
Citation: Anda, A.; Amyot, D.;

Mylopoulos, J. Traceability

Management of Socio-Cyber-Physical

Systems Involving Goal and SysML

Models. Modelling 2023, 4, 133–167.

https://doi.org/10.3390/

modelling4020009

Academic Editors: Greg Zacharewicz,

Nicolas Daclin, Guy Doumeingts and

Hezam Haidar

Received: 12 January 2023

Revised: 26 March 2023

Accepted: 27 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Traceability Management of Socio-Cyber-Physical Systems
Involving Goal and SysML Models †

Amal Ahmed Anda , Daniel Amyot * and John Mylopoulos

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
aanda@uottawa.ca (A.A.A.); jm@cs.toronto.edu (J.M.)
* Correspondence: damyot@uottawa.ca; Tel.: +1-613-562-5800 (ext. 6947)
† This paper is an extended version of our paper published in Anda, Amal Ahmed, and Daniel Amyot.

Traceability management of GRL and SysML models. In Proceedings of the 12th System Analysis and
modelling Conference (SAM), Canada, 19–20 October 2020; pp. 117–126.

Abstract: Socio-cyber-physical systems (SCPSs) have emerged as networked heterogeneous systems
that incorporate social components (e.g., business processes and social networks) along with physical
(e.g., Internet-of-Things devices) and software components. Model-driven techniques for building
SCPSs need actor and goal models to capture social concerns, whereas system issues are often
addressed with the Systems Modeling Language (SysML). Comprehensive traceability between these
types of models is essential to support consistency and completeness checks, change management,
and impact analysis. However, traceability management between these complementary views is
not well supported across SysML tools, particularly when models evolve because SysML does not
provide sophisticated out-of-the-box goal modeling capabilities. In our previous work, we proposed
a model-based framework, called CGS4Adaptation, that supports basic traceability by importing goal
and SysML models into a leading third-party requirement-management system, namely IBM Rational
DOORS. In this paper, we present the framework’s traceability management method and its use for
automated consistency and completeness checks. Traceability management also includes implicit
link detection, thereby, improving the quality of traceability links while better aligning designs with
requirements. The method is evaluated using an adaptive SCPS case study involving an IoT-based
smart home. The results suggest that the tool-supported method is effective and useful in supporting
the traceability management process involving complex goal and SysML models in one environment
while saving development time and effort.

Keywords: adaptation; consistency; completeness; cyber-physical systems; goal modeling; GRL;
SysML; traceability management

1. Introduction

Socio-cyber-physical systems (SCPSs) consist of networked social, physical, and soft-
ware subsystems, including business processes, social networks, Internet-of-Things (IoT)
devices, and software components. Examples include existing systems, such as ones for
air traffic control, and emerging ones, such as smart homes/cities [1], adaptive Systems
of Systems (SoS) [2], and intelligent production networks [3]. SCPSs have emerged as
diverse, complex systems that raise new challenges for systems engineering. Engineers
developing such systems need to consider software, hardware, and stakeholder concerns
as well as runtime decisions for SCPSs that need to adapt to their operational environment
(i.e., adaptive SCPSs).

As reported in a recent literature review [4], model-driven engineering methods,
e.g., using the Systems Modeling Language (SysML) [5], which supports system specification,
and goal-oriented requirements engineering techniques, which support social concepts and
strategic decision making, have been used in the recent past to handle the complexity of
such systems.

Modelling 2023, 4, 133–167. https://doi.org/10.3390/modelling4020009 https://www.mdpi.com/journal/modelling

https://doi.org/10.3390/modelling4020009
https://doi.org/10.3390/modelling4020009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://orcid.org/0000-0001-7851-0199
https://orcid.org/0000-0003-2414-1791
https://orcid.org/0000-0002-8698-3292
https://doi.org/10.3390/modelling4020009
https://www.mdpi.com/journal/modelling
https://www.mdpi.com/article/10.3390/modelling4020009?type=check_update&version=3

Modelling 2023, 4 134

Moreover, the integration of goal models with all system development and evolution
activities provides unprecedented opportunities for helping engineers understand and
validate system functionality, behavior, and quality in a holistic way [6–8]. Traceability
should, hence, be specified between goals, system requirements, design elements, and im-
plementation components [9] as this facilitates and enhances system development and
evolution. A comprehensive engineering methodology for building SCPSs should also
support consistency and completeness checks, verification, validation, change management,
and impact analysis [10,11].

A common approach across the literature is to develop goal models and remodel them
inside SysML design tools, e.g., by capturing goal models using extensions of requirements
or use-case diagrams, and then link them to design elements [12]. In the frequent case
where the goal models were created in a different modeling environment that supports goal-
oriented analysis, this often causes duplication of work, additional effort and time, and the
introduction of inconsistencies [4]. Visualization, filtering, and analysis techniques are
essential to help developers track the connected element, detect incomplete and inconsistent
elements, and determine the impact of changes. All of these techniques are not well
supported by modeling tools. Consequently, to support these activities, existing approaches
tend to [4]:

1. Develop a new tool to facilitate and simplify tracking methods by slicing the connected
models to create simple and easy-to-follow views. However, developers have to check
the consistency and completeness manually using these views, which could provide
misleading information if some links are missing or incorrect.

2. Export the models after linking them using requirements or use-case diagrams and
importing them into external tools, such as Excel, which also does not provide good
support for different types of analyses and visualizations.

3. Provide little guidance or suggestions about (i) how to exploit the created links to
assess consistency and completeness across multiple views or models, (ii) the impact
of the changes, and (iii) any type of analysis.

For the above reasons, we are interested in developing a comprehensive engineering
methodology for SCPSs. As a starting point, we recently proposed a modeling framework
called CGS4Adaptation [13–15] that integrates the goal-oriented requirement language,
SysML, and feature models, to support through models the development process from
requirement analysis to implementation with minimal work duplication or information loss.

SysML reuses a subset of UML with extensions that target systems engineering, e.g., to
model designs that combine hardware and software components. SysML includes UML
use case, sequence, activity, and state-machine diagrams and is useful for modeling SCPSs.
Due to its language features, it simplifies system design [16] and reduces complexity [17] by
providing block definition and internal block diagrams from UML class diagrams. In addi-
tion, SysML includes parametric and requirement diagrams not included in standard UML
to relate a system’s design to its requirements [18]. However, the latest SysML standard [5]
does not include important first-class concepts for modeling and analyzing social concepts,
such as goals, indicators measuring their degree of satisfaction, and contributions that
indicate the impact of satisfying a goal on other related goals.

To supplement the concepts found in SysML for capturing social concepts in SCPSs,
a complementary goal-oriented modeling language (such as KAOS [19], i* [20], or oth-
ers [21]) can be used. Among these many options, we adopt the Goal-oriented Requirement
Language (GRL) [22], which enables modeling and analyzing the goals of both a socio-cyber-
physical system-to-be and the social actors who participate in its activities. GRL is also part
of the User Requirements Notation (URN) standard [22]. In addition to design alternatives,
GRL supports self-adaptive systems through quantitative and qualitative trade-offs and
what-if analysis, which can be conducted inside and outside goal modeling tools.

To support evidence-based decision-making with the best adaptation alternatives
according to the current context, GRL uses key performance indicators (KPIs) to monitor

Modelling 2023, 4 135

the surrounding environment [22] while propagating their values to measure overall system
satisfaction that can be used to adapt accordingly [13,23].

The CGS4Adaptation framework [13] (Figure 1) integrates three modeling languages
for the development of SCPSs in a way that enables adapting to user concerns through
monitoring quality and compliance:

• SysML, for capturing concerns related to software and hardware.
• GRL, for capturing stakeholder concerns and preferences as well as indicators for

measuring them.
• Feature models [24], captured with an extension of GRL, for specifying variability and

adaptation opportunities.

Figure 1. CGS4Adaptation overview, with the focus of this paper shown within the dashed line.

The CGS4Adaptation framework consists of two complementary parts supporting
traceability and self-adaptation. The first integrates GRL and SysML models using a
third-party traceability system (e.g., a requirement-management system) while the second
transforms goal and feature models to mathematical functions for effective and efficient
goal-based reasoning and adaptation in SysML models (at design time) and in imple-
mentations (at runtime) [13,23]. SysML design environments can be used to support
simulation, optimization, and code generation of SCPSs, using the functions generated
from goal/feature models.

This paper focuses on the area of CGS4Adaptation delimited by the dashed line in
Figure 1 and on the RMS-based management and exploitation of traceability between goal
models, SysML models, and conventional natural language requirements. An RMS-based
solution is meant to help engineers benefit from existing capabilities to manage traceability
links, track changes and their impact through these links, and provide sophisticated analy-
sis, visualization, and filtering techniques instead of using design tools that lack (or do not
well support) such capabilities. These differences will be further discussed in the related
work (Section 3).

In previous work [25], we explored exporting GRL and feature models from the jUCM-
Nav [26] tool and SysML models from Cameo Systems Modeler [27] to runnable scripts that
IBM Rational DOORS [28,29] runs to import and store the elements of these models and
their relationships. DOORS, a popular RMS, can then be used to manage traceability links
between the models and to/from conventional requirements. Preliminary completeness
and consistency rules are also introduced to support the traceability management process
and improve alignment. Completeness is used to assess whether elements in one model are
properly addressed (and linked) in another model, and violations at that level may lead to

Modelling 2023, 4 136

the addition or deletion of model elements or links. Consistency checks whether elements
of appropriate types and natures are linked across models.

In this paper, we extend this previous work by contributing:

1. A comprehensive and practical model-based traceability and development method
to integrate the social concerns modeled by a goal-oriented approach with SysML
designs through a requirements management system (RMS).

• One particular implementation of this method is provided for the GRL modeling
language and for the DOORS RMS. Section 2 provides additional details on why
GRL and DOORS were chosen.

2. Improved and systematic consideration for the goal-based rationale behind the re-
quirements and design elements to facilitate system documentation, traceability,
and its applications, including consistency and completeness checks, change manage-
ment, and impact analysis. This includes:

(a) The automation of consistency and completeness checks for goal and design
models, implemented as executable scripts, accompanied by views and filters
to improve the usability of the analysis. The proposed traceability information
model (TIM) [11,30] and the consistency and completeness rules are used to
implement automatic checks that exploit the direct and indirect relationships
between system goals, requirements, and blocks, in order to find alignment
issues early and on a continuous basis.

(b) The definition of new completeness and consistency rules to minimize devel-
opment time and effort by detecting issues that are difficult to catch otherwise.

(c) Documentation describing how existing features of RMSs (views and filters)
can be used to visualize and solve consistency and completeness issues.

(d) An evaluation of the efficiency and benefits of the proposed traceability ap-
proach using an illustrative IoT-based smart home case study provided by the
SM@RT Team [31] at the Informatics Research Institute of Toulouse. A smart
home management system (SHMS) is an adaptive SCPS supporting elderly stake-
holders by performing activities, such as selecting a cost-effective energy
provider or controlling heating/cooling and other smart home appliances.
SHMSs are usually designed from scratch using available devices and often
result in design errors [32].

The proposed approach also takes advantage of existing tools and techniques to
minimize coding errors and the effort needed for its implementation.

These contributions are of interest to practitioners and researchers who use model-
oriented traceability management, goal-oriented modeling, or SysML modeling as it pro-
vides original tool-supported features and a method that combines three complementary
modeling aspects and supports automated analysis. Many of these features can also be
reused in contexts other than the one used here. The paper is of further interest to re-
searchers as it raises awareness of specific challenges and solutions in developing SCPSs,
while identifying other challenges that remain to be addressed.

The rest of the paper is structured as follows. Section 2 presents relevant background
technologies, and Section 3 discusses closely-related work. Section 4 explains the proposed
traceability management method in CGS4adaptation, including consistency and complete-
ness checks. We evaluate this method using a smart home case study in Section 5. Threats
to the validity of this research are detailed in Section 6. Finally, our conclusions and future
work are presented in Section 7.

2. Background Technologies

This section describes the modeling and RMS tools used in the CGS4Adaptation
framework as well as existing technologies for importing models.

Modelling 2023, 4 137

2.1. Goal Modeling Language and Tool: GRL and jUCMNav

GRL models are composed of actors that contain intentional elements (goals, softgoals,
tasks, and resources) as well as indicators converting monitored information into satisfaction
levels. Intentional elements can be connected via decomposition links (AND, OR, and XOR),
contribution links (with weights going from −100 to +100), and dependencies.

jUCMNav is an Eclipse-based editor and analysis tool for the User Requirements
Notation, including GRL [26]. Different GRL analysis algorithms can be used to assess goal
and actor satisfaction [22]. jUCMNav has an open architecture that enables importing and
exporting model information in various formats through custom plug-ins. jUCMNav also
supports feature modeling (integrated with goal models) and enables exporting GRL and
feature models as mathematical functions whose parameters are the satisfaction levels of
the leaves of the models [13,33].

GRL is an excellent candidate for integration with SysML because it supports actors
and goals but also indicators for monitoring contexts in a way that enables quantitative anal-
ysis and self-adaptation decisions [34]. This is also the only internationally standardized
goal modeling language at this time.

2.2. SysML Modeling Tool: Cameo Systems Modeler

SysML is supported by many modeling, analysis, and code generation environ-
ments [35]. Among them, we find Cameo Systems Modeler [27], a model-based systems
engineering (MBSE) tool from Dassault Systèmes (formerly No Magic Inc.) based on the
MagicDraw Modeling Platform. It supports SysML, including package, requirement, block
definition, internal block, activity, use case, and parametric diagrams. This tool was partic-
ularly selected for CGS4Adaptation because it can be used to simulate and analyze SysML
models, and it can support exporting model information using report templates (described
using the Velocity Template Language—VTL [36]), a feature that indirectly enables some level
of integration with an RMS.

2.3. RMS: IBM Rational DOORS

There exist many mature tools, commercial or otherwise, for managing requirements
and for exploiting traceability links (see, for example, INCOSE’s SETDB Explore Tools
list, https://www.systemsengineeringtools.com/tools-lists, accessed on 11 January 2023).
Very few, however, offer extensible integration interfaces, scriptable automation, and an
opportunity to import models, or parts thereof, from other tools (beside preexisting bridges
that might be provided). This is why we became interested in DOORS as an RMS for
CGS4Automation in general, and for this paper in particular.

IBM Rational’s Dynamic Object Oriented Requirements System (DOORS) [28] is a leading
enterprise-level requirement-management tool, often used by requirements engineers
involved in CPS development. DOORS manages extensive information to control system
compliance with its requirements and facilitates communication and cooperation between
cross-functional teams collaborating on a same project.

In addition to capturing typed requirements and typed links between them (with
their attributes), DOORS traces and analyzes changes to requirements, providing several
views of their impact on the product as a whole. This paper’s method exploits and takes
advantage of DOORS to trace system artifacts (goals, requirements, and designs) and their
changes across development phases, thus, helping to ensure that the system design is
continuously in compliance with its system requirements, goals, and quality requirements.
However, in order to manage traceability between modeling artifacts, the latter must be
first stored in the DOORS database.

A DOORS database contains folders, projects, and modules. A project is a type of folder
that may hold other folders and modules. An object is the core element of the database
and represents the concept that we want to trace (e.g., a requirement, a GRL goal, or a
SysML block).

https://www.systemsengineeringtools.com/tools-lists

Modelling 2023, 4 138

Each object has a type and may contain additional predefined and user-defined at-
tributes (e.g., status, author, and priority). In the database, a formal module contains the
objects in a specific order and forms a particular unit (e.g., a system requirements specifica-
tion, a software requirements specification, or a test suite) whereas a link module holds the
traceability links between these objects. Link modules essentially define link types (e.g.,
“refine”, “satisfies”, or “tests”) according to a traceability information model [11,30]. Link
instances, visualized in formal modules with triangular annotations, are typically used
for navigation between objects, impact analysis, coverage analysis, change propagation,
and document generation.

The DOORS eXtension Language (DXL) is a domain-specific language (DSL) used by
DOORS to extend its features. DXL is a scripting language used to create, delete, modify,
and navigate objects, links, and attributes in the database [37]. DXL scripts can also be
created to automate various update and validation activities.

DOORS does not support modeling out of the box. However, our approach uses
DOORS as an RMS for storing and linking SysML and GRL models in a way that supports
completeness and consistency analysis, in addition to out-of-the-box impact analysis.

2.4. Model Import DSL (MI-DSL)

The integration of modeling tools can be performed using technologies, such as the
Open Services Lifecycle Collaboration (OSLC) standard [38], which manages a loose integration
between modeling tools and a RMS with changes synchronization. However, not all tools
support OSLC, particularly in the Eclipse world where many modeling tools exist.

The MI-DSL environment represents an alternative to OSLC. MI-DSL is a textual DSL
used to specify the desired subset of a modeling language whose model instances need to be
traced and managed in DOORS [39]. MI-DSL facilitates model import and synchronization
(through re-importing models) by generating a DXL library automatically from a modeling
language description. This library can then be used to “execute” models exported to DXL,
and import their elements, attributes, and links to DOORS. MI-DSL is supported by an
Eclipse-based editor (defined with Xtext [40]) that generates the DXL library automatically
(via Xtend transformations [41]). Figure 2 describes the metamodel of this DSL.

Figure 2. MI-DSL metamodel (from [39]).

MI-DSL includes the following concepts:

• Class: Describes the modeling language concepts selected for import in the DOORS
database. Classes have typed attributes and are linked together through typed associations.

• Attribute: Belongs to a class and specifies the name, type, and default value of an attribute.
• Association: Belongs to a class and refers to another class. Associations are used to

create link sets in DOORS.
• DataType: Describes attribute types (Boolean, int, string, text, and diagram).
• AssociationType: Describes association types used to create link modules in DOORS.
• Module: Is a collection of classes that have similar or compatible attributes.

Modelling 2023, 4 139

• Folder: Contains modules.
• Model: Contains folders. For each generated library, there is exactly one model instance.

MI-DSL is typically used as described in Figure 3. First, starting from a language
metamodel (a), the elements, attributes, and links to be tracked in the RMS (in essence,
the desired TIM described as an instance of the metamodel in Figure 2) are selected and
coded using the MI-DSL editor (b). This is usually performed once per language per
project. The MI-DSL editor then generates a DXL library automatically (c) through the use
of Xtend-based transformations [39]. The MI-DSL editor and code generator are available
at https://github.com/Smart-Contract-Modelling-uOttawa/Traceability/tree/main/MI-
DSL (accessed on 11 January 2023).

The tool that supports the modeling language (d) also needs to generate DXL code (e.g.,
using a plug-in in Eclipse or report templates in VTL), and this is, again, performed once
per tool per project. A DXL script can then be generated automatically from each model
created by this tool (e). These scripts describe the model elements, attributes, and links
of interest, as specified in the MI-DSL description, and invoke the library generated in (c).
DOORS can then be used to run such scripts to import a model in its database, or re-import
new versions of that model when it evolves (with appropriate warnings).

Figure 3. MI-DSL process overview.

MI-DSL was used in the past to support importing models in various languages,
including Finite State Machine (FSM), the User Requirements Notation (including links
between URN’s goal and process views), and aspect-oriented URN [39,42–44]. Prior to this
paper, MI-DSL had never been used on SysML, on a commercial tool, or in a non-Eclipse-
based environment.

In this paper, we evolved an existing plug-in for jUCMNav (a) to export the GRL
elements required by our traceability information model (b). Similarly, we also created a
new VTL-based export mechanism for Cameo Systems Modeler that generates DXL code
describing the SysML elements, attributes, and links of interest. Two DXL libraries (c),
one for each tool, enable importing evolving GRL and SysML models in DOORS. We also
improved the MI-DSL infrastructure itself along the way to fix several bugs and make it
more robust.

3. Related Work

The need to integrate goals with a system design has been addressed in the literature in
multiple ways to support CPSs development and reuse—for instance, with profiles within
SysML or through integration with external languages. A recent literature review by Anda
and Amyot [4] discussed the state of the art in combining SysML with goal modeling for
designing adaptive systems.

https://github.com/Smart-Contract-Modelling-uOttawa/Traceability/tree/main/MI-DSL
https://github.com/Smart-Contract-Modelling-uOttawa/Traceability/tree/main/MI-DSL

Modelling 2023, 4 140

To reach effective strategic business alignment, Cui and Paige [45] integrated goals
with SysML requirement diagrams via profiles, with extensions to the models and links
for tracing and reasoning about requirements. However, they had simple goal models
based on the Business Motivation Model standard [46] and considered neither quantitative
values of contribution relationships and alternatives between goals (which enable trade-off
analysis) nor indicator parameters (which enable monitoring in adaptation contexts) in
their extensions.

Ahmad et al. [47] proposed a method to model and validate self-adaptive systems
that uses profiles and stereotypes to extend the SysML requirements model with goals,
softgoals, and their relationships. Again, this method does not capture indicators, the im-
portance of intentional elements to actors, or contribution weights found in GRL models.
In contrast, Badreddin et al. [48] proposed a new textual language (fSysML) to integrate
goals and SysML models using a textual syntax to support CPSs development process.
However, their results are still preliminary without support for complex analysis or real
traceability management.

To handle security goals and requirements, Maskani et al. [49] modified the Com-
paSRE approach in a way that expanded the requirements profile with security goals and
requirements by adding related goals, stakeholders, risks, and assets as attributes. Simi-
larly, to validate complex systems for self-adaptation using requirements, Lee et al. [50]
extended SysML requirement diagrams with security requirements and some goal model
elements to ensure they are functionally satisfied by a SysML state diagram that displays
the information of system states.

To increase support for requirement reuse and reconfiguration in product lines,
Wang [12] proposed a multi-level requirement model by integrating textual goals (with
AND/OR decomposition) with SysML use-case diagrams and by using a SysML tool to
hierarchically classify the requirements in a requirement diagram. However, although they
aimed to more systematically manage requirement traceability and facilitate reuse, they im-
ported requirement data and relationships in different software tools (Excel, a spreadsheet,
and Teamcenter—a product line management environment) to maintain requirements and
their structure and relationships.

These relationships are represented as checkboxes related to each requirement (in Excel
sheets) or as a tree structure (in Teamcenter) to remind engineers of the related requirements.
Excel is unfortunately a weak RMS solution in general. Furthermore, their approach does
not include all of the relationships found between their goals, which, consequently, leads to
ignoring some dependencies and other relationships between requirements across related
goals. To reinforce their approach, they recommended that system structure and other
system development data should be included in their model, which is what our traceability
management method does (among other things).

As relations between requirements and the top-level design aid in facilitating an accu-
rate change impact analysis, Wang et al. [51] proposed a traceability model focusing on the
requirements of a command system-of-system. These requirements are characterized by
their high number and complex relationships. The requirements are decomposed and hier-
archically structured with SysML diagrams as a multi-layer requirement traceability model.

The model starts from strategy-task/goal-activity-capability and is mapped to use
case, activity, and requirement diagrams to speed up design model updates according to
changing requirements. Similar to some of the previous approaches, the impact of goals and
tasks on each other across the structure was not considered in the created models. In addi-
tion, important traceability-related activities, such as automated consistency/completeness
analysis and reporting are not supported.

In the same manner, given the difficulty in adjusting a system according to changing
goals and requirements, Mimura et al. [52] proposed a framework that combines elements
of GQM+strategies [53] and SysML requirement diagrams, again with a hierarchical struc-
ture. They extended the metamodel of GQM+strategies with new relationships to link
goals and strategies in the GQM+strategies model with the root requirements of a SysML

Modelling 2023, 4 141

requirement diagram in order to enable consistency management. However, no explanation
was provided on how the created links should be exploited to facilitate and simplify models
to be reviewed and assessed by engineers.

Nejati et al. [54] proposed a framework that includes a methodology for creating
traceability links, a traceability information model, and a model-slicing algorithm. Once
the main functions of the system are modeled with a use-case diagram, they are linked to
safety requirements. These requirements are modeled in a requirement diagram and linked
to the system design using SysML trace and decompose links. To generate traceability reports
and simplify the views used to check the consistency of the created links, the framework
uses a tool (SafeSlice) that extracts parts of the created models (slices) selected according to
specific requirements. However, the extracted slices can provide incomplete/misleading
information if some links are missing during the linking process.

To link the system goals and stakeholder goals of CPSs, a common approach across the
literature [4] is to remodel these goals in SysML design tools without importing them from
goal modeling tools. Such a strategy is time-consuming (work duplication), limited (not
all goal model elements and relationships are usually included in or supported by design
tools), error-prone (a manual process), and not scalable given the complexity of CPSs.
In addition, traceability management activities, such as visualization, filtering, impact
analysis, as well as consistency and completeness checks, are not well supported by design
tools. There are also approaches that use profiles to manage traceability from SysML elements
to functional and non-functional requirements and to stakeholders (see for example the work of
Haidrar et al. [55,56]), without supporting goals and their relationships explicitly, and often
without support for automated consistency and completeness analysis and reporting.

Compared to the related work mentioned above, our traceability management method
automatically integrates selected elements of interest from goal models (specified in a
conceptually-rich and standardized language, namely GRL) and SysML system designs via
an RMS with mature and diverse capabilities, without work duplication or information
loss, even as models and other tracked artifacts (natural language requirements, tests, etc.)
evolve. In addition, our method exploits imported intra-model relationships to save engi-
neers time and effort when linking goals, requirements, and design components together.
Useful and usable insights are provided using automatic consistency and completeness
checks powered by the RMS ability to visualize, filter, and track a large number of model
elements and their internal and external relationships.

One weakness of this method compared to approaches that only use a SysML modeling
environment (or a SysML tool and an RMS) is to rely on the use of three tools (goal modeling
environment, SysML environment, and third-party RMS) to support design and analysis
activities. Our method risks hindering the overall usability (e.g., because of tool context
switching) and productivity (e.g., due to the required model export/import activities).
In many projects, this may, however, be a small price to pay compared to the cost of
completeness and consistency issues discovered too late.

4. Traceability Management Method

In this section, we propose a new traceability management method that aims to mini-
mize common hard-to-manage traceability issues by integrating goal and SysML models
using a third-party RMS. As shown in Figure 4, this method has two main parts: (1) prepa-
ration, which describes the steps required before managing traceability links between the
respective models and conducting analysis, and (2) consistency and completeness checks, which
describes the tool-supported steps we propose to check the consistency and completeness
of the overall system across its different models. In the following, each part of the proposed
method is described and illustrated.

Modelling 2023, 4 142

Figure 4. Traceability management method.

4.1. Preparation

This subsection describes the preparation steps of CGS4Adaptation’s traceability
management method as shown on the left side of Figure 4.

4.1.1. Import the Models into the RMS Database

The elements of the GRL and SysML models, together with system requirements, must
first be imported into the RMS repository. Importing mechanisms differ according to the
various modeling tools used (e.g., jUCMNav and Eclipse for GRL, and the Cameo Modeling
System and VTL for SysML). Since jUCMNav already supports exporting GRL models
to DXL scripts that invoke an existing DXL library [39], this paper focuses on describing
SysML’s modeling elements, attributes, and associations of interest, following the approach
described in Section 2 and Figure 3.

Anda and Amyot [25] provided more details on how to describe SysML models using
MI-DSL classes, how to generate the DXL scripts, and how to import GRL and SysML
models into a DOORS database. Below, we present the main steps of the import process,
including defining the elements to track, describing them using MI-DSL, creating the
corresponding library, and finally creating DXL scripts from the design tool. The full VTL
script for exporting SysML models in DXL, the MI-DSL and DXL library needed to import
them in DOORS, and the automated checks are available at https://github.com/Smart-
Contract-Modelling-uOttawa/Traceability (accessed on 11 January 2023).

Selected SysML elements: SysML is a large and complex language where only a
fraction of the language’s concepts is of interest here. In order to support relevant types of
analysis, avoid duplication of work, and avoid the degradation of the RMS’ performance,
only two important SysML diagrams, namely requirement diagrams and block definition
diagrams (BDDs) as well as their elements are selected for traceability support in the RMS.
Table 1 shows the selected elements and relationships from these diagrams, the rationale for
choosing them, their roles in the integration, and related attributes in the MI-DSL classes.

Note that the objective here is to check whether requirements and design blocks meet
the goals of stakeholders and systems as well as to fill in the gaps that may be caused by
misalignment or incompleteness issues. However, the method is not limited to these two
types of diagrams. Engineers have the flexibility to choose which diagrams or elements
they want to track (in the design model and in the goal model), and then adapt the TIM we
provide here (in MI-DSL) the export filters from the modeling tools (to ensure the required
elements, attributes, and links specified in the TIM are exported), and the consistency and
completeness checks (to better exploit the new TIM links).

https://github.com/Smart-Contract-Modelling-uOttawa/Traceability
https://github.com/Smart-Contract-Modelling-uOttawa/Traceability

Modelling 2023, 4 143

Table 1. SysML model elements exported to the RMS. Dig = Diagram, FR = Functional Requirement,
and NFR = Non-Functional Requirement.

Diag. Element or
Relationship Rationale Role Attributes

Requirements Diagram

Requirement Describes requirements textually

FRs are linked to GRL goals,
and NFRs are linked to GRL soft-
goals or to related requirements
stored in the RMS.

ID, Name, and Text

Containment,
Derive,
Satisfy

Describe the SysML relationships
between requirements as well as be-
tween requirements and blocks

ID, Name, Source, and
Destination IDs

Block Definition Diagram

Block Core element representing software,
hardware, material, or a process

To be linked to GRL goals, soft-
goals, indicators, or tasks ID, Name, and Type

Part Describes the Composed-of relation-
ship between blocks

Supports implicit and explicit
traceability and minimizes
management effort.

ID, Name, Source, and
Destination IDs

Aggregation Describes aggregation relationships
between blocks

ID, Name, Source, and
Destination IDs

Dependency Describes dependency relationships
between blocks

ID, Name, Source, and
Destination IDs

Reference Describes association relationships
between blocks

ID, Name, Source, and
Destination IDs

Generalization Describes type-of relationships be-
tween blocks

ID, Name, Source, and
Destination IDs

MI-DSL description of SysML: The MI-DSL specification of the SysML block defini-
tion and requirement diagram elements of interest is shown in Listing 1. In addition to the
attributes used to describe the imported elements, the MI-DSL classes have three default
attributes (Name, ID, and Description) that do not explicitly appear in their specification.
MI-DSL provides the following mapping between specified elements and the DOORS
database structure, objects, and links:

1. Formal modules: hold the instances of the selected elements of block definition and
requirement diagrams, including the diagrams themselves, requirement, block, block
relationships, and requirements relationships.

2. Classes describe these elements as DOORS objects with attributes.
3. Linksets: sort the links between objects into groups to facilitate the traceability man-

agement process. They are specified by the associations in the classes, such as de-
rivedFrom (links between requirements), satisfiedBy (links between requirements and
blocks), containedBy (links between requirements or between an individual require-
ment and its related requirement diagram), partOf, IsSharedBy, Dependency, refersTo,
and childOf.

4. Link modules: represent the links between the created instances, including all the
related association types: Composition, Aggregation, Association, Generalization,
Dependency, Derive, Satisfy, and ContainedBy.

Listing 1: MI-DSL classes of the selected SysML diagrams and elements (extract).

model SysMLModel{
folder SysML{

// Requirement diagrams
module requirement{
// Default name , id, description are already provided ,
// and the description could contain the Text string.
class requirement{
string "ReqID" shows as "ReqID"
}
}

// SysML relationships involving requirements
module requirementlink{
fileName "Requirements Relationships"

Modelling 2023, 4 144

class requirementlink{
string "sourceID" shows as "Source ID"
string "destinationID" shows as "Destination ID"

association derAsso1 : derivedFrom to "requirement"."requirement" "source ID"
association derAsso2 : derivedFrom to "requirement"."requirement" "

destination ID"
}

// Other relationships skipped ...
}

// Block definition diagrams
module blockDefinitionDiagram{
// Default name , id, description attributes are already provided.
// The description could contain the documentation of the block at design time

.
class blockDefinitionDiagram{
diagram "graphFileName" shows as "Diagram File Name"
string "title" shows as "Diagram Title"
}
}

module block{
class block {
string "Type" shows as "block Type"
}
}

// Additional SysML relationships involving blocks only
module blocklink{
fileName "Block Relationships"

class blockToDiagram{
string "sourceID" shows as "Source ID"
string "destinationID" shows as "Destination ID"

association CompAsso1 : containedBy to "block"."block" "source ID"
association CompAsso2 : containedBy to "blockDefinitionDiagram"."

blockDefinitionDiagram" "destination ID"
}

class BlockDependency{
string "sourceID" shows as "Source ID"
string "destinationID" shows as "Destination ID"

association DepAsso1 : Dependency to "block"."block" "source ID"
association DepAsso2 : Dependency to "block"."block" "destination ID"
}

// Other relationships skipped ...
}

// Other modules skipped ...

// Association types
associationType derivedFrom "Derive"
associationType satisfiedBy "Satisfy"
associationType partOf "Composition"
associationType IsSharedBy "Aggregation"
associationType Dependency "Dependency"
associationType refersTo "Association"
associationType childOf "Generalization"
associationType containedBy "ContainedBy"
}
}

SysML library: The MI-DSL editor is used to generate DXL library files automatically
from the MI-DSL traceability model for SysML shown in Listing 1. The resulting library
contains 13 DXL files as described in Table 2. The first seven files are created for each
generated library while the others include functions to add, modify, and delete objects in
the related formal modules using their identifiers (IDs). For example, the Block.dxl file
provides functions to add, delete, and modify the objects in the formal block module in
the DOORS database. This function is invoked in the DXL scripts every time we need to
import a block instance from the SysML model.

Modelling 2023, 4 145

Table 2. Generated DXL library files for importing SysML models in DOORS.

File Description

Utility.dxl This file contains the list of import statements to import all other library files
Global.dxl This file declares global variables used in all DXL files in the library.
ModulesUtility.dxl This file includes the helper DXL functions invoked during the model import process in DOORS.
Links.dxl This file contains DXL library code for the links described in the modules.
InitExist.dxl This file contains the DXL functions to initialize and finalize the import process (including GUIs).
Import.dxl This DXL library file provides the utility methods that would be invoked to start the model import process in
Report.dxl This DXL library file contains generated DXL code for creating a report after the import process.
Requirements-Diagram.dxl DXL file for module requirementsDiagram
Requirement.dxl DXL file for module requirement
Requirementlink.dxl DXL file for module requirementlink
BlockDefinition-Diagram.dxl DXL file for module blockDefinitionDiagram
Block.dxl DXL file for module block
Blocklink.dxl DXL file for module blocklink

SysML DXL export from Cameo Systems Modeler: Listing 2 shows an extract of
the reusable template used to export SysML models from Cameo Systems Modeler. This
template, written in Apache’s Velocity Template Language (VTL) [36], can be invoked and
ran as a report from Cameo. VTL supports conditionally iterating through the SysML
model elements, attributes, and relationships. The code generated is a DXL script that will
invoke the library previously generated.

Listing 2: VTL report template for producing DXL scripts from SysML models (extract).

#set($var1="#")
$var1 include "addins/DSL/lib/Utilities.dxl"
pragma runLim , 0
beginImport("${project.name}")

// Blocks
#foreach($e in $Block)
block("$e.elementID","$e.name","$e.documentation","Block")
#set($varlast= "")
#foreach($Satss in $sorter.sort($report.filterElement($e.clientDependency , ["

Satisfy"]),"supplier"))
#set($s=$report.getSupplierElement($Satss))
#if($varlast != $s.elementID)
#set($varlast = $s.elementID)
requirementToBlock("$Satss.elementID","SatisfiedBy","","$s.elementID","$e.

elementID")
#end
#end

#* DependOn relationships *#
#foreach($parttc in $sorter.sort($report.filterElement($e.supplierDependency ,

["Usage"]),"client"))
#set($c=$report.getClientElement($parttc))
#if($varlast != $c.elementID)
#set($varlast = $c.elementID)
BlockDependency("$parttc.elementID","DependOn","","$c.elementID","$e.elementID

")
#end
#end

// Others skipped
endImport

SysML DXL scripts: Listing 3 shows the structure of DXL scripts that are generated
automatically and used to invoke the SysML library to import the models into the DOORS
database. The first line is used to include the DXL library that must be stored in the specified
path in the DOORS’ folder. The two next lines start the import process in the specified
folder, while the last line terminates it. The other lines call functions in the generated DXL
library and pass the extracted data from the SysML modeling tool as parameters.

For example, the statement block("122", "Appliance controller", "Controls home
appliances", "Block") invokes the block function in the Block.dxl file derived from the
Block module and the related block class in the MI-DSL specification shown in Listing 1.

Modelling 2023, 4 146

As seen in Listing 3, in addition to the three default attributes (id="122", name="Appliance
controller", and description="Controls home appliances"), the block function has a "type"
attribute (the last parameter) whose values can be either Block or constraintBlock here.

Listing 3: Sample DXL script describing a specific SysML model.

#include "addins/DSL/lib/Utilities.dxl"
pragma runLim , 0
beginImport("FolderName")
// Call statements for the created functions corresponding to the MI-DSL

classes and their parameters
blockDefinitionDiagram("d1", "AdaptiveCarBlocks", "Diagram description", "

graph.png", "SysML Block Definition Diagram Title")
block("122","Appliance controller", "controls home appliances","Block")
block("123","Enable air conditioner access","GRL indicator", "constraintblock"

)
blockToDiagram("c4","ContainedBy","","b2","d1")
blockToDiagram("c5","ContainedBy","","b3","d1")
BlockDependency("d6","DependOn","","122","123")
...
endImport

4.1.2. Identify Traceability Links

In order to support change management and impact analysis, consistency between the
involved models needs to be checked [57]. Thus, traceability links are required between the
imported models to assess completeness and consistency as well as to detect property vio-
lations, particularly after modifying or deleting linked elements when models are updated.
Such activities can be automated using an RMS. Goal models provide the rationales behind
requirements and system design; however, they also provide possible design alternatives
that are useful for systems with socio-technical concerns [57].

(a) (b)

Figure 5. (a) Overview of traceability in CGS4Adaptation. (b) TIM for managing traceability between
elements of goal and SysML models in a RMS.

In this context, the initial set of possible traceability links considered in this work
(Figure 5a) includes:

1. Trace links between goal model elements (intentional elements in GRL) and requirements.
2. Satisfy links between design elements (blocks in a SysML BDD) and goal model

elements (intentional elements in a GRL model).
3. Satisfy links between design elements (blocks in a BDD) and requirements (these links

already exist in SysML models).

These links can be set up in both directions. However, not all elements need to be
traced. Engineers can select the important elements based on their organizational roles and
the nature of the developed project itself [57]. Exploring the benefits of these links and the

Modelling 2023, 4 147

potential need for other types of links can support effective SCPS requirements definition,
modeling, and analysis.

4.1.3. Identify Traceability Information Model (TIM) across the Models

To facilitate tracing the links between models, we need to specify a TIM [11,30],
sometimes referred to as a link schema, between the involved models. This TIM/schema
formalizes the direction and type of each link connecting two objects in different modules.
Figure 5b describes the TIM provided by default in our method, which could be adapted to
the specific context of a given project depending on its analysis and reporting needs.

From this TIM, the traceability between the modules is managed by exploiting two
types of links: (1) links that are imported from models themselves and represented by
red/bold arrows and (2) links that can be added manually by the engineers, represented
by blue arrows. The new Satisfy and Trace links between GRL model elements and SysML
model elements in Figure 5b need to be populated manually in the RMS. Other such
links (possibly involving other model element types) could be created should the need
arise; however, this work only explores these particular links to keep the manual effort to
a minimum.

4.1.4. Identify Completeness and Consistency Rules

To better manage the traceability between different models, we need to define the
consistency and completeness rules that exploit the TIM model and can help reveal issues
between and within models in the context of SCPS. In our method, such rules include
the following:

1. Each GRL element (intentional element or actor) shall be satisfied by one or more blocks.
2. Each block shall satisfy one or more intentional elements.
3. Each intentional element shall be traced to one or more requirements.
4. Each requirement shall trace one or more intentional elements.
5. Each block shall satisfy one or more requirements.
6. Each requirement shall be satisfied by one or more blocks.
7. If the parent/owner of objects is linked to another module, all its associated children/parts

shall be implicitly considered linked to the same module (with the same link type).

• In a SysML model, all objects linked to another object in the same module via
ContainedBy, PartOf, or ChildOf relationships are considered children of that object.

• In a GRL model, all objects linked to another object in the same module via (AND,
OR, or XOR) decomposition relationships are considered parts of that object.

The last rule will help minimize the number of required links to be manually pro-
vided. Note that some model elements might be considered exceptions to the above rules
(e.g., a requirement about the color of a system element may not need to be linked to an
intentional element). For enabling modelers to identify false positives explicitly in such
cases (particularly when the consistency and completeness analysis is repeated), objects
that are annotated with an “ignore” flag will be ignored during analysis, and hence these
objects will not violate the rules (see Section 4.2.2).

4.2. Consistency and Completeness Checks

To efficiently alignment issues between models and fix them based on analysis results,
automated consistency and completeness checks are proposed in our traceability manage-
ment method. The steps corresponding to these checks, shown on the right side of Figure 4,
are detailed here.

4.2.1. Manage Inter-Model Traceability Links Following the TIM

Engineers can take advantage of an RMS (e.g., DOORS) to create, manage, and exploit
traceability links between the imported models and bridge the gaps between different
system views, including goals, requirements, design elements, and possibly others. DOORS

Modelling 2023, 4 148

comes out of the box with many impact and traceability analysis features that can be
used here.

However, DOORS and other RMSs, by default, do not understand the semantics
of the objects being traced, and hence cannot, out of the box, detect inconsistency and
incompleteness issues. Such detection mechanisms must be created to exploit intra-model
links (imported automatically as described in the previous subsection) and inter-model links
added manually (or possibly semi-automatically using specialized information retrieval techniques,
such as those reported by Mäder et al. [58], Rodriguez and Carver [59], Aung et al. [60]). The added
links must comply with the types and directions specified in the TIM.

4.2.2. Create the Consistency and Completeness Views

In order to keep the results of the consistency and completeness checks usable within
the DOORS environment, a new DOORS view called consistency and completeness is created
for each formal module. In addition to the object names and identifiers, this view shows
the following attributes:

1. Ignore flag: used to determine whether to validate the links of the related object or not.
2. Consistency and Completeness: describes detected consistency and completeness issues.
3. Implicit Link: holds the name and identifier of each object that has an indirect link

with the current object.
4. Two linked objects info attributes: each one holds the identifier and name of the

object linked to the current object. For example, the Requirements module provides
Block Info and Intentional Elements Info attributes, and the Blocks module provides
Requirements Info and Intentional Elements Info attributes.

4.2.3. Run the Consistency and Completeness Checks

To access the objects of each formal module and check their links, the DOORS DXL
is used to analyze this information based on the specified TIM (Figure 5b), and the seven
consistency and completeness rules defined in Section 4.1.4. Algorithms 1–4 show the steps
of these checks.

The result of these checks are saved in the created consistency and completeness views.
The DXL procedure Consistency and completeness checks in Algorithm 1 goes through each
object in the identified modules (which can be the Blocks module, Requirements module,
Intentional elements module, or Actors module) and checks the out/in links based on the
TIM defined in Figure 5b. This procedure searches for the desired links of specific linksets
and the related modules (parameters 3) according to the rules identified in Section 4.1.4. It
calls two recursive functions, inLink (Algorithm 2) and outLink (Algorithm 3), to search for
the incoming and outgoing traceability links in the identified module (parameters 3) via
the specified linkset (parameters 2).

In these functions, if the current object (parameters 1) has no link to/from the specified
module via the specified linkset, the Parent function (Algorithm 4) is called to check
whether the parents have the desired links (Rule 7). Furthermore, the intra-model links
imported from the original models are exploited by the Main procedure to cover implicit
links and track the parents’ chain of objects via the Parent function. Finally, if the inLink
and/or outLink functions do not return objects, a consistency and completeness problem is
recorded in the corresponding column of the DOORS module being checked. Although not
illustrated in the algorithms (to keep them simple), the objects annotated with the “ignore”
flag are skipped during the analysis.

Modelling 2023, 4 149

Algorithm 1 Consistency and completeness procedure handling rules #1 to #7 in Sec-
tion 4.1.4.

1: Module = {RequirementsModule, IntentionalModule, ActorModule,
BlockModule} . The exported modules

2: procedure CONSISTENCY AND COMPLETENESS CHECKS
3: for all module in Module do
4: set module to Edit mode
5: for all Object in module do
6: Clear the consistency and completeness attributes
7: end for
8: end for
9: for all Object in BlockModule do . Rules 2, 5 and 7.

10: if (OUTLINK(Object, Satisfy, RequirementsModule)==null
and INLINK(Object, SatisfiedBy, RequirementsRelationshipsModule)==null) then

11: Report consistency and completeness violation
12: else Save Object information
13: end if
14: if (INTLINK(Object, Satisfy, IntentionalModule)==null) then
15: Report consistency and completeness violation
16: else Save Object information
17: end if
18: end for
19: for all Object in RequirementsModule do . Rules 4, 6 and 7.
20: if (INTLINK(Object, Satisfy, BlockModule)==null

and OUTLINK(Object, SatisfiedBy, RequirementsRelationshipsModule)==null) then
21: Report consistency and completeness violation
22: else Save Object information
23: end if
24: if (OUTLINK(Object, Trace, IntentionalModule)==null) then
25: Report consistency and completeness violation
26: else Save Object information
27: end if
28: end for
29: for all Object in IntentionalModule do . Rules 1, 3, 7.
30: if (INLINK(Object, Trace, RequirementsModule)==null) then
31: Report consistency and completeness violation
32: else Save Object information
33: end if
34: if (OUTLINK(Object, Satisfy, BlockModule)==null) then
35: Report consistency and completeness violation
36: else Save Object information
37: end if
38: end for
39: for all Object in ActorModule do . Check Rule number 1.
40: if (INLINK(Object, Satisfy, BlockModule)==null) then
41: Report consistency and completeness violation
42: else Save Object information
43: end if
44: end for
45: for all module in Module do . Implicitly check
46: for all Object in module do
47: Search for implicit links and return the linked Object
48: if (Object != null) then
49: Assign the Object to the Implicitly link attribute
50: end if
51: end for
52: end for
53: for all module in Module do . Save and close the modules
54: save module
55: close module
56: end for
57: end procedure

Modelling 2023, 4 150

Algorithm 2 inLink function: checks specific kind of inlinks related to an Object and
its parents.

1: function INLINK(Object, Linkset, Module) . uses the imported/created Links
2: if (Object == null) then
3: return null
4: end if
5: if there is link of type Linkset from Module then
6: return the source Object
7: else
8: return inLink(PARENT(Object),Linkset, Module)
9: end if

10: end function

Algorithm 3 outlink function: checks specific kind of outlinks related to an Object and
its parents.

1: function OUTLINK(Object, Linkset, Module) . uses the imported/created Links
2: if (Object == null) then
3: return null
4: end if
5: if there is link of type Linkset to Module then
6: return the target Object
7: else
8: return outLink(PARENT(Object),Linkset, Module)
9: end if

10: end function

Algorithm 4 Parent function: returns the parent of a specific Object.

1: function PARENT(Object) . uses the imported relationships
2: switch Object.type do
3: case Block
4: if Object is the source of a PartOf/ChildOf link then
5: return the destination Object
6: else return null
7: end if
8: case Requirement
9: if Object is the source of a ContainedBy link to a Requirement then

10: return the destination Object
11: else return null
12: end if
13: case IntentionalElement
14: if Object is the source of a Decomposition link then
15: return the destination Object
16: else return null
17: end if
18: end switch
19: end function

4.2.4. Run the Implicit Links Checks

After checking all explicit links for each object, the implicit links are explored by the
same program to uncover potentially missing links between objects. Here, an implicit link
is a relationship that could not be discovered easily by engineers. For example, assume
a block is linked to a requirement but not to an intentional element. We check whether
the requirement (or one of its parents) is related to an intentional element. If yes, then this
block has an implicit link to the same intentional element. The results of this analysis are
reported in the Implicit link attribute for each object. Engineers can then filter/flag these
new attributes to add potentially missing links.

Modelling 2023, 4 151

To save engineers time and effort, these automated checks can be conducted before
and after creating new links in DOORS; engineers can efficiently build their traceability
links based on the analysis results as explained in the next section.

4.2.5. Analyze the Results and Apply Resolutions

When checking the consistency and completeness of the GRL and SysML models,
engineers can further explore the results using DOORS filters to (1) display the results
for specific conditions and (2) apply suitable resolutions in the same consistency and
completeness view. For each problematic element, the engineer may then choose one of the
following four resolutions:

1. Add a new Satisfy or Trace link.
2. Ignore this element during the checks by assigning “True” to its Ignore attribute.
3. Delete the element from the system design (and such a deletion will be communicated

to the other engineers through existing DOORS features).
4. Tolerate this issue and consider the project as not yet completed.

5. Smart Home Illustrative Case Study

We illustrate the feasibility and usefulness of the proposed method via an IoT-based
smart home management system case study that was first introduced in [25]. This case study
is based on the informal description provided by collaborators from the SM@RT Team [31],
in France. A smart home is composed of in-home services that (i) support elderly and
disabled people with the care needed to live independently in the home environment while
(ii) providing them with a comfortable and secure life despite age and physical limitations.

We designed goal and SysML models of a self-adaptive SHMS that aims to effectively
control most smart devices, such as smart thermostats, smart windows, and home electron-
ics, with the ability to control electricity consumption and production as well as the comfort,
privacy, and security of the inhabitants. Smart homes often rely on different IoT devices
for monitoring external sources of information as well as for activity recognition inside the
home [61]. For simplicity, these are not discussed here, and GRL indicators are used as prox-
ies for such monitored devices. Note that the models and corresponding DXL scripts are
available online at https://github.com/Smart-Contract-Modelling-uOttawa/Traceability
(accessed 11 January 2023).

5.1. SysML Model

This section presents subsets of the goal and SysML models of the SHMS, including a
GRL model created with jUCMNav and SysML block definition and requirement diagrams
created with Cameo Systems Modeler.

5.2. Smart Home Requirements

The high-level requirements of the self-adaptive smart home management system are
provided in Table 3.

5.3. Smart Home Goal Model

We created a GRL model for SHMS according to the Smart Home case study de-
scription from [31] and the requirements from Table 3. The model is divided into several
diagrams, which are shown in Figures 6–8. In GRL, actors (dashed ellipses) contain inten-
tional elements, which are mainly goals (rounded-corner rectangles), softgoals (clouds),
and tasks (hexagons), together with indicators (hexagons with two lines at the top and
bottom). AND/OR/XOR decomposition links are labeled accordingly, contributions are
arrows annotated with a numerical positive/negative weight, and dependencies are shown
with the filled D links. The small triangles indicate the existence of incoming/outgoing
traceability links within the URN model in jUCMNav.

https://github.com/Smart-Contract-Modelling-uOttawa/Traceability

Modelling 2023, 4 152

Table 3. Requirements of the smart home management system case study from [62]. Ct. = Category.

Ct. Id Description

Security

SH-01-010 The Smart Home shall support the prevention and detection of unauthorized physical intrusions.
SH-01-020 The Smart Home shall support the prevention and detection of unauthorized computer intrusions.
SH-01-050 The Smart Home shall be able to detect signs of fire.
SH-01-070 The Smart Home shall allow physical access to emergency services (firemen, hospital service, etc.).

Accommodation

SH-02-010 The Smart Home shall accommodate the various physical, medical, and mental conditions of the inhabitants.
SH-02-020 The Smart Home shall accommodate specific preferences entered by the inhabitants.
SH-02-030 The Smart Home shall learn from the behavior of inhabitants.
SH-02-040 The Smart Home shall assist inhabitants with certain everyday tasks.

Economy

SH-03-010 The Smart Home shall be energy efficient.
SH-03-020 The Smart Home’s annual energy consumption shall be less than the maximum imposed by local regulations.
SH-03-030 The Smart Home shall support the production and efficient use of energy via solar panels, wind turbines, etc.

Figure 6. GRL model of the top-level Manage home goal.

These three views of the GRL model are sufficient to illustrate the typical content
of the goal model of a SCPS without going further into the specifics of the language
or of the example, which are outside the scope of this paper. The construction of goal
models in general (in GRL and other languages) is further discussed in the surveys of
Horkoff et al. [21] and Goncalves et al. [63].

5.4. SysML Block Definition Diagram

The structure of the SHMS design is shown in a SysML block definition diagram
(Figures 9–11). These figures show the relationships between system blocks, including
hierarchy relationships, associations, dependencies, and decompositions, in addition to the
system requirements satisfied by these blocks.

Figure 9 illustrates the first level of decomposition of the Smart Home block, while
the second level of decomposition is described in Figure 11, where the Monitor block
and its related blocks and constraint blocks are introduced. Furthermore, one level of
generalization between the Smart device and its specific devices is shown in Figure 10,
where the blocks related to the Appliance controller block are described. Again, these three
views are sufficient to illustrate how a typical SCPS can be modeled in SysML, and the
interested reader is invited to refer to the work of Holt and Perry [64] for general SysML
modeling guidelines.

Modelling 2023, 4 153

Figure 7. GRL model of the Provide services sub-goal.

Figure 8. GRL model of the Monitor the environment sub-goal.

Modelling 2023, 4 154

Figure 9. Top-level SysML block definition diagram of the SHMS.

Figure 10. SysML block definition diagram of the Appliance controller block from Figure 9.

5.5. SysML Requirement Diagram

Figure 12 shows the SysML requirement diagram of the SHMS according to the require-
ments listed in Table 3. The diagram shows a compound requirement (SmartHomeSystem)
and the related sub-requirements (Economy, SecurityAndSafety, and Accommodation),
in addition to their own derived and sub-requirements.

5.6. Importing the Models into the DOORS Database

We exported GRL models from jUCMNav and SysML models from Cameo Systems
Modeler [27] to DXL scripts (invoking our DXL libraries) that were then executed by
DOORS. The result is that the elements of the goal and SysML models shown in the
previous subsections are formally represented into the DOORS database using formal/link
modules, objects, and attributes. Figure 13 shows the resulting formal and link modules of
the goal and SysML models in DOORS.

Modelling 2023, 4 155

Figure 11. SysML block definition diagram of the Monitor block from Figure 9.

Figure 12. SysML requirement diagram of the SHMS.

5.7. Managing Inter-Model Traceability Links

We used DOORS to manually create new traceability links between the GRL, require-
ments, and block definition diagrams following the specified TIM (blue links in Figure 5.b).
Furthermore, we created specific DOORS linksets based on the nine link modules imported
from GRL and SysML models to satisfy the directions and types of the links specified in
the TIM:

1. A linkset in the Satisfy link module from the Intentional elements module to the
Blocks module as shown in Figure 14. In this linkset, we created the following Satisfy
links between intentional elements and Blocks modules.

(a) From the Maximize security softgoal to the Smart security camera block;
(b) From the Low-temperature and High-temperature indicators to the Smart

thermostat block;

Modelling 2023, 4 156

(c) From the On ventilator and Off ventilator tasks to the Smart ventilator block;
(d) From the Learning technique task to the Learning technique block;
(e) From the Maximize comfort softgoal to the Smart device block;
(f) From the Monitor the environment goal to the Monitor block (but we did not

link all their children to the related block/intentional element);
(g) From the Normalize goal to the Normalize temperature block (but we did not

link its related goals and tasks to any block);
(h) From the Internet task to the Internet block;
(i) From the Wi-Fi task to the Wi-Fi block (but we did not link the owner block,

Provide services, to any intentional element).

2. A linkset in the Satisfy link module from the Blocks module to the Actors module. We
linked the System actor with the Smart home block and we assigned “True” to the
ignore attribute of the Inhabitants actor in the Actors formal module (so that it would
not create completeness or consistency issues).

3. A linkset in the Satisfy link module from the Blocks module to the Requirements
module. These Satisfy links are created as follows: the Monitor block is linked with
the Security and safety and Self-energy priority management requirements while the
Assistance and support requirement is linked to the Provide services block. However,
there are no links between their children (requirements or blocks) except for the links
already imported from the SysML model between these children.

4. A linkset in the Traced by link module from the Requirements module to the Inten-
tional elements module. In this linkset, the Manage appliances goal is linked to the
Appliances management requirement while the Manage energy goal and the Maxi-
mize energy production softgoal are linked to the Self-energy priority management
requirement. Furthermore, we connected the Minimize consumption softgoal with
the Annual consumption management requirement.

Figure 13. SysML model (left) and GRL model (right) imported in the DOORS database.

Note that we have not connected all the elements together to explain the proposed
rules and the benefits of the imported relationships. Creating traceability links could be
completed semi-automatically, e.g., using natural language processing [59,60]; however, this
is outside the scope of this paper.

5.8. Results

Figure 15 shows part of the consistency and completeness view of the Intentional
elements module. The Provide services goal is not linked to any block or requirement,
as seen in the ConsistencyAndCompleteness attribute, while its children (the WiFi and
Internet tasks) are connected explicitly to the WiFi and Internet blocks and implicitly to
the User preference requirement. This requirement is satisfied by the Provide services

Modelling 2023, 4 157

block, which is the parent of the WiFi and Internet blocks in the Blocks module (Rule #7 in
Section 4.1.4).

Figure 14. Satisfy linkset from the Intentional elements module to the Blocks module.

Figure 15. Results of the consistency and completeness checks of the Intentional elements module.

This relationship is an implicit one that is imported from the SysML model (see
Figure 9) and passed to all parts of the Provide services block during the consistency
and completeness checks because these parts do not have any direct link to the require-
ments model.

Moreover, the Solar panel task does not have any link (there is no triangle next to
the object name as shown in Figure 15); however, it is considered to be linked to the
Requirements and Blocks modules because its parent, the Manage energy goal, is linked
to the Self-energy priority management requirement via a Trace link (Section 5.7). Using
Rule #7, consistency and completeness checks propagate this relationship to all elements
belonging to the Manage energy goal, including Solar panel, Smart grid, and Wind turbines.

Moreover, the implicit link check discovered a Satisfy link from the Self-energy priority
management requirement to the Energy controller Block (see Figure 9), and so it passed
this link to all the intentional elements related to this requirement. As a result, the Solar

Modelling 2023, 4 158

panel, Smart grid, and Wind turbines tasks are linked to the Requirements and Intentional
elements modules using indirect links that engineers could not easily document otherwise.

Similarity, the Security and safety requirement is linked to the Monitor block, and thus
this relationship is passed on to all of its constituent requirements that have no relationships
with the Blocks module.

Figure 16 shows the test results where the Emergency and Physical intrusion detection
requirements inherit the relationship with the Monitor block from their parent (the Security
and safety requirement) while Fire detection does not since it is already connected to the
Fire constraint block in the SysML model. In the same manner, implicit links are also
discovered through the Monitor the environment goal that was linked to the Monitor
block, so these links are passed on to the Emergency and Physical intrusion detection
requirements. However, the Fire detection requirement obtained the same implicit link
with the Monitor the environment goal but from the Fire block, which is part of the Monitor
block. Furthermore, please note that the Appliances management requirement is a complete
requirement as it does not have any consistency or completeness issues.

Figure 16. Results of the consistency and completeness checks of the Requirements module.

From the consistency and completeness view of the Blocks module (Figure 17),
the Monitor block is consistent with the Intentional elements and Requirements mod-
ules, and its condition is transferred to its parts/children, including Motion sensors and
Wind sensors, during the check.

Automating the verification of consistency and completeness rules and of implicit
links enables better support for conventional impact analysis and change management
analysis by helping to ensure that no link is missing and by showing relevant details about
related elements in one usable view.

5.9. Analyze the Results and Apply Resolutions

After conducting the consistency and completeness checks, the results are saved in the
related views. Some DOORS filters useful for the CGS4Adaptation framework, particularly
regarding usability and efficiency, are presented below.

To display design elements that are not linked to goals and requirements, a filter can
be applied to the Blocks module to select the objects with empty Intentional elements info
and empty Requirements info attributes as illustrated in Figure 18. The result lists 16 blocks
and constraint blocks without a rationale (i.e., without a link to a requirement or to a goal).
The engineer can then apply the resolution (Section 4.2.5) most suitable for each issue
and re-run the checks again.

Modelling 2023, 4 159

Figure 17. Results of the consistency and completeness checks of the Blocks module.

Figure 18. DOORS filter: blocks without a rationale.

To extract and review only the satisfied objects (linked to design) and traced objects
(linked to requirements) in the Intentional elements module, a filter that extracts objects
with a non-empty block info and a non-empty requirements info or a non-empty implicit
link, can be applied. The result indicates that 37 elements (softgoals, goals, indicators,
or tasks) are complete and consistent in the GRL and SysML models, listed in Figure 19
(right), while there are 39 incomplete or inconsistent elements as displayed in the statistics
of Figure 19 (left).

The same filter is applied on the Requirements module to extract all the complete and
consistent requirements. The results of this filter, not shown here, include 14 complete require-
ments (satisfied by blocks and traced to goals) and 6 inconsistent or incomplete requirements.

To list the requirements that have a rationale (linked to the goal model) but that
are incomplete (not linked implicitly or explicitly to blocks), a filter that extracts the
requirements linked to intentional elements but not to blocks is applied. The filter condition
exploits the Implicit Link, Block Info, and Intentional Elements info attributes. The result
of applying this filter indicates that the annual consumption management is the only
incomplete requirement with a rationale. In this case, engineers can (1) bridge the gap and
link this requirement to a related block, (2) ignore this requirement during the checks by

Modelling 2023, 4 160

assigning “True” to its Ignore attribute (which is a good option for non-operationalized
requirements, such as “The color of the system shall be blue”), (3) delete the requirement,
or (4) tolerate this issue and consider the project as not yet completed.

Figure 19. DOORS filter: consistent intentional elements.

To list the incomplete requirements without a rationale, a complementary filter is
applied. The result (not shown here) indicate four requirements with such issues, namely
SmartHomeSystem, Economy, Energy saving, and Accommodation.

5.10. Case Study Observations

This case study demonstrated many benefits of our tool-supported traceability man-
agement method, including:

• GRL goal models and SysML models (with requirement diagrams and BDDs) of a
non-trivial SCPS can effectively be exported from modeling tools via MI-DSL and
imported into the DOORS RMS.

• The imported model elements are sufficiently granular to enable important inter-
model traceability links to be created according to a TIM.

• The seven consistency and completeness rules defined in Section 4.1.4 and automated
through DXL scripts enable the detection of important and non-trivial traceability issues.

• The use of parent–children relationships (inferred from the model’s internal links)
and of implicit links by the rules reduce the manual effort required to create explicit
intra-model links.

• The “ignore” flag (one of the resolutions) enables ignoring model elements that are
not meant to be covered by the rules and, hence, avoid many false positives when
violations are detected.

• The use of customized DOORS views and filters enables engineers to easily focus on
explicit violations and their resolutions.

5.11. Performance

This section reports on the performance of many aspects of the method highlighted
in Figure 3 and the algorithms of Section 4.2.3. Although we do not provide a formal
complexity analysis or a specific experiment targeting performance, we report several
important observations. First, regarding the models used in this smart home case study:

• The size of the SysML model is as follows. The Requirements module contains
20 requirements and 58 links related to requirements and other SysML elements.
The 3 block definition diagrams contain 60 blocks and 60 embedded links as well as
79 inter-block links.

Modelling 2023, 4 161

• The GRL model contains 76 intentional elements, 155 relationships, and 2 actors.
The elements and actors are linked to their diagrams via 78 links.

Regarding Figure 3, where we use MI-DSL and import/export tools:

• DXL Libraries: Generating the DXL libraries (part c Figure 3, e.g., for GRL and for
SysML) from their respective MI-DSL descriptions (part b) is fast and takes less than
2 s on a common Windows laptop. However, speed does not really matter here as this
step is performed once per TIM.

• Model Export: Regarding the generation of DXL scripts (part e) from modeling tools
(part d), Cameo Systems Modeler takes less than 3 s to generate DXL scripts for the
SysML model, whereas jUCMNav takes less than 2 s to generate scripts for the GRL
model. Both export mechanisms simply navigate a model to generate files, and the
complexity is linear with the number of elements and links in the model.

• Model Import: To import models (part f), DOORS takes longer (but less than a minute)
for importing the SysML and GRL models. Checking whether imported elements/links
exist and creating, deleting, or updating them is an expensive process in a DOORS
database. However, again, this is linear with the number of elements and links.

Finally, regarding the consistency and completeness checks between the goal and
SysML models described by Algorithms 1 to 4:

• A simple analysis of these algorithms suggests that these checks have a time com-
plexity that is linearly proportional to the number of objects in the DOORS modules
(the sequence of loops found in Algorithm 1) multiplied by how deep the objects are
in their models. This depth results from the traversal of parent–child relationships
defined in Algorithms 2 and 3, which use tail recursions (similar to a loop) and are
invoked within the loops of Algorithm 1.

• For the case study, DOORS takes several seconds to conduct the complete set of
checks, including for explicit and implicit links. The checks go through all the objects;
however, not all their links will be explored. Only links belonging to the current
object for specific linkSets (i.e., satisfy, partOf, IsSharedBy, Dependency, refersTo,
and childOf), and in specific directions are explored according to the introduced TIM.

Hence, in general, the time complexity is low (linear), and the performance is practical
for the types of usage scenarios envisioned for this method.

6. Threats to Validity

This section highlights the main threats to the validity of the proposed method and of
our research results, including bias and generalization [65].

6.1. Construct Validity

Construct validity assesses to what degree the evaluation method measures what the
proposed approach claims to do. One threat here is that case studies may not capture the
full complexity of real-world problems and models. This is partially mitigated by our case
study being based on existing and realistic descriptions and requirements provided by an
independent research team. Additionally, we studied the features and some of the values
of existing commercial smart home systems in order to create more realistic models.

6.2. Internal Validity

Internal validity assesses bias and other factors according to the degree to which
conclusions are met based on experimental settings and the collected measurements. One
threat here is that having only the first author involved in coding, testing, and reporting the
results of the method may have introduced unconscious bias. However, having two more
reviewers (the other coauthors) and four external researchers (doctoral thesis examiners)
review the goal and SysML models, the rules, the TIM, and the results helped to partially
mitigate the risk of bias. Furthermore, the availability of detailed and automatically-
generated RMS reports that include the views related to each model, the existing and

Modelling 2023, 4 162

additional links connecting the elements, and filtering capabilities helped the authors to
verify the results and reduce this risk of bias.

6.3. External Validity

External validity assesses the generalization of the results to other areas. The first
threat here is that our evaluation was performed via only one case study, and hence the
proposed method may not necessarily work as-is in other SCPS contexts or for non-SCPS
projects. Another threat is that this method was implemented through specific modeling
tools (jUCMNav and Cameo Systems Modeler) and one RMS (DOORS) and has strong
dependencies to these tools. This is partially mitigated for the modeling tools by the
availability of the MI-DSL technology; however, the latter still heavily depends on DOORS
and on a script-based (DXL) execution engine.

The method also relies on many GRL language features and may not be easily adapt-
able to other goal-oriented languages. As yet another threat, one particular TIM involving
GRL and SysML model elements was used in the current incarnation of CGS4Adaptation.
Although other TIMs could likely be used for better meeting the particular needs of given
SCPS projects, no other TIM was actually explored in this research. Additionally, al-
though our implementation of the proposed consistency and completeness rules depends
on that specific TIM, this threat is partially mitigated by the implementation-independent
description of these rules.

7. Conclusions and Future Work

To support the development of SCPSs (and particularly adaptive ones), connecting
social concerns and the design-time and run-time alternatives that satisfy these concerns
to system requirements and design is a crucial need. This paper proposed a model-based
method to manage the traceability between goal models expressed in GRL and the require-
ments and design artifacts modeled with SysML. The method supports many activities
considered mandatory for SCPS development [66].

This method enables GRL and SysML models to be efficiently created and analyzed
in existing tools. By describing the elements of interest in such languages using MI-
DSL, desired model elements and their attributes, relationships, and even diagrams can
effectively be imported and re-imported (upon model changes) in the DOORS RMS. Using
a powerful RMS, such as DOORS, enables sophisticated traceability and impact analyses,
not often found in design tools, to be used out of the box.

In order to automate analysis that exploits inter-model links (created manually) and
intra-model links (automatically imported), a traceability information model and related
completeness and consistency rules were provided. The rules were implemented as exe-
cutable programs (in DXL for DOORS) that navigate these links and report on inconsistency
and incompleteness issues.

We took advantage of DOORS to manage traceability between the imported models
while demonstrating how imported and manually-created links can be exploited to auto-
matically check the consistency and completeness of the GRL and SysML models, possibly
leading to additional changes in the models, to ensure that they are kept properly aligned.
Relevant views and filters were provided to help engineers focus their attention on diverse
types of reported issues and on their resolution. We evaluated the feasibility and usefulness
of the traceability management method using an IoT-based smart home case study.

The overall results show that importing GRL and SysML models into DOORS to
support traceability and alignment is feasible and beneficial. Note that the creation of an MI-
DSL description for SysML, the creation of a VTL export script for Cameo Systems Modeler,
the generation of DXL libraries and scripts, and the coding in DXL of automated consistency
checks took the first authors less than two weeks of development time without any prior
experience in MI-DSL, DXL, or VTL (we, hence, expect this to be faster for people with
experience in such languages).

Modelling 2023, 4 163

Moreover, the results suggest that rules can be checked through explicit links but also
through implicit links, often resulting from transitive relationships, hence, detecting issues
that cannot easily be spotted by engineers in large and complex models. The use of DOORS
views and filters supports the usable management of the traceability information as well as
the resolutions (linking, ignoring, or deleting elements or even tolerating an inconsistency)
that must be made by engineers. Clean, consistent, and complete links further facilitate
common change management and impact analysis processes to likely save engineers time
and effort.

Note that these contributions do not all require the simultaneous existence of GRL
together with SysML block definition and requirement diagrams. Within SysML, subsets
different from the one used here could be involved. For example, requirement diagrams
could be skipped if textual requirements exist elsewhere (as they would be redundant).
This flexibility provides more opportunities for the above contributions to be used outside
the SCPS context targeted by CGS4Adaptation.

The following research directions could be explored for further improvement and
increased validity.

• Further evaluation of the CGS4Adaptation framework and its new traceability man-
agement method could lead to additional improvements, particularly in terms of
generality (e.g., regarding other traceability information models and application ar-
eas) and efficiency. This could include industrial case studies and usability studies.
An application of CGS4Adaptation that would cover the entire development, imple-
mentation, and deployment cycles of a real-world self-adaptive system would be
particularly relevant.

• Exploring opportunities to bring GRL/feature modeling concepts and techniques
directly into future versions of the SysML standard, in order to minimize the number
of tools needed to support adaptive SCPS approaches, such as GS4Adaptation. The up-
coming version 2.0 of SysML, whose work started in 2017 [67], will likely include
concepts for supporting concerns (akin to goals) and stakeholders [68] but without
specific relationships or indicators (which make the richness of a language, such
as GRL).

• MI-DSL provides some level of independence regarding the goal and SysML modeling
tools used by our method. However, minimizing the dependency to a specific RMS
(DOORS) remains an important topic that deserves much attention.

• In a context where the traceability needs of a long-term project will evolve [69], the TIM
will likely need some modifications as well, which is a challenge [70]. Providing mech-
anisms to generate consistency and completeness rules, views, and filters according to
a custom-made or evolving TIM involving the goal and SysML languages would also
bring important benefits in supporting the needs of projects.

Author Contributions: Conceptualization, A.A.A. and D.A.; methodology, A.A.A. and D.A.; soft-
ware, A.A.A.; validation, A.A.A.; analysis, A.A.A. and D.A.; investigation, A.A.A. and D.A.; resources,
A.A.A. and D.A.; data curation, A.A.A.; writing—original draft preparation, A.A.A.; writing—review
and editing, D.A. and J.M; visualization, A.A.A.; supervision, D.A. and J.M.; project administration,
D.A.; funding acquisition, A.A.A. and J.M. All authors have read and agreed to the published version
of the manuscript.

Funding: Amal Ahmed Anda was supported by a scholarship from the Libyan Ministry of Education
as well as funding from John Mylopoulps’s NSERC Discovery grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Dassault Systèmes and IBM for supplying free educational
licenses of Cameo Systems Modeler and IBM Rational DOORS, respectively. They are also thankful to
B. Jiang, S. Ghanavati, G. Mussbacher, A. Rahman, and X. Zhao for their previous work on MI-DSL,

Modelling 2023, 4 164

to J.-M. Bruel for providing the smart home case study, and to J. Sincennes and C. Sibbald for tool
support over the years.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BDD Block Definition Diagram
CGS4Adaptation Combining Goals and SysML for Adaptive SCPSs
CPS Cyber-Physical System
DOORS Dynamic Object Oriented Requirements System
DSL Domain Specific Language
DXL DOORS eXtension Language
GQM Goal Quality Metric
GRL Goal-Oriented Requirement Language
KPI Key Performance Indicator
IoT Internet of Things
MI-DSL Model Import DSL
RMS Requirements Management System
SCPS Socio-Cyber-Physical System
SHMS Smart Home Management System
SysML Systems Modeling Language
TIM Traceability Information Model
URN User Requirements Notation
VTL Velocity Template Language

References
1. Smirnov, A.; Kashevnik, A.; Ponomarev, A. Multi-level Self-organization in Cyber-Physical-Social Systems: Smart Home Cleaning

Scenario. Procedia CIRP 2015, 30, 329–334. [CrossRef]
2. Cavalcante, E.; Batista, T.; Bencomo, N.; Sawyer, P. Revisiting Goal-Oriented Models for Self-Aware Systems-of-Systems. In

Proceedings of the 2015 IEEE International Conference on Autonomic Computing (ICAC), Washington, DC, USA, 7–10 July 2015;
pp. 231–234. [CrossRef]

3. Frazzon, E.M.; Hartmann, J.; Makuschewitz, T.; Scholz-Reiter, B. Towards Socio-Cyber-Physical Systems in Production Networks.
Procedia CIRP 2013, 7, 49–54. [CrossRef]

4. Anda, A.A.; Amyot, D. Self-Adaptation Driven by SysML and Goal Models—A Literature Review. e-Inform. Softw. Eng. J. 2022,
16, 220101. [CrossRef]

5. OMG. OMG Systems Modeling Language (OMG SysML™) Version 1.7. 2022. Available online: https://www.omg.org/spec/
SysML/1.7/Beta1/PDF (accessed on 11 January 2023).

6. Amyot, D.; Anda, A.A.; Baslyman, M.; Lessard, L.; Bruel, J.M. Towards Improved Requirements Engineering with SysML and the
User Requirements Notation. In Proceedings of the 2016 IEEE 24th International Requirements Engineering Conference (RE),
Beijing, China, 12–13 September 2016; pp. 329–334. [CrossRef]

7. Blair, G.; Bencomo, N.; France, R.B. Models@Run.Time. Computer 2009, 42, 22–27. [CrossRef]
8. Jureta, I.J.; Borgida, A.; Ernst, N.A.; Mylopoulos, J. The requirements problem for adaptive systems. ACM Trans. Manag. Inf. Syst.

(TMIS) 2015, 5, 17. [CrossRef]
9. Welsh, K.; Bencomo, N.; Sawyer, P.; Whittle, J. Self-explanation in adaptive systems based on runtime goal-based models. In

Transactions on Computational Collective Intelligence XVI; Springer: Berlin, Heidelberg, 2014; pp. 122–145. _5 [CrossRef]
10. Nguyen, T. An Improved Approach to Traceability in the Engineering of Complex Systems. In Proceedings of the 2018 IEEE

International Systems Engineering Symposium (ISSE), Rome, Italy, 1–3 October 2018; pp. 1–6. [CrossRef]
11. Gotel, O.; Cleland-Huang, J.; Hayes, J.H.; Zisman, A.; Egyed, A.; Grünbacher, P.; Dekhtyar, A.; Antoniol, G.; Maletic, J.; Mäder, P.,

Traceability Fundamentals. In Software and Systems Traceability; Springer: London, UK, 2012; pp. 3–22. [CrossRef]
12. Wang, H. Multi-Level Requirement Model and its Implementation for Medical Device. Master’s Thesis, Mechanical and Energy

Engineering, Purdue University, West Lafayette, IN, USA, 2018. Available online: https://scholarworks.iupui.edu/bitstream/
handle/1805/16926/Thesis-%20Hua%20Wang%20727.pdf (accessed on 11 January 2023).

13. Anda, A.A.; Amyot, D. Arithmetic Semantics of Feature and Goal Models for Adaptive Cyber-Physical Systems. In Proceedings
of the 27th IEEE International Requirements Engineering Conference (RE’19), Jeju Island, Republic of Korea, 23–27 September
2019; pp. 245–256. [CrossRef]

http://doi.org/10.1016/j.procir.2015.02.089
http://dx.doi.org/10.1109/ICAC.2015.43
http://dx.doi.org/10.1016/j.procir.2013.05.009
http://dx.doi.org/10.37190/e-Inf220101
https://www.omg.org/spec/SysML/1.7/Beta1/PDF
https://www.omg.org/spec/SysML/1.7/Beta1/PDF
http://dx.doi.org/10.1109/RE.2016.58
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1145/2629376
http://dx.doi.org/10.1007/978-3-662-44871-7_5
http://dx.doi.org/10.1109/SysEng.2018.8544436
http://dx.doi.org/10.1007/978-1-4471-2239-5-1
https://scholarworks.iupui.edu/bitstream/handle/1805/16926/Thesis-%20Hua%20Wang%20727.pdf
https://scholarworks.iupui.edu/bitstream/handle/1805/16926/Thesis-%20Hua%20Wang%20727.pdf
http://dx.doi.org/10.1109/RE.2019.00034

Modelling 2023, 4 165

14. Anda, A.A. Modeling Adaptive Socio-Cyber-Physical Systems with Goals and SysML. In Proceedings of the Doctoral Symposium,
2018 IEEE 26th International Requirements Engineering Conference (RE), Banff, AB, Canada, 20–24 August 2018; pp. 442–447.
[CrossRef]

15. Anda, A.A. Combining Goals and SysML for Traceability and Decision-Making in the Development of Adaptive Socio-Cyber-
Physical Systems. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2020.

16. Fisher, Z.C.; Cooksey, K.D.; Mavris, D. A model-based systems engineering approach to design automation of SUAS. In
Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, Montana, USA, 4–11 March 2017; pp. 1–15. [CrossRef]

17. Akbas, A.S.; Mykoniatis, K.; Angelopoulou, A.; Karwowski, W. A model-based approach to modeling a hybrid simulation
platform (work in progress). In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative, San Diego,
CA, USA, 7–10 April 2013; Society for Computer Simulation International: San Diego, CA, USA, 2014; Volume 46, pp. 223–228.

18. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language, 3rd ed.; Morgan Kaufmann:
Waltham, MA, USA, 2014. [CrossRef]

19. van Lamsweerde, A.; Darimont, R.; Letier, E. Managing conflicts in goal-driven requirements engineering. IEEE Trans. Softw. Eng.
1998, 24, 908–926. [CrossRef]

20. Franch, X.; López, L.; Cares, C.; Colomer, D. The i* Framework for Goal-Oriented Modeling. In Domain-Specific Conceptual
Modeling: Concepts, Methods and Tools; Springer International Publishing: Cham, Switzerland, 2016; pp. 485–506. [CrossRef]

21. Horkoff, J.; Aydemir, F.B.; Cardoso, E.; Li, T.; Maté, A.; Paja, E.; Salnitri, M.; Piras, L.; Mylopoulos, J.; Giorgini, P. Goal-oriented
requirements engineering: an extended systematic mapping study. Requir. Eng. 2019, 24, 133–160. [CrossRef] [PubMed]

22. ITU-T. Recommendation Z.151 (10/18): User Requirements Notation (URN) - Language Definition; International Telecommunication
Union: Geneva, Switzerland, 2018. Available online: http://www.itu.int/rec/T-REC-Z.151/en (accessed on 11 January 2023).

23. Anda, A.A.; Amyot, D. Goal and Feature Model Optimization for the Design and Self-Adaptation of Socio-Cyber-Physical
Systems. J. Integr. Des. Process Sci. 2022, 25, 1–37. [CrossRef]

24. Nešić, D.; Krüger, J.; Stănciulescu, S.; Berger, T. Principles of Feature Modeling. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn,
Estonia, 26–30 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; p. 62–73. [CrossRef]

25. Anda, A.A.; Amyot, D. Traceability Management of GRL and SysML Models. In Proceedings of the 12th System Analysis and
Modelling Conference (SAM’20), Online, 19–20 October 2020; ACM: New York, NY, USA, 2020, pp. 117–126. [CrossRef]

26. Kealey, J.; Tremblay, E.; Andreev, D.; Roy, J.-F., Daigle, J.-P.; Boulet, P.; Blouin, D.; Hassine, J.; Miga, A., Mussbacher, G.; et al.
jUCMNav: Juice Up Your Modelling! 2021. Available online: https://github.com/JUCMNAV/projetseg-update/wiki (accessed
on 11 January 2023).

27. No Magic Inc. Cameo Systems Modeler. 2019. Available online: https://www.nomagic.com/products/cameo-systems-modeler#
resources (accessed on 11 January 2023).

28. IBM. IBM Engineering Requirements Management DOORS Documentation. 2022. Available online: https://www.ibm.com/
docs/en/ermd (accessed on 11 January 2023).

29. Dick, J.; Hull, E.; Jackson, K. DOORS: A Tool to Manage Requirements. In Requirements Engineering; Springer: London, UK,
2017; pp. 187–206. [CrossRef]

30. Steghöfer, J.P.; Koopmann, B.; Becker, J.S.; Törnlund, M.; Ibrahim, Y.; Mohamad, M. Design Decisions in the Construction of
Traceability Information Models for Safe Automotive Systems. In Proceedings of the 2021 IEEE 29th International Requirements
Engineering Conference (RE), Notre Dame, IN, USA, 20–24 September 2021; pp. 185–196. [CrossRef]

31. Informatics Research Institute of Toulouse. SM@RT Team. 2022. Available online: https://smart-researchteam.github.io/
(accessed on 11 January 2023).

32. Bouchard, K.; Bouchard, B.; Bouzouane, A. Guidelines to efficient smart home design for rapid AI prototyping: A case study. In
Proceedings of the fifth International Conference on PErvasive Technologies Related to Assistive Environments (PETRA), Crete,
Greece, 6–8 June 2012; ACM, 2012; pp. 1–8. [CrossRef]

33. Fan, Y.; Anda, A.A.; Amyot, D. An Arithmetic Semantics for GRL Goal Models with Function Generation. In Proceedings of the
System Analysis and Modeling. Languages, Methods, and Tools for Systems Engineering (SAM 2018), Copenhagen, Denmark,
15–16 October 2018; Springer: Cham, Switzerland, 2018; Volume 11150, pp. 144–162. [CrossRef]

34. Chatzikonstantinou, G.; Kontogiannis, K. Run-time requirements verification for reconfigurable systems. Inf. Softw. Technol. 2016,
75, 105–121. [CrossRef]

35. Wang, W.; Niu, N.; Alenazi, M.; Da Xu, L. In-Place Traceability for Automated Production Systems: A Survey of PLC and SysML
Tools. IEEE Trans. Ind. Inform. 2019, 15, 3155–3162. [CrossRef]

36. Apache Velocity Project. Velocity Template Language, 2021. Available online: http://velocity.apache.org/engine/devel/user-
guide.html (accessed on 11 January 2023).

37. IBM. IBM Rational DOORS DXL Reference Manual Release 9.7.0, 2019. Available online: https://goo.gl/iJFLdV (accessed on
11 January 2023).

38. OASIS OPEN. Open Services Lifecycle Collaboration (OSLC), 2018. Available online: https://open-services.net/specifications/
(accessed on 11 January 2023).

http://dx.doi.org/10.1109/RE.2018.00059
http://dx.doi.org/10.1109/AERO.2017.7943597
http://dx.doi.org/10.1016/C2013-0-14457-1
http://dx.doi.org/10.1109/32.730542
http://dx.doi.org/10.1007/978-3-319-39417-6_22
http://dx.doi.org/10.1007/s00766-017-0280-z
http://www.ncbi.nlm.nih.gov/pubmed/31231153
http://www.itu.int/rec/T-REC-Z.151/en
http://dx.doi.org/10.3233/JID210022
http://dx.doi.org/10.1145/3338906.3338974
http://dx.doi.org/10.1145/3419804.3420272
https://github.com/JUCMNAV/projetseg-update/wiki
https://www.nomagic.com/products/cameo-systems-modeler#resources
https://www.nomagic.com/products/cameo-systems-modeler#resources
https://www.ibm.com/docs/en/ermd
https://www.ibm.com/docs/en/ermd
http://dx.doi.org/10.1007/978-1-4471-3730-6_9
http://dx.doi.org/10.1109/RE51729.2021.00024
https://smart-researchteam.github.io/
http://dx.doi.org/10.1145/2413097.2413134
http://dx.doi.org/10.1007/978-3-030-01042-3_9
http://dx.doi.org/10.1016/j.infsof.2016.04.005
http://dx.doi.org/10.1109/TII.2018.2878782
http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/engine/devel/user-guide.html
https://goo.gl/iJFLdV
https://open-services.net/specifications/

Modelling 2023, 4 166

39. Rahman, A.; Amyot, D. A DSL for importing models in a requirements management system. In Proceedings of the fourth
International Model-Driven Requirements Engineering Workshop (MoDRE), Karlskrona, Sweden, 25 August 2014; pp. 37–46.
[CrossRef]

40. Eclipse Foundation. Xtext: Language Engineering for Everyone!, 2023. Available online: http://www.eclipse.org/Xtext/
(accessed on 11 January 2023).

41. Eclipse Foundation. Xtend: Java with Spice!, 2023. Available online: http://www.eclipse.org/xtend/ (accessed on 11 January 2023).
42. Jiang, B. Combining Graphical Scenarios with a Requirements Management System. Master’s Thesis, University of Ottawa,

Ottawa, ON, Canada, 2005. [CrossRef]
43. Ghanavati, S. A compliance framework for business processes based on URN. Master’s Thesis, University of Ottawa, Ottawa,

ON, Canada, 2007. [CrossRef]
44. Rahman, A. A Domain-Specific Language for Traceability in Modeling. Master’s Thesis, University of Ottawa, Ottawa, ON,

Canada, 2013. [CrossRef]
45. Cui, X.; Paige, R.F. An integrated framework for system/software requirements development aligning with business motivations.

In Proceedings of the 2012 IEEE/ACIS 11th International Conference on Computer and Information Science, ICIS 2012, Shanghai,
China, 30 May–1 June 2012; pp. 547–552. [CrossRef]

46. OMG. Business Motivation Model (BMM), Version 1.3. 2015. Available online: https://www.omg.org/spec/BMM/1.3/ (accessed
on 11 January 2023).

47. Ahmad, M.; Belloir, N.; Bruel, J.M. Modeling and verification of functional and non-functional requirements of ambient self-
adaptive systems. J. Syst. Softw. 2015, 107, 50–70. [CrossRef]

48. Badreddin, O.; Abdelzad, V.; Lethbridge, T.C.; Elaasar, M. FSysML: Foundational executable SysML for cyber-physical system
modeling. In Proceedings of the 4th International Workshop on the Globalization Of Modeling Languages (GEMOC), Saint-Malo,
France, 4 October 2016; pp. 38–51. Available online: https://ceur-ws.org/Vol-1731/paper_3.pdf (accessed on 11 January 2023).

49. Maskani, I.; Boutahar, J.; El Ghazi El Houssaïni, S. Modeling telemedicine security requirements using a SysML security extension.
In Proceedings of the 2018 sixth International Conference on Multimedia Computing and Systems (ICMCS), Rabat, Morocco,
10–12 May 2018; pp. 1–6. [CrossRef]

50. Lee, S.M.; Park, S.; Park, Y.B. Self-Adaptive System Verification based on SysML. In Proceedings of the 2019 International
Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 20–25 January 2019; pp. 1–3.
[CrossRef]

51. Wang, Y.; Sun, Q.; Wang, M.; Zhang, Y. The Requirement Traceable Modeling Method and Application of UAV Command
System-of-systems Based on SysML. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS),
Beijing, China, 15–17 October 2021; pp. 767–772. [CrossRef]

52. Mimura, N.; Okuda, S.; Washizaki, H.; Shintani, K.; Fukazawa, Y. Systematical Alignment of Business Requirements and System
Functions by Linking GQM+ Strategies and SysML. Int. J. Serv. Knowl. Manag. 2021, 5, 15–35. [CrossRef]

53. Basili, V.; Trendowicz, A.; Kowalczyk, M.; Heidrich, J.; Seaman, C.; Münch, J.; Rombach, D. Aligning Organizations through
Measurement The GQM+ Strategies Approach; Springer: Cham, Switzerland, 2014. [CrossRef]

54. Nejati, S.; Sabetzadeh, M.; Falessi, D.; Briand, L.; Coq, T. A SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case studies. Inf. Softw. Technol. 2012, 54, 569–590. [CrossRef]

55. Haidrar, S.; Anwar, A.; Roudies, O. Towards a generic framework for requirements traceability management for SysML language.
In Proceedings of the 2016 fourth IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, Morocco,
24–26 October 2016; pp. 210–215. [CrossRef]

56. Haidrar, S.; Anwar, A.; Roudies, O. A SysML-Based Approach to Manage Stakeholder Requirements Traceability. In Proceedings
of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United
Arab Emirates, 5–8 December 2017; pp. 202–207. [CrossRef]

57. Berenbach, B.; Paulish, D.; Kazmeier, J.; Rudorfer, A. Software & Systems Requirements Engineering: In Practice; McGraw-Hill,
Inc.: New York, NY, USA, 2009. Available online: https://www.accessengineeringlibrary.com/content/book/9780071605472
(accessed on 11 January 2023).

58. Mäder, P.; Olivetto, R.; Marcus, A. Empirical studies in software and systems traceability. Empir. Softw. Eng. 2017, 22, 963–966.
[CrossRef]

59. Rodriguez, D.V.; Carver, D.L. Comparison of Information Retrieval Techniques for Traceability Link Recovery. In Proceedings of
the 2019 IEEE second International Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA, 14–17
March 2019; pp. 186–193. [CrossRef]

60. Aung, T.W.W.; Huo, H.; Sui, Y. A Literature Review of Automatic Traceability Links Recovery for Software Change Impact
Analysis. In Proceedings of the 28th International Conference on Program Comprehension, Online, 13–15 July 2020; pp. 14–24.
[CrossRef]

61. Cicirelli, F.; Fortino, G.; Giordano, A.; Guerrieri, A.; Spezzano, G.; Vinci, A. On the Design of Smart Homes: A Framework for
Activity Recognition in Home Environment. J. Med. Syst. 2016, 40, 1–17. [CrossRef] [PubMed]

62. Bruel, J.M. Smart Home Challenge Problem, 2018. Available online: https://bit.ly/SmartHomeChallenge2018 (accessed on
11 January 2023).

63. Goncalves, E.; Araujo, J.; Castro, J. PRISE: a process to support iStar extensions. J. Syst. Softw. 2020, 168, 110649. [CrossRef]

http://dx.doi.org/10.1109/MoDRE.2014.6890824
http://www.eclipse.org/Xtext/
http://www.eclipse.org/xtend/
http://dx.doi.org/10.20381/ruor-11838
http://dx.doi.org/10.20381/ruor-18718
http://dx.doi.org/10.20381/ruor-3112
http://dx.doi.org/10.1109/ICIS.2012.32
https://www.omg.org/spec/BMM/1.3/
http://dx.doi.org/10.1016/j.jss.2015.05.028
https://ceur-ws.org/Vol-1731/paper_3.pdf
http://dx.doi.org/10.1109/ICMCS.2018.8525939
http://dx.doi.org/10.23919/ELINFOCOM.2019.8706383
http://dx.doi.org/10.1109/ICUS52573.2021.9641259
http://dx.doi.org/10.52731/ijskm.v5.i1.540
http://dx.doi.org/10.1007/978-3-319-05047-8
http://dx.doi.org/10.1016/j.infsof.2012.01.005
http://dx.doi.org/10.1109/CIST.2016.7805044
http://dx.doi.org/10.1109/AICCSA.2017.183
https://www.accessengineeringlibrary.com/content/book/9780071605472
http://dx.doi.org/10.1007/s10664-017-9509-1
http://dx.doi.org/10.1109/INFOCT.2019.8710919
http://dx.doi.org/10.1145/3387904.3389251
http://dx.doi.org/10.1007/s10916-016-0549-7
http://www.ncbi.nlm.nih.gov/pubmed/27468841
https://bit.ly/SmartHomeChallenge2018
http://dx.doi.org/10.1016/j.jss.2020.110649

Modelling 2023, 4 167

64. Holt, J.; Perry, S. SysML for Systems Engineering; Institution of Engineering and Technology (IET), London, UK; 2008; Volume 7.
65. Feldt, R.; Magazinius, A. Validity Threats in Empirical Software Engineering Research-An Initial Survey. In Proceedings of the

SEKE, Redwood City, CA, USA, 1–3 July 2010; pp. 374–379. Availabline online: https://bit.ly/Feldt-Treats-2010 (accessed on
11 January 2023).

66. Lace, K.; Kirikova, M. Required Changes in Requirements Engineering Approaches for Socio-Cyber-Physical Systems. In
Proceedings of the CRE+FIRE, REFSQ-JP 2018, CEUR-WS, Utrecht, The Netherlands, 19 March 2018; Volume 2075. Available
online: https://ceur-ws.org/Vol-2075/CRE18_paper2.pdf (accessed on 11 January 2023).

67. OMG. Systems Modeling Language (SysML) v2 Request For Proposal (RFP). 2017. Available online: http://www.omg.org/cgi-
bin/doc.cgi?ad/2017-12-2 (accessed on 11 January 2023).

68. Seidewitz, E. OMG Systems Modeling Language (SysML), Version 2.0, Release 2022-11 (Submitted Response). 2022. Available
online: https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2-OMG_Systems_Modeling_Language.
pdf (accessed on 11 January 2023).

69. Kirikova, M. Continuous Requirements Engineering in the Context of Socio-cyber-Physical Systems. In Proceedings of the
Databases and Information Systems (DB&IS 2020), Tallinn, Estonia, 16–19 June 2020; Robal, T.; Haav, H.M.; Penjam, J.; Matule-
vičius, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–12. [CrossRef]

70. Maro, S.; Steghofer, J.P.; Knauss, E.; Horkoff, J.; Kasauli, R.; Wohlrab, R.; Korsgaard, J.L.; Wartenberg, F.; Strøm, N.J.; Alexandersson,
R. Managing Traceability Information Models: Not Such a Simple Task After All? IEEE Softw. 2021, 38, 101–109. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://bit.ly/Feldt-Treats-2010
https://ceur-ws.org/Vol-2075/CRE18_paper2.pdf
http://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
http://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2-OMG_Systems_Modeling_Language.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2-OMG_Systems_Modeling_Language.pdf
http://dx.doi.org/10.1007/978-3-030-57672-1_1
http://dx.doi.org/10.1109/MS.2020.3020651

	Introduction
	Background Technologies
	Goal Modeling Language and Tool: GRL and jUCMNav
	SysML Modeling Tool: Cameo Systems Modeler
	RMS: IBM Rational DOORS
	Model Import DSL (MI-DSL)

	Related Work
	Traceability Management Method
	Preparation
	Import the Models into the RMS Database
	Identify Traceability Links
	Identify Traceability Information Model (TIM) across the Models
	Identify Completeness and Consistency Rules

	Consistency and Completeness Checks
	Manage Inter-Model Traceability Links Following the TIM
	Create the Consistency and Completeness Views
	Run the Consistency and Completeness Checks
	Run the Implicit Links Checks
	Analyze the Results and Apply Resolutions

	Smart Home Illustrative Case Study
	SysML Model
	Smart Home Requirements
	Smart Home Goal Model
	SysML Block Definition Diagram
	SysML Requirement Diagram
	Importing the Models into the DOORS Database
	Managing Inter-Model Traceability Links
	Results
	Analyze the Results and Apply Resolutions
	Case Study Observations
	Performance

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions and Future Work
	References

