to also prevent sec-
ondary/tertiary hyperparathyroidism [6]. Recently, a humanized antibody targeting
FGF23, burosumab (Crysvita), was approved for the treatment of children and adults
with XLH. Burosumab increases and sustains serum phosphate levels in the low–normal
range while maintaining normal serum and urine calcium and serum PTH levels [28–30].
Although one of the advantages of burosumab is its ability to block FGF23-specific actions
in addition to improving phosphate homeostasis, it is not able to sustain increased serum
1,25D levels during long-term treatment [28,31,32]. Clinical trials have demonstrated that
burosumab significantly improves rachitic growth plate changes and mildly improves
growth compared to traditional supplementation treatment [32]. In adults with XLH, buro-
sumab improved pseudofracture healing, decreased osteomalacia, and improved quality



Endocrines 2023, 4 153

of life [28,33]. Data on the effects of burosumab on chronic complications of XLH like
enthesopathy and osteoarthritis are unknown.

2. Impairment of Growth and Growth Plate Maturation
2.1. Growth in XLH

Individuals with XLH exhibit short stature and disproportionate growth characterized
by a longer torso and shorter long bones [34,35]. The rickets observed in XLH is associated
with delayed ambulation, deformities of the weight-bearing lower limbs (varus or valgus
deformities), and waddling gait [36]. Pediatric patients with XLH demonstrate normal
length/height at birth, but growth velocity decreases during infancy/early childhood by
one year of age and then progressively decelerates to a nadir in early childhood and remains
abnormally low thereafter [37–39]. The final height of adults with XLH is significantly
shorter than unaffected individuals, where affected adults have an average z score of
−1.9 [34].

Growth plate abnormalities are evident in rapidly growing long bones of children
affected with XLH, including the distal femur, radius and ulna and proximal and distal
tibia, and distal radius and ulna. Radiographs of long bones demonstrate widened growth
plates with irregular metaphyseal margins. There may also be fraying and/or cupping
of the metaphyses. The degree of growth retardation correlates with the severity of the
growth plate abnormalities [40].

2.2. Growth Plate Abnormalities in XLH

Growth plate maturation is essential to longitudinal bone growth. During this process,
proliferative chondrocytes differentiate into prehypertrophic chondrocytes and then finally
hypertrophic chondrocytes [41]. Hypertrophic chondrocytes are characterized by the ex-
pression of type X collagen and a widespread increase in cell volume. They promote the
vascularization of the cartilage template by secreting molecules such as vascular endothe-
lial growth factor (VEGF), mineralization of the adjacent skeletal matrix, and osteoblast
differentiation from nearby perichondrial cells [42]. Upon terminal differentiation, hyper-
trophic chondrocytes undergo apoptosis, allowing for osteoblasts to invade and promote
mineralization of the primary spongiosa [43].

Like those affected with XLH, mice with XLH (Hyp) also exhibit a smaller size and
weight, with decreased spine and long bone lengths [44]. The growth plates in Hyp mice
are characterized by the impaired apoptosis of hypertrophic chondrocytes, leading to an
expansion of the hypertrophic chondrocyte layer [45]. The height of the proliferative layer
in Hyp mice remains normal. In unaffected individuals, chondrocytes in growth plates are
organized in columns distributed in parallel, while growth plates in those affected with
XLH are disorganized with a lack of columnar organization of hypertrophic chondrocytes,
which are also unpolarized and abnormally oriented. The hypertrophic chondrocyte
abnormalities lead to aberrant vascularization of chondro-osseous tissue and impaired
mineralization of the primary spongiosa [46,47].

2.3. Molecular Mechanisms of Impaired Growth in XLH

Investigations into the pathophysiology of the growth plate abnormalities of XLH
have demonstrated that hypophosphatemia leads to the impaired apoptosis of terminally
differentiated hypertrophic chondrocytes, resulting in the expansion of the hypertrophic
chondrocyte layer of the growth plate [45,48–50]. Normalization of serum calcium and
phosphate levels in mice lacing the vitamin D receptor (VDR) prevented rickets, while Hyp
mice and mice fed a low-phosphate diet (both of which have low serum phosphate) continue
to have expansion of the hypertrophic chondrocyte layer and impaired hypertrophic
chondrocyte apoptosis. Hypophosphatemia is present in all of these murine models of
rickets, demonstrating that phosphate is critical for normal growth plate maturation and
hypertrophic chondrocyte apoptosis [45].
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In vitro and in vivo studies also showed that phosphate-mediated hypertrophic chon-
drocyte apoptosis is dependent on induction of ERK1/2 signaling and activation of the
mitochondrial pro-apoptosis caspase pathway [45,51]. Inhibition of the ERK1/2 signaling
by treatment with MEK inhibitors suppresses the phosphate-induced apoptosis of hyper-
trophic chondrocytes in vitro and in vivo [51]. These observations point toward a critical
role of phosphate in the induction of ERK1/2 phosphorylation in hypertrophic chondrocyte
apoptosis and growth plate maturation.

Raf kinases, including A-, B-, and C-Raf, activate MEK/ERK signaling. Prolifera-
tive chondrocytes primarily express A-Raf and B-Raf, where the ablation of either Raf
isoform does not alter normal growth plate maturation [52]. Hypertrophic chondrocytes
predominantly express C-Raf [53], where the deletion of C-Raf in chondrocytes leads to an
expansion of the hypertrophic layer of the growth plate with an impaired induction of p-
ERK1/2, hypertrophic chondrocyte apoptosis, and vascular invasion at the chondroosseous
junction [54]. In cultured primary hypertrophic chondrocytes, the deletion of C-Raf alone is
not sufficient to impair phosphate-induced ERK1/2 phosphorylation [55]. However, the ab-
lation of all three Raf isoforms in primary chondrocytes led to impaired phosphate-induced
p-ERK1/2 in vitro. Corresponding with this, the deletion of all three Raf isoforms in the
chondrocytes of mice leads to a significant expansion of the hypertrophic chondrocyte layer
accompanied by impairment of hypertrophic chondrocyte apoptosis, caspase activation,
and vascular invasion [55]. These studies highlight the essential and partial redundant roles
of the Raf kinase isoforms in phosphate-induced ERK1/2 phosphorylation in hypertrophic
chondrocytes and growth plate maturation.

In the growth plate, periarticular chondrocytes secrete parathyroid hormone-related
peptide (PTHrP), which acts through the PTH/PTHrP receptor (PPR) on proliferating chon-
drocytes to stimulate their proliferation and inhibit their differentiation [41,56,57]. Studies
demonstrated that the impaired chondrocyte differentiation and decreased p-ERK1/2 ob-
served in the chondrocytes of embryonic murine metatarsal treated with low phosphate
media requires PTHrP action [58]. Furthermore, mice haploinsufficient for PTHrP fed a
low-phosphate diet did not have an expansion of the hypertrophic chondrocyte layer and
decreased p-ERK1/2 and hypertrophic chondrocyte apoptosis as seen in WT mice fed a low-
phosphate diet [58]. These studies indicate that PTHrP action contributes to the impaired
chondrocyte differentiation and growth plate abnormalities seen with hypophosphatemia
and thus in mice and humans with XLH. In vitro studies in primary murine hypertrophic
chondrocytes showed that PTH pretreatment impairs mitochondrial phosphate-induced
ERK1/2 phosphorylation and the subcellular redistribution of apoptosis-regulating pro-
teins p-BAD and BAD, supporting the hypothesis that PTH action impairs hypertrophic
chondrocyte apoptosis [58]. Periarticular chondrocytes in Hyp long bones have an in-
creased expression of PTHrP, and phosphate restriction increases PTHrP expression in
murine metatarsals [44,51]; therefore, the results of this study indicate that the enhanced
PTHrP action in Hyp mice likely plays a pathogenic role in the impaired hypertrophic
chondrocyte apoptosis seen in growth plates of mice and humans with XLH.

In addition to PTHrP, 1,25D has also been shown to play a role in the growth plate
abnormalities of Hyp mice. Deletion of the sodium-dependent phosphate transporter 2a
(NPT2a), which enables phosphate resorption in the renal proximal tubules, in mice leads
to hypophosphatemia, which in turn results in suppressed PTH levels and high serum
1,25D levels with hypercalcemia [59]. In contrast to Hyp mice, NPT2aKO mice develop
an expansion of the hypertrophic chondrocyte layer of the growth plate at 2 weeks of
age, where this growth plate expansion normalizes by 5 weeks of age despite persistent
hypophosphatemia [50]. This improvement in growth plate maturation corresponds with
increased serum levels of 1,25D. Ablation of the vitamin D receptor (VDR) in NPT2aKO mice
resulted in persistent expansion of the hypertrophic chondrocyte layer, thus demonstrating
that enhanced 1,25D action can compensate for hypophosphatemia during growth plate
maturation and prevent rickets [50]. In further support for a role for 1,25D actions in growth
plate maturation, the treatment of primary murine hypertrophic chondrocytes with 1,25D
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further enhanced phosphate-induced pERK1/2, indicating 1,25D and phosphate play roles
in enabling hypertrophic chondrocyte apoptosis. The results of these studies imply that the
impaired 1,25D action due to high circulating levels of FGF23 in Hyp mice combined with
hypophosphatemia contribute to the impaired growth observed in these mice.

Treating Hyp mice with daily 1,25D or an anti-FGF23 blocking antibody (FGF23Ab)
starting Day 2 of post-natal life in the absence of phosphate supplementation significantly
increases serum phosphate, normalizes serum PTH levels, while maintaining normocal-
cemia [44]. Both 1,25D and FGF23Ab therapies improved growth (measured by weight,
femur length, and vertebral length) and growth plate morphology, restoring the colum-
nar organization of growth plate chondrocytes and improving metaphyseal organization.
Treated growth plates had decreased expansion of the hypertrophic chondrocyte layer
and increased apoptosis of hypertrophic chondrocytes. While both 1,25D and FGF23Ab
improved serum phosphate levels to similar levels, the treatment of Hyp mice with 1,25D
alone improved growth and growth plate morphology more than FGF23Ab, implicat-
ing the direct beneficial effects of 1,25D on growth and growth plate maturation in XLH,
independent of its role in regulating phosphate homeostasis [44].

The importance of 1,25D action on growth and optimizing 1,25D action in XLH
therapy were further corroborated by the study showing that treatment Hyp mice with the
potent active vitamin D3 analog, eldecalcitol (1α,25-dihydroxy-2β-(3-hydroxypropyloxy)
vitamin D3; ED71) without phosphate supplementation improved hypophosphatemia,
growth, and growth plate structure [60]. Jehan et al. (2008) reported that the variation in
growth observed in XLH patients may be linked to different vitamin D receptor promoter
haplotypes, providing a possible explanation for some of the clinical variability observed in
XLH and also supporting the importance of 1,25D action in growth [61]. In human studies,
it was reported that adults who started phosphate and 1,25D therapy in infancy (prior to 1
year old) had better growth and radiographic rickets scores compared to those with XLH
who were started on therapy after 1 year of age, despite both cohorts having the same level
of hypophosphatemia [62,63]. Thus, like the results of murine studies discussed above,
these clinical data underscore the importance of optimizing mineral ion and hormone
homeostasis starting early in childhood.

3. Skeletal Mineralization, Microarchitecture, and Biomechanics in XLH

Mice and humans with XLH have poorly mineralized bones. Histomorphometric
analyses show that both Hyp cortical and trabecular bone have a significant increase in
osteoid volume with dramatically impaired bone formation rate and mineralization ap-
position rate [64]. Micro-CT analyses demonstrate that Hyp femurs have significantly
decreased whole distal femur bone volume fraction (BV/TV) and impaired cortical mi-
croarchitecture, including decreased cortical thickness (Ct.Th) and cortical area fraction
(Ct.Ar/Tt.Ar) as well as increased cortical porosity [44]. Moreover, Hyp femurs have an
increase in circumference with increased total cross-sectional area (Tt.Ar) and medullary
area (Ma.Ar) compared to WT [65]. Trabecular microarchitecture is also severely abnormal,
with Hyp femurs having significantly reduced trabecular bone volume fraction (BV/TV),
which is associated with decreased trabecular number (Tb.N) and increased trabecular
spacing (Tb.Sp) [65]. Consistent with the micro-CT analyses, histomorphometric analyses
demonstrate that Hyp femurs have very few trabeculae. Interestingly, mice lacking the
sodium phosphate transporter 2a (NPT2a), which have hypophosphatemia, low serum
FGF23 levels, and high 1,25D levels, have mild abnormalities in cortical microarchitecture
but severe compromise in trabecular structure. Like Hyp bones, NPT2aKO bones have
decreased trabecular BV/TV and increased trabecular spacing, suggesting that phosphate
may play an important role in regulating trabecular structure. Micro-CT evaluation of
inferred biomechanical parameters showed a significant decrease in polar moments of
inertia (pMOI), Imin, and Imax) in Hyp bones. Consistent with this and the dramatically
impaired skeletal mineralization, biomechanical testing demonstrated that Hyp femurs
have increased elasticity with extremely decreased strength and toughness [44].
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Studies have reported the beneficial effects of improving mineral ion and hormone
homeostasis on mineralization, microarchitecture, and biomechanics in Hyp mice [44,66].
Early studies reported that infusing Hyp mice with increasing doses of 1,25D alone corre-
lated with dose-dependent increases in mineral ash weight and improvement in osteoid
volume as assessed by histomorphometry [67]. Likewise, treatment of Hyp mice with two
different doses of antibodies targeting FGF23 from Kyowa Hakko Kirin, with both doses
similarly increasing serum 1,25D levels, also resulted in improved skeletal mineralization,
as measured by mineral ash weight [14]. Blocking FGF23 action in Hyp mice with a small
molecule inhibitor also improved bone density and cortical thickness in a dose-dependent
manner [68]. Another study reported that treating with daily 1,25D or an antibody targeting
FGF23 (FGF23Ab, Amgen), which both similarly increased serum phosphate levels while
normalizing serum PTH levels and maintaining normocalemia, significantly improved, but
did not normalize, skeletal microarchitecture and biomechanical properties [44]. Although
histomorphometric analyses demonstrated that 1,25D and FGF23Ab significantly improved
osteoid volume and micro-CT analyses showed that distal whole femur BV/TV was im-
proved, the increase in mineralized bone is largely localized to the secondary and primary
ossification centers. 1,25D is also superior to FGF23Ab in improving trabecular structure,
indicating a role for 1,25D in regulating trabecular organization. Similar to the results in
this study, high-dose vitamin D3 treatment of Hyp mice also improved trabecular micro-CT
parameters more than cortical microarchitecture, despite treated mice having persistent
hypophosphatemia, thus underscoring the importance of vitamin D action in modulating
trabecular mineralization and structure [66]. Moreover, studies have suggested that the
inability of optimized 1,25D or FGF23Ab therapies to normalize skeletal mineralization indi-
cate an intrinsic defect in the osteoblasts of Hyp mice even though Hyp bones have normal
osteoblast surface (ObS/BS) as quantitated by histomorphometric analyses [44]. In support
of this, Hyp bone nodules transplanted into wild-type mice continue to form osteoid and
1,25D is not able to stimulate an increase in alkaline phosphatase expression in osteoblasts
isolated from Hyp bones despite normal phosphate levels in vitro [69,70]. Furthermore, the
treatment of Hyp mice with antibodies blocking sclerostin, an inhibitor of bone formation,
only modestly improved skeletal microarchitecture despite the normalization of serum
phosphate levels [71].

The effects of 1,25D versus FGF23Ab monotherapies on dentoalveolar mineralization
in Hyp mice has also been reported [72]. 1,25D increased both crown dentin volume and
thickness and root dentin/cementum volume, while FGF23Ab only improved crown dentin
volume. Additionally, 1,25D increased alveolar bone mineral density, bone volume fraction,
and tissue mineral density in Hyp mice, whereas FGF23Ab did not affect these parameters.
Both therapies improved but did not normalize predentin and cementum thickness and
periodontal ligament organization [72]. Thus, the study showed that 1,25D and FGF23Ab
therapies only partially improve dentoalveolar mineralization, suggesting that molecular
factors independent of 1,25D or FGF23 such as those specifically modulated by PHEX may
regulate dentoalveolar mineralization.

Although trials examining the effects of burosumab on pediatric and adults with XLH
were not powered to specifically examine how burosumab impacts the development of
dental complications in patients with XLH, they reported that both treated children and
adults continued to develop dental abscesses despite burosumab therapy. In a phase III
randomized control trial examining children age 1–12 treated with burosumab or conven-
tional therapy for 64 weeks, children treated with burosumab had an increased incidence of
dental caries compared with children treated with conventional therapy [32]. In a post hoc
analysis, it was reported that while children younger than age 5 treated with burosumab
had decreased dental abscesses compared with those treated with conventional therapy,
children older than 5 treated with burosumab continued to develop dental abscesses while
those older than 5 years treated with conventional therapy did not develop dental ab-
scesses [73]. In contrast to these data, Gadion et al. examined a cohort of children with
XLH younger than 18 treated with burosumab for one year and reported that there was
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a decrease in incidence in dental abcesses in children treated with burosumab compared
with those treated with conventional therapy [74]. Moreover, adults affected with XLH
who were treated with burosumab for 24 weeks in a phase III trial also had an increase
in incidence of dental caries compared with adults treated with placebo [28]. All in all,
the data currently available suggest that burosumab may not necessarily be protective of
dental complications in those affected with XLH.

Although the mechanisms underlying the defective skeletal mineralization in XLH is
not completely understood, studies have supported roles for the mineralization inhibitors
pyrophosphate (PPi) and proteins of the SIBLING family (small integrin-binding ligand N-
linked glycosylated proteins) which contain the ASARM motif (acidic serine- and aspartic
acid-rich motif) in modulating the impaired mineralization seen in mice and patients
with XLH. Murali et al. showed that PPi levels are enhanced in Hyp bones and Hyp
osteocytes have decreased expression of tissue nonspecific alkaline phosphatase (Tnap),
which normally cleaves PPi [75]. Both inhibition of FGF23 action in Hyp mice by treatment
with anti-FGF23 blocking antibodies or deletion of FGF23 in Hyp bones improved Tnap
expression in Hyp osteocytes, indicating that FGF23 regulates osteocytic Tnap expression.
Spatial metabolomics studies have also demonstrated that there is an upregulation in the
expression of molecules that regulate the production of PPi, including those that modulate
the extracellular production of PPi and the intracellular release of PPi in Hyp cortical
bone [76]. Thus, these studies suggest that increased levels of the mineralization inhibitor
PPi in Hyp bones contribute to the decreased mineralization observed [75,76].

The expression of mineralization inhibitor ASARM peptides (MEPE) and osteopontin
is upregulated in Hyp bones, with osteopontin expression also increased in the alveolar
bone of Hyp mice [72,77]. Addison et al. reported that that the phosphorylation of ASARM
peptides is required for the inhibition of mineralization [77]. PHEX prevented the p-
ASARM-mediated inhibition of osteoblast culture mineralization, with p-ASARM acting as
a substrate for PHEX cleavage, thus showing that ASARM peptides play a role in the poor
skeletal mineralization seen in XLH. Phosphorylated osteopontin, a member of the SIBLING
ASARM peptide family of proteins, was also shown to inhibit in vitro mineralization and be
a substrate for cleavage by PHEX [78]. The deletion of osteoponin in Hyp mice moderately
improved trabecular mineralization as assessed by osteoid volume, von Kossa staining,
and micro-CT analyses, indicating that molecules in addition to osteopontin contribute to
the osteomalacia seen in XLH [79].

4. Osteocyte Perilacunar and Canalicular Organization
4.1. Osteocytes

Osteocytes are the most abundant bone cell in the skeleton [80]. These bone cells not
only act as mechanosensors for the skeleton [81,82], they also secrete sclerostin, which
binds to low-density lipoprotein receptor-related protein (Lrp)5/6 in order to antagonize
Wnt signaling and block bone formation [83]. Osteocytes also serve as endocrine cells by
secreting FGF23 to regulate phosphate and 1,25D homeostasis [84].

Throughout the calcified bone matrix, osteocytes are embedded in cave-like structures
called lacunae (15–20 µm) and are interconnected by long dendritic cell extensions termed
canaliculi (approximately 250–300 nm in diameter) [85]. The lacunae, together with the
canaliculi, form the lacuno-canalicular network (LCN). The interstitial fluid flows through
the canaliculi in response to the bone matrix deformations resulting from mechanical
loads on the bone [86]. The interconnected canaliculi and the gap junctions allow for
communication with neighboring osteocytes and other adjacent cells by carrying oxygen,
nutrients, and small molecules [87]. Thus, this network is essential in maintaining bone
quality [88].

4.2. Osteocyte LCN Remodeling

Qing et al. demonstrated that osteocytes, like osteoclasts, can also remodel the min-
eralized extracellular matrix in a process called perilacunar remodeling [89]. This study
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reported that lactating mice have increase lacunar size, suggesting that the increased de-
mand for calcium during lactation leads to enhanced perilacunar matrix resorption. Gene
array and gene expression analysis demonstrated that osteocytes from lactating mice, as
compared to those from virgin mice, have an increased expression of genes traditionally
expressed by osteoclasts to enable bone resorption, including Tartrate Resistant Acid Phos-
phatase (TRAP), cathepsin K (CTSK), ATPase H+ transporting V0 subunit D2 (ATP6v0d2),
ATPase H+ transporting V1 subunit G1 (ATP6v1g1), carbonic anhydrase (CAR) 1 and 2, and
Na+/H+ exchanger domain containing 2 (NHDEC2). Corresponding with the restoration
of lacunar size and the decrease in calcium demand during post-weaning, the expression of
these matrix resorption genes returned to virgin levels after lactation stopped [89]. Deletion
of the PTH receptor (PTHR1) in mice prevented the increase in lacunar size and enhanced
osteocyte staining for TRAP and cathepsin K during lactation [89]. Consistent with this,
enlarged osteocyte lacunae were observed in rats treated with PTHrP [90]. These studies
support a role for PTH/PTHrP in regulating osteocyte LCN remodeling.

Metalloproteinases (MMPs) are important for canalicular network organization. Met-
alloproteinase 13 (MMP13: a bone matrix protein that cleaves type I collagen and maintains
bone quality), membrane type 1-matrix metalloproteinase 1 (MT1-MMP), and metallo-
proteinase 2 (MMP2) are required for normal osteocyte canalicular network structure,
suggesting that MMP-mediated extracellular matrix degradation is required for canalic-
ular network formation [91–93]. Moreover, bones from Col1a1r/r mice, which express a
mutant type 1 collagen that is unable to be cleaved by MMPs, have impaired canalicular
structure [93].

4.3. Regulation of Osteocyte LCN Organization in Hyp Mice

It has long been shown that there are perilacunar halos of osteoid in the bones of Hyp
mice [94]. More recently, it was reported that Hyp bones also have decreased osteocyte
number and increased osteocyte apoptosis, corresponding with dramatically impaired
whole-bone biomechanics [44]. The calvaria and tibiae of Hyp mice have enlarged lacunae
and impaired canalicular organization, with Hyp bones being characterized by very sparse
and few canaliculi with decreased canalicular branching and connectivity compared to
WT control (Figure 1) [88]. Similar to lactating mice, the enlarged lacunae in Hyp mice are
associated with the enhanced expression of LCN regulating genes such as CTSK, TRAP, and
MMP13 [88]. The administration of daily 1,25D or the FGF23Ab to Hyp mice suppresses
osteocyte cell death, restores lacunar size, and improves canalicular morphology. 1,25D
treatment of Hyp mice normalizes osteocyte expression of MMP13 and classic osteoclast
markers, while FGF23Ab decreases the expression of MMP13 and selected osteoclast
markers [88]. These data supported roles for phosphate or 1,25D in regulating perilacunar
and canalicular remodeling [88].

The role of 1,25D in maintaining LCN morphology Is corroborated by the increased os-
teocyte lacunar volume [95] and poor canalicular structure [96] seen in vitamin D-deficient
human cortical bone as compared to vitamin D sufficient controls. Moreover, mice deficient
in vitamin D receptor (VDR) fed with a normal diet have larger lacunar areas than WT.
However, bones from vitamin D-deficient human and murine models are characterized by
osteomalacia; therefore, it is not clear whether the LCN abnormalities are due to impaired
mineralization or decreased 1,25D signaling.

In order to study the role of 1,25D in regulating osteocyte-mediated perilacunar
remodeling and canalicular organization, LCN organization was analyzed in bones from
mice lacking the VDR in osteocytes (VDRf/f;DMP1Cre+) [65]. These mice demonstrate normal
serum mineral ion and hormone levels and also have normal skeletal microarchitecture,
thus allowing for the determination of 1,25D-specific effects on LCN remodeling. Mice
null for sodium phosphate transporter 2a (NPT2aKO) have hypophosphatemia and high
serum 1,25D levels with low FGF23 levels [50]; therefore, LCN remodeling was analyzed in
the mice to determine if a physiological increase in 1,25D can compensate for low serum
phosphate in regulating LCN remodeling [65] (Figure 1). No significant alterations in



Endocrines 2023, 4 159

cortical microarchitecture were observed in NPT2aKO, with bones from these mice having
a mild decrease in cortical thickness and tissue mineral density. Like Hyp mice, tibial and
calvarial osteocytes from VDRf/f;DMP1Cre+ and NPT2aKO mice have enlarged osteocyte
lacunae and impaired canalicular organization compared to respective controls. In addition,
like Hyp osteocytes, the osteocytes isolated from tibiae in VDRf/f;DMP1Cre+ and NPT2aKO
mice have enhanced expression of osteoclast expressed matrix resorption genes (Ctsk,
Acp5, Atp6v0d2, Nhedc2). The treatment of Ocy454 osteocytes with 1,25D or phosphate
inhibits the expression of these genes, demonstrating that 1,25D and phosphate each act
directly on osteocytes to regulate the expression of LCN-regulating genes. Taken together,
these studies show that 1,25D acts directly on osteocytes to modulate LCN organization.
They also demonstrate that the high 1,25D levels in NPT2aKO mice cannot compensate
for the low serum phosphate levels in modulating LCN organization, suggesting that
hypophosphatemia plays a role in regulating LCN remodeling. It implies that the low-
phosphate state stimulates osteocyte lacunar matrix resorption in order to help maintain
phosphate homeostasis [65].
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Figure 1. Decreased 1,25D action and hypophosphatemia contribute to the impaired lacuno-
canalicular (LCN) organization seen in XLH: (A) H&E stain of post-natal day (P) 30 tibiae and
P75 calvariae from wild-type (WT) and Hyp mice and mice lacking the vitamin D receptor in os-
teocytes (VDRf/f;DMP1Cre+) and mice lacking the sodium phosphate transporter 2a (NPT2aKO) with
histomorphometric quantitation of the lacunar area per osteocyte (Lac.Ar/Ocyt). (B) Silver stain of
P75 tibial canaliculi and phalloidin labeling of P30 calvarial canaliculi with number of canaliculi/ocyt
(No. canaliculi/ocyt). Like Hyp mice, VDRf/f;DMP1Cre+ and NPT2aKO mice have enlarged osteocyte
lacunae and abnormal canalicular structure in both tibia and calvariae, indicating that the impaired
1,25D and phosphate actions in Hyp mice underlie the abnormal LCN structure seen in XLH. All
data shown were previously published [65]. * = p < 0.05 vs. WT, # = p < 0.05 vs. Hyp, a = p < 0.05 vs.
VDRf/f;DMP1Cre−. The figure is modified from Yuan et al. [65] and there are no issues with copyright.
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5. Enthesopathy
5.1. The Enthesis

The region where the tendon inserts into bone, known as the enthesis, is a specialized
tissue that is critical for joint movement [97]. The enthesis allows for the transmission of
contractile forces from muscle to bone [98,99]. Fibrocartilaginous entheses attach to bone
via a transitionary layer of fibrocartilage [100] and consist of four different zones: the bony
eminence, mineralized fibrocartilage, unmineralized fibrocartilage and tendon [100,101].
This region has a characteristic gradation in mineral concentration and collagen orien-
tation [102,103]. There is a linear increase in mineral volume fraction between tendon
and bone as well as a decrease in the alignment of collagen fibers between tendon and
bone [103].

Scleraxis (Scx) is a bHLH transcription factor that is a marker for tendon and ligament
progenitors [104]. The deletion of scleraxis in cells expressing Prx1 (limb progenitor cells)
resulted in abnormal morphology, impaired biomechanical properties, and disorganized
collagen fiber orientation in supraspinatus entheses [104], thus demonstrating that Scx
is necessary for normal enthesis organization. In addition, regulators of chondrogenesis
including bone morphogenic proteins (BMPs) and Sox9 have been implicated in enthesis
development [13,105,106]. When BMP4 is deleted in Scx-expressing cells, formation of the
bony ridge onto which the deltoid tendon inserts into is impaired [106]. SOX9, a BMP
target gene, is necessary for chondrogenesis and is expressed in chondroprogenitor cells
as well as in enthesis cells [13,107] and in the bony eminences onto which the entheses
insert [108,109]. Lineage tracing studies demonstrated that enthesis cells are descendants
of both Scx+ and Sox9+ progenitor cells [13,110]. When SOX9 was deleted in Scx+ cells,
enthesis development and organization were compromised [107], indicating that Sox9
plays a role in enthesis formation [109].

Other regulators of chondrogenesis including Parathyroid hormone related protein
(PTHrP), Indian Hedgehog (IHH), and the IHH receptor, Patched (PTCH), are also ex-
pressed in entheses [105,111]. Gli1, a transcriptional effector and target of IHH, also plays
a role in enthesis development [112]. Enthesis cells are descendants of Gli1 expressing
progenitor cells, and the deletion of Gli1+ cells in entheses resulted in a loss of enthesis
fibrocartilage organization [112].

5.2. Enthesopathy in XLH

Enthesopathy is an abnormal mineralization of the tendon–bone insertion, which
results in pain, impaired movement, and altered gait. This complication is observed in
a majority of adults affected with XLH [113] and can lead to a significant impairment of
quality of life [113–115]. In a survey of 39 patients with XLH, 49% of patients exhibited
enthesopathy at the pelvis, 56% at the knees, 74% at the ankles, and 41% at the spine [113].
A survey of 114 adult XLH patients attending a specialized center, with an average age
of 42 years, found that age and severe dental disease were associated with enthesopathy,
and 67% of participants had at least one enthesopathy site at the spine or pelvis [116].
Those affected with XLH enthesopathy often express concern for fear of falling, needing
assist devices for walking, and lacking credence from their health-care providers [115]. The
chronic pain XLH patients suffer can impact their social activity and choice of career [115].

The conventional treatment of XLH consists of daily doses of oral phosphate and active
vitamin D analogss such as calcitriol [62,114]. While there are limited clinical data examin-
ing the effects of conventional therapy on XLH enthesopathy development, Gjorup et al.
demonstrated that those affected with XLH who were treated consistently with conven-
tional therapy during childhood had a decreased incidence of vertebral enthesopathy
compared to XLH patients who received intermittent or no therapy as a child [117]. In addi-
tion, a retrospective study on adult XLH subjects showed that adults without enthesopathy
had a higher percent of subjects who were treated as a child with conventional therapy
than adults with enthesopathy [116]. On the other hand, an observational cross-sectional
study of adult XLH patients found no relationship between proportion of adult life treated
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with conventional therapy and number of enthesopathy sites; however, age, BMI and sex
were found to be predictors of the number of enthesopathy sites [118]. This study did not
address the dose of treatment or severity of enthesopathy [118].

5.3. Molecular Pathogenesis of XLH Enthesopathy

The molecular regulation of enthesopathy development in XLH is poorly under-
stood. The Hyp mouse model of the XLH mutation has been used to investigate the
pathogenesis of enthesopathy [113]. Achilles entheses in Hyp mice demonstrate an ex-
pansion of hypertrophic-appearing chondrogenic cells that are positive for Safranin O
(SafO, stain for cartilage proteoglycans) and alkaline phosphatase activity (ALP, marker
of mineralization) [13,113,116]. Lineage-tracing studies showed that post-natal enthesis
cells of both wild-type and Hyp mice originate from Scx and Sox9-expressing progeni-
tors [13], with Hyp entheses having an expansion of SafO/ALP+ cells that express Sox9 by
P14 [13]. Corresponding with the chondrogenic characteristics of the enthesopathy cells,
the hypertrophic-appearing cells in Hyp entheses also demonstrate an increased expression
of BMP signaling marker p-Smad 1/5/8, BMP signaling target IHH, and IHH signaling
targets PTCH and Runx2 by P14 [13]. These data support a pathogenic role for BMP/IHH
signaling in XLH enthesopathy development.

Achilles entheses from Hyp mice treated with either daily 1,25D or an anti-FGF23
targeting antibody, both of which increase 1,25D action, starting P2 (prior to enthesopa-
thy development in Hyp mice) attenuated enthesopathy development, with treated Hyp
entheses having a decreased expansion of SafO/ALP+ cells and decreased BMP/IHH
signaling compared to untreated Hyp entheses (Figure 2) [13]. In contrast, treatment of
Hyp mice with phosphate and calcitriol starting P30 (after enthesopathy has developed)
did not attenuate the expansion of ALP+ cells observed in Hyp entheses [119]. Likewise,
Cauliez et al. treated Hyp mice with combination phosphate and calcitriol therapy start-
ing P2 or P30, showing that Hyp enthesopathy, as assessed by ALP activity, is partially
prevented with early therapy but not altered with therapy starting in mature entheses
at P30 [120]. Taken together with the clinical data available, these studies suggest that
enthesopathy development may be attenuated with early and consistent therapy, but it
may not be modifiable once it has developed. Since both 1,25D and the FGF23Ab prevent
Hyp enthesopathy, increased circulating FGF23, leading to impaired 1,25D action, may play
a role in enthesopathy development and the increase in BMP/IHH signaling observed in
entheses. In support of this, mice that overexpress FGF23 develop a similar enthesopathy
as observed in Hyp mice [119].
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Figure 2. Treatment of Hyp mice with 1,25D or FGF23Ab starting early post-natally (P2) prevents
enthesopathy: Hyp mice were treated with daily 1,25D or FGF23Ab 3x per week from post-natal
day (P) 2 to P30 and Achilles entheses harvested. Hyp enthesopathy is characterized by increased
bone morphogenic protein (BMP) and Indian hedgehog (IHH) signaling and alkaline phosphatase
(ALP) activity in Achilles entheses, where either 1,25D or FGF23Ab treatment of Hyp mice is able
to prevent development of enthesopathy. (A) Safranin O (SafO) stain, immunohistochemistry (IHC)
for BMP marker pSmad1/5/8 and IHH signaling target Runx2 (B) quantification of % positive cells
(C) ALP activity of entheses from P30 WT, control Hyp, and Hyp mice treated with 1,25D or FGF23Ab.
* p < 0.05 vs. WT, # p < 0.05 vs. Hyp, a p < 0.05 vs. Daily 1,25D. All data shown were previously
published in [13], and there are no issues with copyright.

6. Future Directions

In 2018, burosumab, a human monoclonal anti-FGF23 antibody, was approved to
treat XLH in the European Union and USA. Both human and murine studies have sup-
ported that the early diagnosis and initiation of therapy leads to better attenuation of
XLH complications. While studies have examined the beneficial effects of burosumab on
growth velocity in children and osteomalacia in adults, it remains unknown if growth and
mineralization, which increase but do not normalize despite normal serum phosphate, will
further improve with long-term treatment. Moreover, no data have been reported on the
effectiveness of burosumab in preventing or treating enthesopathy [28,121,122]. Based on
studies that 1,25D may play an important role in regulating complications of XLH such as
decreased growth velocity, trabecular structure, osteocyte lacuno-canalicular remodeling,
and enthesopathy development, it remains to be determined if the gradual decline in
serum 1,25D levels during long-term burosumab treatment will have any impact on the
prevention or treatment of these complications. Although burosumab has been shown
to be effective in attenuating select complications of XLH, studies demonstrated that the
molecular mechanisms underlying these complications such as impaired mineralization
and growth are not completely dependent on the abnormalities in mineral ion and hormone
homeostasis see in XLH. While studies have dissected the molecular mechanisms of these
complications, it remains to be seen if improving those molecular pathways would serve as
effective therapies for XLH. Further insight into the phenotypic variation seen in XLH could
be provided by identifying additional direct targets of PHEX. Single-cell transcriptomics
of human tissue has revealed the tissues and cells that are enriched for PHEX expression.
For instance, these studies demonstrated that lung and prostate tissue and granulosa cells
in the ovary are enriched for PHEX expression. However, proteomic data that potentially
could reveal the targets of PHEX are still lacking [123]. Further research is necessary to
improve the understanding of the pathophysiology of XLH complications.
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