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Abstract: Copulas are well-known tools for describing the relationship between two or more quanti-
tative variables. They have recently received a lot of attention, owing to the variable dependence
complexity that appears in heterogeneous modern problems. In this paper, we offer five new copulas
based on a common original ratio form. All of them are defined with a single tuning parameter, and
all reduce to the independence copula when this parameter is equal to zero. Wide admissible domains
for this parameter are established, and the mathematical developments primarily rely on non-trivial
limits, two-dimensional differentiations, suitable factorizations, and mathematical inequalities. The
corresponding functions and characteristics of the proposed copulas are looked at in some important
details. In particular, as common features, it is shown that they are diagonally symmetric, but
not Archimedean, not radially symmetric, and without tail dependence. The theory is illustrated
with numerical tables and graphics. A final part discusses the multi-dimensional variation of our
original ratio form. The contributions are primarily theoretical, but they provide the framework for
cutting-edge dependence models that have potential applications across a wide range of fields. Some
established two-dimensional inequalities may be of interest beyond the purposes of this paper.
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1. Introduction

In data analysis, modeling the association (or dependence) between two or more
variables is crucial. To capture and quantify such associations, a number of ideas have
been put forth in the literature. When quantitative variables are considered, the idea of
copulas continues to be one of the most helpful among them. A copula can be thought of as
a cutting-edge tool for modeling and expressing various relationships among continuous
random variables, giving additional freedom for creating multivariate stochastic models.
The applications are in a variety of applied fields, including informatics, engineering,
insurance, physics, hydrology, medicine, astronomy, etc. See [1–4], among others. If we
restrict our attention to the two-dimensional case, a copula is defined as a cumulative
distribution function on [0, 1]2, with continuous uniform marginal distributions. A precise
definition of a two-dimensional copula in the absolutely continuous case is proposed below
(see [5]).

Definition 1. The function C: [0,1]2 → [0,1] is an (absolutely continuous) two-dimensional
copula if and only if

(i) we have C(x, 0) = C(0, y) = 0 for any (x, y) ∈ [0, 1]2,

(ii) we have C(x, 1) = x and C(1, y) = y for any (x, y) ∈ [0, 1]2,

(iii) we have (in the absolutely continuous case)

∂x,yC(x, y) ≥ 0

for any (x, y) ∈ [0, 1]2, where ∂x,y = ∂2/(∂x∂y) denotes the mixed second order partial
derivatives according to x and y.

Modelling 2023, 4, 102–132. https://doi.org/10.3390/modelling4020008 https://www.mdpi.com/journal/modelling

https://doi.org/10.3390/modelling4020008
https://doi.org/10.3390/modelling4020008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://doi.org/10.3390/modelling4020008
https://www.mdpi.com/journal/modelling
https://www.mdpi.com/article/10.3390/modelling4020008?type=check_update&version=1


Modelling 2023, 4 103

Theory, examples, inferences, and applications can be found in the following avoidable
references: [5–9]. The commonly used copulas include the Ali–Mikhail–Haq, Clayton,
Farlie–Gumbel–Morgenstern (FGM), Frank, Fréchet, Gumbel–Barnett (GB), Hüsler–Reiss,
Joe, Marshall–Olkin, and Plackett copulas. With the computational developments and
extensive data analysis, the existing copulas have shown some limits, and the need for more
original copulas has arisen. As a result, many authors have devised novel strategies for
producing copulas with unique forms and manageable dependence properties. See [10–21],
among others. In particular, the contemporary works of [14,17] have attracted our attention.

• In [17], copulas of the following product form are investigated:

C(x, y) = xyφ[(1− x)(1− y)], (x, y) ∈ [0, 1]2, (1)

where φ(x) is a uni-dimensional function that has certain properties (which will be
omitted here). The construction of the FGM copula has clearly inspired this form. By
tuning the function φ(x), the resulting copulas innovate by proposing entirely new
dependence models based on various functional natures. In [17], many examples
are offered.

• One may also mention the original approach in [14], generating copulas of the follow-
ing polyno-exponential form:

C(x, y) = xy exp[−φ(x)ψ(y)], (x, y) ∈ [0, 1]2, (2)

where φ(x) and ψ(x) are two distinct uni-dimensional functions that satisfy certain
properties (which we will ignore here). It is obvious that this form was influenced by
the way the GB copula is constructed. Copulas of this kind are innovative in that they
present completely novel dependence models, frequently with a substantial negative
dependence and based on different functional natures. Numerous examples are given
in [14].

Two simple examples of the copulas in Equations (1) and (2) are the independence
copula, i.e., Π(x, y) = xy, and the Celebioglu–Cuadras (CC) copula defined by

Cα(x, y) = xy exp[α(1− x)(1− y)], (x, y) ∈ [0, 1]2,

with α ∈ [−1, 1]. The CC copula is recognized to be particularly adaptable in terms of
dependent qualities and has a straightforward mathematical structure. We refer to [22–24]
for more information.

The functional generalization schemes in Equations (1) and (2), combined with the
rarity of non-Archimedean ratio copulas in the literature, lead to a novel insight when
considering copulas of the following form:

C(x, y) = xy
φ(x)φ(y)

φ(1)φ(xy)
, (x, y) ∈ [0, 1]2, (3)

where φ(x) is a specific uni-dimensional function. As a result, C(x, y) can be viewed as
a multiplicatively perturbed version of the independence copula Π(x, y). Because of the
term φ(xy) in the denominator, the perturbed function can be non-separable with respect
to x and y, which is a quite unusual form in a copula setting. Indeed, there are only a
few known examples of this type of copula, including the independence copula and the
CC copula derived from the function φ(x) = exp(−αx). One can also mention the new
ratio (NR) copula introduced in [25] and obtained with φ(x) = 2− x. The lack of other
referenced examples, as well as the originality of the form in Equation (3), are motivations
for further research in this area. As a result, this paper does it by examining such copulas.
Instead of conducting a global study, which may imply unnecessary conditions (especially
on the parameter ranges), we will concentrate on a few specific cases. More specifically,
five two-dimensional copulas are introduced, each based on one of five types of functions
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φ(x) (ratio-polynomial, polynomial, sine, arctangent, and so on). They all depend on
only one tuning parameter. To the best of our knowledge, the resulting ratio copulas
are new in the literature. For each function, we determine the admissible values of the
parameter. The proofs are not trivial; they are mainly based on limit, two-dimensional
differentiation, factorization, and mathematical inequalities. Subsequently, we examine the
main properties of the proposed copulas, such as their shapes, related functions, symmetry,
expansions (when available), tail dependences, medial and Spearman correlations, and
two-dimensional distribution generation. It is demonstrated that they are diagonally
symmetric, but not Archimedean, not radially symmetric, and not tail dependent, as
common characteristics. When appropriate, numerical and graphical analyses are provided.
Then, based on Equation (3), a natural multi-dimensional version of the ratio copula form is
discussed. In particular, a multi-dimensional version of the first introduced is established,
and it reveals itself to be particularly simple and manageable. This can be viewed as a
first step toward the construction of new multi-dimensional ratio copulas, which remain
of particular interest in some applied fields. Several two-dimensional inequalities, on the
other hand, are discovered and might be of independent interest.

The rest of the paper is composed of the following sections: Section 2 presents the first
ratio copula based on a ratio-polynomial function, along with its properties. Sections 3–6
are analogous to Section 2, but for the four other ratio-type copulas, based on polyno-
mial, sine, arctangent, and logarithmic functions, respectively. Section 7 emphasizes an
appropriate multi-dimensional setting. A summary of the findings is proposed in Section 8.

2. Ratio-Polynomial Copula
2.1. Presentation

The result below considers the copula form in Equation (3), with φ(x) = 1/(1 + αx),
where α denotes a tuning parameter.

Proposition 1. The following two-dimensional function represents a valid copula:

Cα(x, y) = xy
(1 + α)(1 + αxy)
(1 + αx)(1 + αy)

, (x, y) ∈ [0, 1]2, (4)

for α ≥ −1/4.

Proof. The proof is based on Definition 1, and limit, differentiation, well-chosen factoriza-
tion techniques, and polynomial inequalities.

(i) For any x ∈ [0, 1], we have

Cα(x, 0) = x× 0× (1 + α)(1 + αx× 0)
(1 + αx)(1 + α× 0)

= 0.

Using a similar development, for any y ∈ [0, 1], we obtain Cα(0, y) = 0.

(ii) For any x ∈ [0, 1], we have

Cα(x, 1) = x× 1× (1 + α)(1 + αx× 1)
(1 + αx)(1 + α× 1)

= x.

Similarly, for any y ∈ [0, 1], we have Cα(1, y) = y.

(iii) Using standard differentiation techniques and appropriate factorizations (hereafter,
“appropriate” means “to choose a manageable one after a lot of possibilities tested”),
for any (x, y) ∈ [0, 1]2, we have

∂x,yCα(x, y) = (1 + α)
1 + αxy(2 + αx)(2 + αy)

(1 + αx)2(1 + αy)2 .
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It is clear that, for α ≥ −1/4 and any (x, y) ∈ [0, 1]2, we have 1+ α > 0, (1+ αx)2 > 0,
and (1 + αy)2 > 0. For α ≥ 0, it is immediate that 1 + αxy(2 + αx)(2 + αy) ≥ 0. On
the other hand, for α ∈ [−1/4, 0), since 2 + αx ∈ (0, 2] and 2 + αy ∈ (0, 2], we have

1 + αxy(2 + αx)(2 + αy) ≥ 1 + 4αxy ≥ 1 + 4α ≥ 0.

Hence, for α ≥ −1/4, we have

∂x,yCα(x, y) ≥ 0.

The point (iii) is proved.

The proof of the proposition ends.

Remark 1. If the function φ(x) = γxβ/(1 + αx) is considered in Equation (3), where β and γ
are tuning parameters, Proposition 1 holds; the definition of the copula in Equation (4) is unchanged
because the term γxβ vanished immediately with the ratio transformation.

For the purpose of this paper, the copula defined in Equation (4) is called the ratio-
polynomial (RP) copula. Plots of the RP copula are presented in Figures 1 and 2, for
α = −1/4 and α = 1 (arbitrarily chosen in the admissible domain), respectively.
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Figure 1. Plots of the shapes and contours of the RP copula for α = −1/4.
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Figure 2. Plots of the shapes and contours of the RP copula for α = 1.
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From these figures, different shape morphologies are observed for the RP copula. The
impact of α on them is certain.

2.2. Related Functions and Copulas

This section is devoted to some interesting functions related to the RP copula.

2.2.1. Main Functions

To begin, based on Equation (4), the RP copula density is calculated as

cα(x, y) = ∂x,yCα(x, y) = (1 + α)
1 + αxy(2 + αx)(2 + αy)

(1 + αx)2(1 + αy)2 , (x, y) ∈ [0, 1]2.

The shapes of this function are of particular interest to see: (i) the modeling possibilities
of the RP copula, and (ii) the influence of the parameter α on these shapes. Plots of the RP
copula density are presented in Figures 3 and 4, again for α = −1/4 and α = 1, respectively.
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Figure 3. Plots of the shapes and contours of the RP copula density for α = −1/4.
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Figure 4. Plots of the shapes and contours of the RP copula density for α = 1.

The shapes of the RP copula density are completely different in these figures, illus-
trating a kind of dependence flexibility. Again, the impact of α on these shapes is crucial,
and on the extreme points (0, 0), (1, 1), (0, 1) and (1, 0) in particular. Further results on this
subject will be proved theoretically.
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The RP survival copula is obtained as

Ĉα(x, y) = x + y− 1 + Cα(1− x, 1− y)

= x + y− 1 + (1− x)(1− y)
(1 + α)[1 + α(1− x)(1− y)]
[1 + α(1− x)][1 + α(1− y)]

, (x, y) ∈ [0, 1]2.

It is also a new copula to add in the existing literature, under the assumption that
α ≥ −1/4.

Several other related copulas can be considered based on Cα(x, y), such as the x-
flipping copula defined by C̃α(x, y) = y− Cα(1− x, y) or the y-flipping copula defined by
C̄α(x, y) = x− Cα(x, 1− y) (see [5]). We omit their expressions for the sake of space.

2.2.2. Product of Copulas

The copula product of two two-dimensional copulas, say C(1)(x, y) and C(2)(x, y), is
defined by

(C(1) ? C(2))(x, y) =
∫ 1

0

[
∂yC(1)(x, t)

][
∂xC(2)(t, y)

]
dt, (x, y) ∈ [0, 1]2,

where ∂y denotes the first order partial derivative with respect to y, and the same when
we substitute y by x. The main interest of this product is that (C(1) ? C(2))(x, y) is a valid
copula, opening the door to various forms based on diverse combinations of C(1)(x, y) and
C(2)(x, y). We refer to [26], and the references therein. Here, some closed-form expressions
are demonstrated by taking C(1)(x, y) = Cα(x, y).

To begin, we define the RP product copula by the copula product of the RP copula with
itself, that is C×α (x, y) = (Cα ? Cα)(x, y). One interest is that it has a closed-form expression,
which is an unusual quality for a ratio copula, as shown in the following result.

Lemma 1. The RP product copula has the following expression:

C×α (x, y) = xy
(

1 + τα
(1− x)(1− y)

(1 + αx)(1 + αy)

)
, (x, y) ∈ [0, 1]2,

where

τα =
α2

3(1 + α)
,

with α ≥ −1/4.

Proof. After differentiation, substitution, and integration, we have

C×α (x, y) = (Cα ? Cα)(x, y) =
∫ 1

0

[
∂yCα(x, t)

]
[∂xCα(t, y)]dt

=
∫ 1

0
(1 + α)x

1 + 2αxt + α2xt2

(1 + αx)(1 + αt)2 × (1 + α)y
1 + 2αty + α2t2y
(1 + αy)(1 + αt)2 dt

= (1 + α)2 xy
(1 + αx)(1 + αy)

∫ 1

0

1
(1 + αt)4 (1 + 2αxt + α2xt2)(1 + 2αty + α2t2y)dt

= (1 + α)2 xy
(1 + αx)(1 + αy)

α{y[(3α + 4)αx + 2α + 3] + 2αx + α + 3x + 3}+ 3
3(1 + α)3

= xy
3α3xy + 3α(x + y + 1) + α2(2x + 1)(2y + 1) + 3

3(1 + α)(1 + αx)(1 + αy)

= xy
(

1 + τα
(1− x)(1− y)

(1 + αx)(1 + αy)

)
.

This ends the proof of Lemma 1.
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It is worth noting that, for α ≥ −1/4, we have τα ≥ 0. Let us now recall that the FGM
copula can be defined by

C†
θ (x, y) = xy[1 + θ(1− x)(1− y)], (x, y) ∈ [0, 1]2,

with θ ∈ [−1, 1] (see [16]). Thus, the RP and FGM copulas have functional similarities with
a ratio-polynomial term as their main difference. In this sense, the RP copula is a modified
version of the FGM copula, but it does not include it as a special case because limα→0 τα = 0.
To our knowledge, this ratio-type modification is completely novel in the literature.

We now present another result mixing the RP and FGM copula. We define the RP-FGM
product copula by C×α,θ(x, y) = (Cα ? C†

θ )(x, y). The next result demonstrates that it has an
interesting closed form expression.

Lemma 2. The RP-FGM product copula has the following expression:

C×α,θ(x, y) = xy
(

1 + υα,θ
(1− x)(1− y)

1 + αx

)
, (x, y) ∈ [0, 1]2,

where

υα,θ = θ
α(α + 2)− 2(1 + α) log(1 + α)

α2 ,

with α ≥ −1/4 and θ ∈ [−1, 1].

Proof. After differentiation, substitution, and integration, we have

C×α,θ(x, y) = (Cα ? C†
θ )(x, y) =

∫ 1

0

[
∂yCα(x, t)

][
∂xC†

θ (t, y)
]
dt

=
∫ 1

0
(1 + α)x

1 + 2αxt + α2xt2

(1 + αx)(1 + αt)2 × y[1 + θ(1− 2t)(1− y)]dt

= (1 + α)
xy

1 + αx

∫ 1

0

1 + 2αxt + α2xt2

(1 + αt)2 [1 + θ(1− 2t)(1− y)]dt

= (1 + α)
xy

1 + αx
α
[
α + α2x + θ(α + 2)(1− x)(1− y)

]
− 2θ(α + 1)(1− x)(1− y) log(1 + α)

α2(1 + α)

= xy
(

1 + υα,θ
(1− x)(1− y)

1 + αx

)
.

Lemma 2 is proved.

It should be noted that the RP-FGM product copula is not diagonally symmetric, and
υα,θ ∈ [−1, 1]. It can be viewed as an extension of the FGM copula thanks to the presence
of α, but it does not cover it as a special case since limα→0 υα,θ = 0.

Due to the non-diagonal symmetry, the following copula is immediately derived from
the RP-FGM product copula:

C×‘
α,θ(x, y) = xy

(
1 + υα,θ

(1− x)(1− y)
1 + αy

)
, (x, y) ∈ [0, 1]2,

with α ≥ −1/4 and θ ∈ [−1, 1], and it corresponds to the FGM-RP product copula.
Other copula products based on the RP copula have been investigated, but few of

them present a manageable expression.

2.3. Properties

Some key characteristics of the RP copula are now discussed. All the coming notions
can be found in the book of [5]. Clearly, the RP copula is diagonally symmetric because
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Cα(x, y) = Cα(y, x) for any (x, y) ∈ [0, 1]2. It is not Archimedean, because, for α = 1
(for instance), it is not associative. Indeed, we have

Cα

[
1
4

, Cα

(
1
2

,
1
3

)]
= 0.06828165 6= 0.06847826 = Cα

[
Cα

(
1
4

,
1
2

)
,

1
3

]
.

The RP copula is not radially symmetric because there exists (x, y) such that Ĉα(x, y) 6=
Cα(x, y).

The following result is about the quadrant dependence of the RP copula.

Lemma 3. For α ∈ [−1/4, 0), the RP copula is negatively quadrant dependent, i.e., Cα(x, y) ≤ xy
for any (x, y) ∈ [0, 1]2. For α ∈ (0, 1], it is positively quadrant dependent, i.e., Cα(x, y) ≥ xy for
any (x, y) ∈ [0, 1]2.

Proof. Let us remark that

∂αCα(x, y) = xy(1− x)(1− y)
1− α2xy

(1 + αx)2(1 + αy)2 .

For α ∈ [−1/4, 1] and any (x, y) ∈ [0, 1]2, we have 1− α2xy ≥ 0, implying that ∂αCα(x, y) ≥ 0.
Therefore, Cα(x, y) is an increasing function with respect to α for α ∈ [−1/4, 1]. Then, for
α ∈ [−1/4, 0) and any (x, y) ∈ [0, 1]2, we have Cα(x, y) ≤ C0(x, y) = xy, and, for α ∈ (0, 1],
we have Cα(x, y) ≥ C0(x, y) = xy. This ends the proof of Lemma 3.

Some other properties of the RP copula are listed below.
Of course, as for any copula, the Fréchet–Hoeffding bounds hold: For any (x, y) ∈

[0, 1]2, we have max(x + y− 1, 0) ≤ Cα(x, y) ≤ min(x, y).

Remark 2. As a consequence of the Fréchet–Hoeffding bounds, the following inequalities are
derived, which can be of independent interest: For α ≥ −1/4 and any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0)(1 + αx)(1 + αy) ≤ (1 + α)xy(1 + αxy) ≤ min(x, y)(1 + αx)(1 + αy).

Several new two-dimensional inequalities can be derived. For example, if we only consider the right
inequality, we can deduce (1 + α)xy(1 + αxy) ≤ x(1 + αx)(1 + αy) and (1 + α)xy(1 + αxy) ≤
y(1 + αx)(1 + αy). Additionally, by writing min(x, y) = (x + y− |x − y|)/2, the following
inequality holds:

|x− y|(1 + αx)(1 + αy) + 2(1 + α)xy(1 + αxy) ≤ (x + y)(1 + αx)(1 + αy).

Taking x = y as another example with a smaller dimension, we obtain (1+ α)x2(1+ αx2) ≤ x(1+
αx)2. All these inequalities can be used in various mathematical contexts (analysis, physics, etc.).

For α ∈ [−1/4, 1) and any (x, y) ∈ [0, 1)2, by using the geometric series formula, we
obtain the following power decomposition:

Cα(x, y) =
∞

∑
i=0

∞

∑
j=0

γi,j(1 + αxy)xi+1yj+1,

where γi,j = (1 + α)(−1)i+jαi+j. The RP copula density follows as

cα(x, y) =
∞

∑
i=0

∞

∑
j=0

γi,j

[
(i + 1)(j + 1)xiyj + α(i + 2)(j + 2)xi+1yj+1

]
.
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From this expansion, we can provide an expansion of the related (r, s)-th moment
defined by

µr,s =
∞

∑
i=0

∞

∑
j=0

γi,j

[
(i + 1)(j + 1)

(i + r + 1)(j + s + 1)
+ α

(i + 2)(j + 2)
(i + r + 2)(j + s + 2)

]
.

Let us now investigate the possible tail dependence of the RP copula. Using standard
limit techniques, we have

λL = lim
x→0

Cα(x, x)
x

= lim
x→0

x
(1 + α)(1 + αx2)

(1 + αx)2 = 0

and

λU = lim
x→1

1− 2x + Cα(x, x)
1− x

= lim
x→1

1− 2x + x2(1 + α)(1 + αx2)/(1 + αx)2

1− x
= 0.

It is concluded that the RP copula has no tail dependence.
The medial correlation of the RP copula is simply indicated as

M = 4Cα

(
1
2

,
1
2

)
− 1 =

(1 + α)(4 + α)

(2 + α)2 − 1.

The rho of Spearman of the RP copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
Cα(x, y)dxdy− 3.

As an advantage of the RP copula, this measure has a closed form, as presented in the
lemma below.

Lemma 4. The rho of Spearman of the RP copula can be expressed as

ρ =
3
α5 [α(α + 2)− 2(1 + α) log(1 + α)]2,

for α ≥ −1/4.

Proof. By several integrations, we obtain∫ 1

0

∫ 1

0
Cα(x, y)dxdy =

∫ 1

0

[∫ 1

0
xy

(1 + α)(1 + αxy)
(1 + αx)(1 + αy)

dx
]

dy

=
1 + α

2α2

∫ 1

0
y

α(2 + (α− 2)y)− 2(1− y) log(1 + α)

1 + αy
dy

=
1 + α

4α5

[
(α2 + 4)α2 + 4(α + 1) log2(1 + α)− 4(α + 2)α log(1 + α)

]
.

Hence,

ρ = 3
(

1 + α

α5

[
(α2 + 4)α2 + 4(α + 1) log2(1 + α)− 4(α + 2)α log(1 + α)

]
− 1
)

=
3
α5 [α(α + 2)− 2(1 + α) log(1 + α)]2.

This ends the proof of Lemma 4.

Based on Lemma 4, it is clear that ρ > 0 for α > 0, and ρ < 0 for α < 0. Additionally,
for α ≥ −1/4, we have ρ ≤ 3/α, with ρ ∼ 3/α when α→ 0 and ρ ∼ 3/α when α→ ∞. It
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can also be shown that supα∈[−1/4,∞) ρ ≈ 0.18922 at α ≈ 2.6746. Since, at α = −1/4, we
have ρ ≈ −0.1097418, we conclude that

ρ ∈ [−0.11, 0.19],

which corresponds to a moderate dependence.
Other measures of association with clear analytical expressions are collected in Table 1.

Table 1. Other measures of association with the RP copula.

Name Formula Value

Gini gamma 4
∫ 1

0
[Cα(x, x) + Cα(x, 1− x)]dx− 2

2(α2 + 6α + 6)
α3 − 8(1 + α)(α2 + 3α + 3) log(1 + α)

α4(α + 2)

Spearman footrule coefficient 6
∫ 1

0
Cα(x, x)dx− 2

2(α2 + 12α + 12)
α3 − 12(1 + α)(α + 2) log(1 + α)

α4

Naturally, the RP copula has the ability to define new parametric distributional models.
Indeed, we define a new two-dimensional cumulative distribution function by combin-
ing two uni-dimensional cumulative distribution functions, say F(x) and G(x), in the
following manner:

Hα(x, y) = Cα[F(x), G(y)] = F(x)G(y)
(1 + α)[1 + αF(x)G(y)]
[1 + αF(x)][1 + αG(y)]

, (x, y) ∈ R2.

There are countless new two-dimensional distributions that could be created based
on this function. The options for motivated lifetime cumulative distribution functions are
discussed in [27], among others.

3. Second Ratio-Polynomial Copula

With similar mathematical ingredients as the previous section, a new ratio-polynomial
copula is now described and studied.

3.1. Presentation

The result below considers the copula form in Equation (3), with φ(x) = 1+ αx, where
α denotes a tuning parameter.

Proposition 2. The following two-dimensional function represents a valid copula:

Cα(x, y) = xy
(1 + αx)(1 + αy)
(1 + α)(1 + αxy)

, (x, y) ∈ [0, 1]2, (5)

for α ≥ −1/2.

Proof. The proof is based on Definition 1, and limit, differentiation, well-chosen factoriza-
tion techniques, and polynomial inequalities.

(i) For any x ∈ [0, 1], we have

Cα(x, 0) = x× 0× (1 + αx)(1 + α× 0)
(1 + α)(1 + αx× 0)

= 0.

Furthermore, for any y ∈ [0, 1], we obtain Cα(0, y) = 0.

(ii) For any x ∈ [0, 1], we have

Cα(x, 1) = x× 1× (1 + αx)(1 + α× 1)
(1 + α)(1 + αx× 1)

= x.
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Similarly, for any y ∈ [0, 1], we have Cα(1, y) = y.

(iii) Using standard differentiation techniques and appropriate factorizations, for any
(x, y) ∈ [0, 1]2, we have

∂x,yCα(x, y) =
α4x3y3 + 3α3x2y2 + 4α2xy + αx(2− y) + 2αy + 1

(1 + α)(1 + αxy)3 .

It is clear that, for α ≥ −1/2 and any (x, y) ∈ [0, 1]2, we have 1 + α > 0, and
(1+ αxy)3 > 0. Let us now investigate the positivity of the numerator term defined by

f (x) = α4x3y3 + 3α3x2y2 + 4α2xy + αx(2− y) + 2αy + 1.

For α ≥ 0, since 2− y ≥ 0, it is immediate that f (x) ≥ 0. On the other hand, for
α ∈ [−1/2, 0), the following decomposition holds:

f (x) = α4x3y3 − αxy(1− 3α2xy) + (1 + 2αx)(1 + 2αy).

Since −α ≥ 0, xy ≤ 1 and α2 ≤ 1/4, we obtain −αxy(1− 3α2xy) ≥ −αxy(1− 3α2) ≥
−αxy/4 ≥ 0, and it is clear that 1 + 2αx ≥ 1 + 2α ≥ 0 and 1 + 2αy ≥ 1 + 2α ≥ 0.
Therefore, f (x) ≥ 0. Hence, for α ≥ −1/2, we have

∂x,yCα(x, y) ≥ 0.

The point (iii) is proved.

This completes the proof of Proposition 2.

Remark 3. Proposition 2 holds when the function φ(x) = γxβ(1+ αx) is considered in Equation (3),
where β and γ are tuning parameters; the definition of the copula in Equation (5) remains unchanged.

For the purpose of this paper, the copula defined in Equation (4) is called the second
ratio-polynomial (SRP) copula. When α = −1/2, it corresponds to the NR copula as
presented in [25]. It is worth noting that the RP and SRP copulas, say CRP

α (x, y) and
CSRP

α (x, y), respectively, are related by the following equivalent relationships:

CSRP
α (x, y)CRP

α (x, y) = Π2(x, y) = x2y2,
(

CSRP
α (x, y)

xy

)(
CRP

α (x, y)
xy

)
= 1.

In this functional sense, the SRP copula can be viewed as the complementary of the
RP copula. Plots of the SRP copula are presented in Figures 5 and 6 for α = −1/2 and
α = 1, respectively.

These figures show various shapes of the SRP copula. The influence of α on them
is significant.

The SRP copula density is calculated as

cα(x, y) = ∂x,yCα(x, y) =
α4x3y3 + 3α3x2y2 + 4α2xy + αx(2− y) + 2αy + 1

(1 + α)(1 + αxy)3 , (x, y) ∈ [0, 1]2.

In order to visualize the shapes of this function, the plots are presented in Figures 7 and 8, again
for α = −1/2 and α = 1, respectively.
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Figure 5. Plots of the shapes and contours of the SRP copula for α = −1/2.
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Figure 6. Plots of the shapes and contours of the SRP copula for α = 1.
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Figure 7. Plots of the shapes and contours of the SRP copula density for α = −1/2.
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Figure 8. Plots of the shapes and contours of the SRP copula density for α = 1.

In these figures, the SRP copula density has entirely diverse shapes, demonstrating a certain
degree of dependent flexibility. Once more, the influence of α on these shapes is essential.

As a last function of interest, the SRP survival copula is obtained as

Ĉα(x, y) = x + y− 1 + Cα(1− x, 1− y)

= x + y− 1 + (1− x)(1− y)
[1 + α(1− x)][1 + α(1− y)]
(1 + α)[1 + α(1− x)(1− y)]

, (x, y) ∈ [0, 1]2.

It is a fresh ratio-copula to be included in the literature.

3.2. Properties
Some essential features of the SRP copula are now presented. The SRP copula is obviously

diagonally symmetric because Cα(x, y) = Cα(y, x) for any (x, y) ∈ [0, 1]2. It is not Archimedean,
because, for α = 1 (for instance), it is not associative. Indeed, we have

Cα

[
1
4

, Cα

(
1
2

,
1
3

)]
= 0.02463054 6= 0.02470172 = Cα

[
Cα

(
1
4

,
1
2

)
,

1
3

]
.

The SRP copula is not radially symmetric because there exists (x, y) such that Ĉα(x, y) 6=
Cα(x, y).

The Fréchet–Hoeffding bounds obviously hold.

Remark 4. The inequalities that follow, which may be of independent importance, can be deduced from the
Fréchet–Hoeffding bounds: For α ≥ −1/2 and any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0)(1 + α)(1 + αxy) ≤ xy(1 + αx)(1 + αy) ≤ min(x, y)(1 + α)(1 + αxy).

Lemma 5. For α ∈ [−1/2, 0), the SRP copula is positively quadrant dependent, i.e., Cα(x, y) ≥ xy for
any (x, y) ∈ [0, 1]2. For α ∈ (0, 1], it is negatively quadrant dependent, i.e., Cα(x, y) ≤ xy for any
(x, y) ∈ [0, 1]2.

Proof. Let us remark that

∂αCα(x, y) = −xy(1− x)(1− y)
1− α2xy

(1 + α)2(1 + αxy)2 .

For α ∈ [−1/2, 1] and any (x, y) ∈ [0, 1]2, we have 1− α2xy ≥ 0, implying that ∂αCα(x, y) ≤ 0.
Therefore, Cα(x, y) is a decreasing function with respect to α for α ∈ [−1/2, 1]. Then, for α ∈
[−1/2, 0) and any (x, y) ∈ [0, 1]2, we have Cα(x, y) ≥ C0(x, y) = xy, and, for α ∈ (0, 1], we have
Cα(x, y) ≤ C0(x, y) = xy. This concludes the proof.
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For α ∈ [−1/2, 1) and any (x, y) ∈ [0, 1)2, by using the geometric series formula, the following
power decomposition is obtained:

Cα(x, y) =
∞

∑
i=0

ζi(1 + αx)(1 + αy)xi+1yi+1,

where ζi = (−1)iαi/(1 + α).
The SRP copula density can be expanded as

cα(x, y) =
∞

∑
i=0

ζi[2ixiyi + α(3i + 1)xiyi+1 + α(3i + 1)xi+1yi + α2(4i + 3)xi+1yi+1].

This formula can be used to expand and approximate various moment measures. Let us now
investigate the possible tail dependence of the SRP copula. Using standard limit techniques, we have

λL = lim
x→0

Cα(x, x)
x

= lim
x→0

x
(1 + αx)2

(1 + α)(1 + αx2)
= 0

and

λU = lim
x→1

1− 2x + Cα(x, x)
1− x

= lim
x→1

1− 2x + x2(1 + αx)2/[(1 + α)(1 + αx2)]

1− x
= 0.

The SRP copula hence lacks tail dependence.
The medial correlation of the SRP copula is represented as

M = 4Cα

(
1
2

,
1
2

)
− 1 =

(2 + α)2

(1 + α)(4 + α)
− 1.

The rho of Spearman of the SRP copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
Cα(x, y)dxdy− 3 = 12

∫ 1

0

∫ 1

0
xy

(1 + αx)(1 + αy)
(1 + α)(1 + αxy)

dxdy− 3.

Unfortunately, unlike the RP copula, no closed form expression for ρ exists. We thus propose a
numerical analysis in Table 2 by determining its numerical values for a certain grid of values for α,
including positive and negative values.

Table 2. Values of the rho of Spearman of the SRP copula for a grid of values for α.

α −0.5 −0.3 −0.1 0.0 0.6 1.2 1.8 2.4 3.0

ρ 0.3848 0.1549 0.038 0 −0.1095 −0.1429 −0.1536 −0.1556 −0.1539

This table demonstrates that the rho of Spearman varies from −0.16 to 0.39. Thus, the SRP
copula is ideal to analyze weak-negative or moderate-positive dependence.

The SRP copula has the ability to define new two-dimensional parametric distributional models,
with a plethora of possible applications. They are based on the following two-dimensional cumulative
distribution function:

Hα(x, y) = Cα[F(x), G(y)] = F(x)G(y)
[1 + αF(x)][1 + αG(y)]
(1 + α)[1 + αF(x)G(y)]

, (x, y) ∈ R2,

where F(x) and G(x) denote two uni-dimensional cumulative distribution functions.

4. Ratio-Sine Copula
The ratio-copula scheme in Equation (3) is used with trigonometric functions for φ(x) in the

current and next sections.

4.1. Presentation
The result below considers the copula form in Equation (3), with φ(x) = sin(αx), where α

denotes a tuning parameter.
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Proposition 3. The following two-dimensional function represents a valid copula:

Cα(x, y) = xy
sin(αx) sin(αy)
sin(α) sin(αxy)

, (x, y) ∈ [0, 1]2, (6)

for α ∈ [−π/2, π/2]/{0}, and Cα(x, y) = xy for α = 0.
An alternative multiplicative expression is

Cα(x, y) = xy csc(α) sin(αx) sin(αy) csc(αxy),

where csc(u) = 1/ sin(u) for any u ∈ R/{kπ; k ∈ Z}.

Proof. First of all, since the sine function is an odd function, let us remark that Cα(x, y) = C−α(x, y).
Therefore, we can restrict our study for α ∈ (0, π/2] only. With this in mind, the rest of the proof is
based on Definition 1, and limit, differentiation, well-chosen factorization techniques, and trigono-
metric inequalities.

(i) For any x ∈ [0, 1], we have

Cα(x, 0) = lim
y→0

xy
sin(αx) sin(αy)
sin(α) sin(αxy)

= lim
y→0

y
sin(αx)
sin(α)

= 0.

Using a similar limit technique, for any y ∈ [0, 1], we obtain Cα(0, y) = 0.
(ii) For any x ∈ [0, 1], we have

Cα(x, 1) = x× 1× sin(αx) sin(α× 1)
sin(α) sin(αx× 1)

= x.

Similarly, for any y ∈ [0, 1], we have Cα(1, y) = y.
(iii) For any (x, y) ∈ [0, 1]2, using standard differentiation techniques and appropriate factorizations,

we have

∂x,yCα(x, y) = csc(α) csc(αxy)
{

sin(αx)
[

sin(αy) f (αxy) + αy cos(αy)g(αxy)
]

+ αx cos(αx)
(

sin(αy)g(αxy) + αy cos(αy)
)}

,

where
f (u) = u2 cot2(u) + u2 csc2(u)− 3u cot(u) + 1

and
g(u) = 1− u cot(u),

for u ∈ (0, π/2].
Since, for α ∈ (0, π/2] and any (x, y) ∈ [0, 1]2, we have sin(α) > 0, csc(αxy) ≥ 0, sin(αx) ≥ 0,
cos(αx) ≥ 0, sin(αy) ≥ 0, and cos(αy) ≥ 0. Hence, in order to prove (iii), we need to prove
that, for any u ∈ (0, π/2], f (u) ≥ 0 and g(u) ≥ 0.
Let us begin with g(u). The following inequality is well-known: sin(u) ≥ u cos(u) for any
u ∈ [0, π/2]. Therefore, we have

g(u) = csc(u)[sin(u)− u cos(u)] ≥ 0.

On the other hand, for f (u), the following decomposition holds:

f (u) = [u2 cot2(u)− 2u cot(u) + 1] + [u2 csc2(u)− 1] + [1− u cot(u)]

= (u cot(u)− 1)2 + csc2(u)(u2 − sin2(u)) + g(u).

Since sin(u) ≤ u for any u ∈ [0, π/2] and g(u) ≥ 0, we have f (u) ≥ 0. As a result of the
inequalities above, we establish that

∂x,yCα(x, y) ≥ 0.

The point (iii) is proved.

The proof of the proposition ends.
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For the purpose of this paper, the copula defined in Equation (6) is called the ratio-sine (RS)
copula. It belongs to the family of trigonometric copulas, which have gained a lot of attention these
last few years (see, for instance, [10,12,13,28]). They can be used to uncover dependencies hidden in
variables based on circular data (see [28]).

Plots of the RS copula are presented in Figures 9 and 10, for α = −π/2 and α = π/3 (arbitrarily
chosen in the admissible domain), respectively.
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Figure 9. Plots of the shapes and contours of the RS copula for α = −π/2.

From these figures, different shapes and contours in particular are observed. The impact of α on
them is clear.

The RS copula density is calculated as

cα(x, y) = ∂x,yCα(x, y) = csc(α) csc(αxy)
{

sin(αx)
[

sin(αy) f (αxy) + αy cos(αy)g(αxy)
]

+ αx cos(αx)
(

sin(αy)g(αxy) + αy cos(αy)
)}

, (x, y) ∈ [0, 1]2,

where
f (u) = u2 cot2(u) + u2 csc2(u)− 3u cot(u) + 1

and
g(u) = 1− u cot(u),

for u ∈ (0, π/2]. The shapes of this function are important to understand the modeling possibilities of the
RS copula. In this regard, plots of this function are presented in Figures 11 and 12, again for α = −π/2
and α = π/3, respectively.
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Figure 10. Plots of the shapes and contours of the RS copula for α = π/3.



Modelling 2023, 4 118

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

1

2

3

0.5

1.0

1.5

2.0

2.5

3.0

Figure 11. Plots of the shapes and contours of the RS copula density for α = −π/2.
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Figure 12. Plots of the shapes and contours of the RS copula density for α = π/3.

The shapes of the RS copula density are completely different in these figures, illustrating a kind
of dependence flexibility. Again, the influence of α on these shapes is crucial.

As a last function of interest, the RS survival copula is obtained as

Ĉα(x, y) = x + y− 1 + Cα(1− x, 1− y)

= x + y− 1 + (1− x)(1− y)
sin[α(1− x)] sin[α(1− y)]
sin(α) sin[α(1− x)(1− y)]

, (x, y) ∈ [0, 1]2.

It is also a new copula to add to the existing literature.

4.2. Properties
Some key characteristics of the RS copula are now discussed. Clearly, the RS copula is diagonally

symmetric because Cα(x, y) = Cα(y, x) for any (x, y) ∈ [0, 1]2. It is not Archimedean, because, for
α = π/2 (for instance), it is not associative. Indeed, we have

Cα

[
1
4

, Cα

(
1
2

,
1
3

)]
= 0.08539428 6= 0.08574002 = Cα

[
Cα

(
1
4

,
1
2

)
,

1
3

]
.

To the best of our knowledge, the RS copula is one of the rare non-Archimedean copulas based
on a ratio of trigonometric functions.

The RS copula is not radially symmetric because there exists (x, y) such that Ĉα(x, y) 6= Cα(x, y).
Of course, as for any copula, the Fréchet–Hoeffding bounds hold.
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Remark 5. From the Fréchet–Hoeffding bounds, the following inequalities can be derived, which can be of
independent interest: For α ∈ [−π/2, π/2] and any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) sin(α) sin(αxy) ≤ xy sin(αx) sin(αy) ≤ min(x, y) sin(α) sin(αxy).

Let us now investigate the possible tail dependence of the RS copula. Using standard limit
techniques, we establish that

λL = lim
x→0

Cα(x, x)
x

= lim
x→0

x
sin2(αx)

sin(α) sin(αx2)
= 0

and

λU = lim
x→1

1− 2x + Cα(x, x)
1− x

= lim
x→1

1− 2x + x2 sin2(αx)/[sin(α) sin(αx2)]

1− x
= 0.

It follows that the RS copula has no tail dependence.
The medial correlation of the RS copula is simply indicated as

M = 4Cα

(
1
2

,
1
2

)
− 1 =

sin2(α/2)
sin(α) sin(α/4)

− 1.

The rho of Spearman of the RS copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
Cα(x, y)dxdy− 3 = 12

∫ 1

0

∫ 1

0
xy

sin(αx) sin(αy)
sin(α) sin(αxy)

dxdy− 3.

Unfortunately, there is no closed form expression for ρ. We thus propose a numerical analysis.
To this aim, Table 3 determines the numerical values of ρ for a certain grid of values for α.

Table 3. Values of the rho of Spearman of the RS copula for a grid of values for α.

α 0.01 0.31 0.61 0.91 1.21 1.51

ρ 0 0.0121 0.0482 0.1125 0.2133 0.3665

This table demonstrates that the rho of Spearman varies from 0 to a little bit more than 0.36.
Thus, the RS copula is ideal to analyze the middle dependence.

The RS copula has the ability to define new parametric two-dimensional distributional models
based on the following two-dimensional cumulative distribution function:

Hα(x, y) = Cα[F(x), G(y)] = F(x)G(y)
sin[αF(x)] sin[αG(y)]
sin(α) sin[αF(x)G(y)]

, (x, y) ∈ R2,

where F(x) and G(x) denote two uni-dimensional cumulative distribution functions.

5. Ratio-Arctangent Copula
5.1. Presentation

The result below considers the copula form in Equation (3), with φ(x) = arctan(αx), where α

denotes a tuning parameter.

Proposition 4. The following two-dimensional function represents a valid copula:

Cα(x, y) = xy
arctan(αx) arctan(αy)
arctan(α) arctan(αxy)

, (x, y) ∈ [0, 1]2, (7)

for α ∈ R/{0}, and Cα(x, y) = xy for α = 0.

Proof. First of all, since the arctan function is an odd function, let us remark that Cα(x, y) = C−α(x, y).
Therefore, we can restrict our study for α > 0 only. With this in mind, the rest of the proof is based on
Definition 1, and limit, differentiation, well-chosen factorization techniques, and trigonometric inequalities.
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(i) For any x ∈ [0, 1], we have

Cα(x, 0) = lim
y→0

xy
arctan(αx) arctan(αy)
arctan(α) arctan(αxy)

= lim
y→0

y
arctan(αx)
arctan(α)

= 0.

Using a similar limit technique, for any y ∈ [0, 1], we obtain Cα(0, y) = 0.
(ii) For any x ∈ [0, 1], we have

Cα(x, 1) = x× 1× arctan(αx) arctan(α× 1)
arctan(α) arctan(αx× 1)

= x.

Similarly, for any y ∈ [0, 1], Cα(1, y) = y.
(iii) For any (x, y) ∈ [0, 1]2, using standard differentiation techniques and appropriate factorizations,

we have

∂x,yCα(x, y) =
1

arctan(α) arctan3(αxy)
×{

1
1 + α2x2

[
αx arctan(αxy)

(
arctan(αy) f (αxy) +

αy arctan(αxy)
1 + α2y2

)]
+

arctan(αx)
(1 + α2x2y2)2

(
αy

1 + α2y2 (1 + α2x2y2)2 arctan(αxy) f (αxy)

+ arctan(αy)g(αxy)
)}

,

where
f (u) = arctan(u)− u

1 + u2

and
g(u) = 2u2 − u(u2 + 3) arctan(u) + (1 + u2)2 arctan2(u),

for u > 0.
Since, for α > 0 and any (x, y) ∈ [0, 1]2, we have arctan(α) > 0, arctan(αxy) ≥ 0, arctan(αx) ≥
0, and arctan(αy) ≥ 0. Hence, in order to prove (iii), we need to prove that, for any u > 0,
f (u) ≥ 0 and g(u) ≥ 0.
Let us begin with f (u). The following inequality is well-known: arctan(u) ≥ u/(1 + u2) for
any u > 0. Therefore, it is immediate that f (u) ≥ 0.
For g(u), the developments are more technical. We can write

g(u) = 2u(u− arctan(u)) + (1 + u2)2 arctan(u) f (u).

Since arctan(u) ≤ u for any u ≥ 0 and f (u) ≥ 0, we have g(u) ≥ 0. As a result of the
inequalities above, we establish that

∂x,yCα(x, y) ≥ 0.

The point (iii) is proved.

The proof of the proposition ends.

For the purpose of this paper, the copula defined in Equation (7) is called the ratio-arctangent
(RA) copula. As with the RS copula, it belongs to the family of trigonometric copulas, enriching the
literature in this regard.

Plots of the RA copula are presented in Figures 13 and 14, for α = −1/2 and α = 1 (arbitrarily
chosen in the admissible domain), respectively.
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Figure 13. Plots of the shapes and contours of the RA copula for α = −1/2.

From these figures, different shape morphologies are observed for the RA copula. The impact
of α on them is clear.

The RA copula density is calculated as

cα(x, y) = ∂x,yCα(x, y) =
1

arctan(α) arctan3(αxy)
×{

1
1 + α2x2

[
αx arctan(αxy)

(
arctan(αy) f (αxy) +

αy arctan(αxy)
1 + α2y2

)]
+

arctan(αx)
(1 + α2x2y2)2

(
αy

1 + α2y2 (1 + α2x2y2)2 arctan(αxy) f (αxy)

+ arctan(αy)g(αxy)
)}

, (x, y) ∈ [0, 1]2,

where
f (u) = arctan(u)− u

1 + u2

and
g(u) = 2u2 − u(u2 + 3) arctan(u) + (1 + u2)2 arctan2(u),

for u > 0.
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Figure 14. Plots of the shapes and contours of the RA copula for α = 1.

Plots of the RA copula density are presented in Figures 15 and 16, again for α = −1/2 and
α = 1, respectively.



Modelling 2023, 4 122

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

0.9

1.0

1.1

1.2

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Figure 15. Plots of the shapes and contours of the RA copula density for α = −1/2.
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Figure 16. Plots of the shapes and contours of the RA copula density for α = 1.

The shapes of the RA copula density are completely different in these figures, illustrating a kind
of dependence flexibility. Again, the effect of α on these shapes is crucial. Further results on this
subject will be proved theoretically.

As a last function of interest, the RA survival copula is obtained as

Ĉα(x, y) = x + y− 1 + Cα(1− x, 1− y)

= x + y− 1 + (1− x)(1− y)
arctan[α(1− x)] arctan[α(1− y)]
arctan(α) arctan[α(1− x)(1− y)]

, (x, y) ∈ [0, 1]2.

Additionally, it is a fresh copula to be included in the literature.

5.2. Properties
Now, some essential features of the RA copula are explained. Clearly, the RA copula is diagonally

symmetric because Cα(x, y) = Cα(y, x) for any (x, y) ∈ [0, 1]2. It is not Archimedean, since, for α = 10
(for instance), the associativity condition is not satisfied; we have

Cα

[
1
4

, Cα

(
1
2

,
1
3

)]
= 0.09494162 6= 0.09401747 = Cα

[
Cα

(
1
4

,
1
2

)
,

1
3

]
.

The RA copula is one of the few non-Archimedean copulas based on a ratio of trigonometric
functions, as far as we are aware.

The RA copula is not radially symmetric because there exists (x, y) such that Ĉα(x, y) 6= Cα(x, y).
Of course, as for any copula, the Fréchet–Hoeffding bounds hold.
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Remark 6. The inequalities that follow, which may be of independent interest, can be derived from the
Fréchet–Hoeffding bounds: For α ∈ R and any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) arctan(α) arctan(αxy) ≤ xy arctan(αx) arctan(αy)

≤ min(x, y) arctan(α) arctan(αxy).

Let us now investigate the possible tail dependence of the RA copula. Using standard limit
techniques, we have

λL = lim
x→0

Cα(x, x)
x

= lim
x→0

x
arctan2(αx)

arctan(α) arctan(αx2)
= 0

and

λU = lim
x→1

1− 2x + Cα(x, x)
1− x

= lim
x→1

1− 2x + x2 arctan2(αx)/[arctan(α) arctan(αx2)]

1− x
= 0.

It follows that the RA copula has no tail dependence.
The medial correlation of the RA copula is simply indicated as

M = 4Cα

(
1
2

,
1
2

)
− 1 =

arctan2(α/2)
arctan(α) arctan(α/4)

− 1.

The rho of Spearman of the RA copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
Cα(x, y)dxdy− 3 = 12

∫ 1

0

∫ 1

0
xy

arctan(αx) arctan(αy)
arctan(α) arctan(αxy)

dxdy− 3.

Unfortunately, ρ has no closed form expression. So, we suggest an analysis using numeric
values. Table 4 determines numerical values of ρ for a certain grid of values for α.

Table 4. Values of the rho of Spearman of the RA copula for a grid of values for α.

α 0.01 0.51 1.01 1.51 2.01 2.51 3.01 3.51 4.01 4.51

ρ 0 0.0551 0.1495 0.2197 0.2594 0.2781 0.284 0.2827 0.2772 0.2695

This table demonstrates that the rho of Spearman varies from 0 to a little bit more than 0.28.
Thus, the RA copula is ideal to analyze the middle dependence.

The RA copula can create new parametric distributional models with a wide range of potential
uses. They are based on the following two-dimensional cumulative distribution function:

Hα(x, y) = Cα[F(x), G(y)] = F(x)G(y)
arctan[αF(x)] arctan[αG(y)]
arctan(α) arctan[αF(x)G(y)]

, (x, y) ∈ R2,

where F(x) and G(x) denote two uni-dimensional cumulative distribution functions.

6. Ratio-Logarithmic Copula
This section investigates a logarithmic copula based on Equation (3). It can be viewed as the

logarithmic-copula counterpart of the CC copula.

6.1. Presentation
The result below considers the copula form in Equation (3), with φ(x) = log(1 + αx), where α

denotes a tuning parameter.

Proposition 5. The following two-dimensional function represents a valid copula:

Cα(x, y) = xy
log(1 + αx) log(1 + αy)
log(1 + α) log(1 + αxy)

, (x, y) ∈ [0, 1]2, (8)

for α > 0, and Cα(x, y) = xy for α = 0.



Modelling 2023, 4 124

Proof. As the copulas presented before, the proof is based on Definition 1, and limit, differentiation,
well-chosen factorization techniques, and logarithmic inequalities.

(i) For any x ∈ [0, 1], we have

Cα(x, 0) = lim
y→0

xy
log(1 + αx) log(1 + αy)
log(1 + α) log(1 + αxy)

= lim
y→0

y
log(1 + αx)
log(1 + α)

= 0.

Using a similar limit technique, for any y ∈ [0, 1], we obtain Cα(0, y) = 0.
(ii) For any x ∈ [0, 1], we have

Cα(x, 1) = x× 1× log(1 + αx) log(1 + α× 1)
log(1 + α) log(1 + αx× 1)

= x.

Similarly, for any y ∈ [0, 1], we have Cα(1, y) = y.
(iii) For any (x, y) ∈ [0, 1]2, using standard differentiation techniques and appropriate factorizations,

we have

∂x,yCα(x, y) =
1

log(1 + α)(1 + αxy)2 log3(1 + αxy)
×{

log(1 + αx)
[

log(1 + αy) f (αxy)

+
1

1 + αy

(
αy(1 + αxy) log(1 + αxy)g(αxy)

)]
+

αx
(1 + αx)(1 + αy)

(1 + αxy) log(1 + αxy)×(
αy(1 + αxy) log(1 + αxy) + (1 + αy) log(1 + αy)g(αxy)

)}
,

where
f (u) = 2u2 + (1 + u)2 log2(1 + u)− u(2u + 3) log(1 + u)

and
g(u) = (1 + u) log(1 + u)− u,

for u > 0.
Since, for α > 0 and any (x, y) ∈ [0, 1]2, we have log(1 + α) > 0, log(1 + αxy) ≥ 0, log(1 +
αx) ≥ 0, and log(1 + αy) ≥ 0. Hence, in order to prove (iii), we need to prove that, for any
u > 0, f (u) ≥ 0 and g(u) ≥ 0.
Let us begin with g(u). The following inequality is well-known: log(1 + u) ≥ u/(1 + u) for
any u > 0. Therefore, it is immediate that g(u) ≥ 0.
The following inequality is also well-known: log(1 + u) ≤ u for any u > 0. Therefore,

f (u) = u[u− log(1 + u)] + [(1 + u) log(1 + u)− u]2 ≥ 0.

As a result of the inequalities above, we establish that

∂x,yCα(x, y) ≥ 0.

The point (iii) is proved.

The proof of the proposition ends.

For the purpose of this paper, the copula defined in Equation (8) is called the ratio-logarithmic
(RL) copula. Plots of the RL copula are presented in Figures 17 and 18, for α = 1 and α = 100
(arbitrarily chosen in the admissible domain), respectively.
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Figure 17. Plots of the shapes and contours of the RL copula for α = 1.
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Figure 18. Plots of the shapes and contours of the RL copula for α = 100.

From these figures, slightly different shapes are observed for the RL copula, but the influence of
α seems moderate.

It is conjectured that the RL copula is still valid for some negative values for α (the points (i) and
(ii) of Definition 1 remain true), but the related admissible domain for the negative values conducted
by the point (iii) of Definition 1 remains a mathematical challenge. Numerical tests validate α ≥ −1/2
(a bit less in fact). We illustrate this conjecture by a plot of the RL copula for α = −1/2 in Figure 19.

The RL copula density is calculated as

cα(x, y) = ∂x,yCα(x, y) =
1

log(1 + α)(1 + αxy)2 log3(1 + αxy)
×{

log(1 + αx)
[

log(1 + αy) f (αxy)

+
1

1 + αy

(
αy(1 + αxy) log(1 + αxy)g(αxy)

)]
+

αx
(1 + αx)(1 + αy)

(1 + αxy) log(1 + αxy)×(
αy(1 + αxy) log(1 + αxy) + (1 + αy) log(1 + αy)g(αxy)

)}
, (x, y) ∈ [0, 1]2,

where
f (u) = 2u2 + (1 + u)2 log2(1 + u)− u(2u + 3) log(1 + u)
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and
g(u) = (1 + u) log(1 + u)− u,

for u > 0. Figures 20 and 21 show plots of the RL copula density for α = 1 and α = 100, respectively,
to give a better idea of its shape possibilities.
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Figure 19. Illustration of the conjecture: plots of the shapes and contours of the RL copula for
α = −1/2.
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Figure 20. Plots of the shapes and contours of the RL copula density for α = 1.

The conjecture that the RL copula is still valid for α ≥ −1/2 is illustrated in Figure 22, with the
value α = −1/2.

The shapes of the copula density are completely different in these figures, illustrating a kind of
dependence flexibility. Again, the impact of α on these shapes is crucial, especially on the extreme
points. Further results on this subject will be proved theoretically.

As a last function of interest, the RL survival copula is obtained as

Ĉα(x, y) = x + y− 1 + Cα(1− x, 1− y)

= x + y− 1 + (1− x)(1− y)
log[1 + α(1− x)] log[1 + α(1− y)]
log(1 + α) log[1 + α(1− x)(1− y)]

, (x, y) ∈ [0, 1]2.

In the current literature, it represents a novel copula.
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Figure 21. Plots of the shapes and contours of the RL copula density for α = 100.
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Figure 22. Illustration of the conjecture: plots of the shapes and contours of the RL copula density for
α = −1/2.

6.2. Properties
Now, some essential features of the RL copula are explained. Clearly, the RL copula is diagonally

symmetric because Cα(x, y) = Cα(y, x) for any (x, y) ∈ [0, 1]2. It is not Archimedean, since, for α = 10
(for instance); the associativity condition is violated since

Cα

[
1
4

, Cα

(
1
2

,
1
3

)]
= 0.06690479 6= 0.06689787 = Cα

[
Cα

(
1
4

,
1
2

)
,

1
3

]
.

We know of just a few non-Archimedean copulas based on a ratio of logarithmic functions, and
the RL copula is one of them.

The RL copula is not radially symmetric because there exists (x, y) such that Ĉα(x, y) 6= Cα(x, y).
Of course, as for any copula, the Fréchet–Hoeffding bounds hold.

Remark 7. The inequalities that follow, which may be of independent interest, can be derived from the
Fréchet–Hoeffding bounds: For α ≥ 0 and any (x, y) ∈ [0, 1]2, we have

max(x + y− 1, 0) log(1 + α) log(1 + αxy) ≤ xy log(1 + αx) log(1 + αy)

≤ min(x, y) log(1 + α) log(1 + αxy).
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Let us now investigate the possible tail dependence of the RL copula. Using standard limit
techniques, we have

λL = lim
x→0

Cα(x, x)
x

= lim
x→0

x
log2(1 + αx)

log(1 + α) log(1 + αx2)
= 0

and

λU = lim
x→1

1− 2x + Cα(x, x)
1− x

= lim
x→1

1− 2x + x2 log2(1 + αx)/[log(1 + α) log(1 + αx2)]

1− x
= 0.

It follows that the RL copula has no tail dependence.
The medial correlation of the RL copula is simply indicated as

M = 4Cα

(
1
2

,
1
2

)
− 1 =

log2(1 + α/2)
log(1 + α) log(1 + α/4)

− 1.

The rho of Spearman of the RL copula is defined by

ρ = 12
∫ 1

0

∫ 1

0
Cα(x, y)dxdy− 3 = 12

∫ 1

0

∫ 1

0
xy

log(1 + αx) log(1 + αy)
log(1 + α) log(1 + αxy)

dxdy− 3.

Unfortunately, no closed form expression for ρ exists. We thus propose a numerical analysis. To
this aim, Table 5 determines numerical values of ρ for a certain grid of values for α.

Table 5. Values of the rho of Spearman of the RL copula for a grid of values for α.

α 0.01 0.51 1.01 1.51 2.01 2.51 3.01 3.51 4.01 4.51

ρ 0.0017 0.0582 0.0867 0.1028 0.1123 0.118 0.1215 0.1235 0.1246 0.1249

For the conjecture case, Table 6 determines the numerical values of ρ for a certain grid of negative
values for α.

Table 6. Values of the rho of Spearman of the RL copula for a grid of negative values for α.

α −0.50 −0.35 −0.20 −0.05

ρ −0.1451 −0.0833 −0.0403 −0.0087

These tables demonstrate that the rho of Spearman varies from 0 to a little bit more than 0.12
(and from−0.14 to 0 for the conjectured case). Thus, the RL copula is ideal to analyze weak dependence.

New parametric distributional models with a variety of applications can be produced using the
RL copula. They are based on the following two-dimensional cumulative distribution function:

Hα(x, y) = Cα[F(x), G(y)] = F(x)G(y)
log[1 + αF(x)] log[1 + αG(y)]
log(1 + α) log[1 + αF(x)G(y)]

, (x, y) ∈ R2,

where F(x) and G(x) denote two uni-dimensional cumulative distribution functions.

7. A Note on a Multi-Dimensional Approach
Naturally, the notion of copula can be defined for the multi-dimensional case. A standard

definition is given below.

Definition 2. Let n ≥ 2 be an integer. The function C : [0, 1]n → [0, 1] is an (absolutely continuous)
n-dimensional copula if and only if

(i) we have C(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ [0, 1]n and i = 1, . . . , n.
(ii) we have C(1, . . . , 1, x, 1, . . . , 1) = x for any x ∈ [0, 1], and this, in each of the n vector components (the

n-dimensional function is equal to x if one vector component is x and all others are equal to 1).
(iii) we have

∂x1,...,xn C(x1, . . . , xn) ≥ 0
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for any (x1, . . . , xn) ∈ [0, 1]n, where ∂x1,...,xn = ∂n/(∂x1 . . . ∂xn) denotes the mixed n-th order partial
derivatives according to x1, . . . , xn.

A possible generalization of the copula form suggested in Equation (3) is

Cα(x1, . . . , xn) =

(
n

∏
i=1

xi

)
∏n

i=1 φ(xi)

φ(1)n−1φ(∏n
i=1 xi)

, (x1, . . . , xn) ∈ [0, 1]n, (9)

where φ still denotes a certain uni-dimensional function.
The result below considers the copula form in Equation (3), with φ(x) = 1/(1 + αx), where α

denotes a tuning parameter (or φ(x) = xβ/(1 + αx), where β is a tuning parameter that has no effect
on the definition of the copula in Equation (9)).

Proposition 6. Let n ≥ 2 be an integer. The following n-dimensional function represents a valid copula:

Cα(x1, . . . , xn) =

(
n

∏
i=1

xi

)
(1 + α)n−1(1 + α ∏n

i=1 xi)

∏n
i=1(1 + αxi)

, (x1, . . . , xn) ∈ [0, 1]n, (10)

for α ≥ −1/2n.

Proof. The proof is based on Definition 2, and limit, differentiation, well-chosen factorization tech-
niques, and polynomial inequalities.

(i) For any (x1, . . . , xn) ∈ [0, 1]n, we have

Cα(0, x2, . . . , xn) =

(
0×

n

∏
i=2

xi

)
(1 + α)n−1(1 + α× 0×∏n

i=2 xi)

(1 + α× 0)∏n
i=2(1 + αxi)

= 0

and, similarly, we have Cα(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for any i = 2, . . . , n.
(ii) For any x ∈ [0, 1], we have

Cα(x, 1, . . . , 1) = x× 1n−1 ×
(1 + α)n−1(1 + αx× 1n−1)
(1 + αx× 1)∏n

i=2(1 + α× 1)
= x.

More generally, Cα(x1, . . . , xn) is equal to x if one vector component is x and all others are
equal to 1.

(iii) For any (x1, . . . , xn) ∈ [0, 1]n, using differentiation techniques and multiple (non-trivial) factor-
izations, we have

∂x1,...,xn Cα(x1, . . . , xn) = (1 + α)n−1 1 + α(∏n
i=1 xi)∏n

i=1(2 + αxi)

∏n
i=1(1 + αxi)2 .

It is clear that, for α ≥ −1/2n and any (x1, . . . , xn) ∈ [0, 1]n, we have (1 + α)n−1 > 0 and
(1 + αxi)

2 > 0 for any i = 1, . . . , n. For α ≥ 0, it is immediate that 1 + α(∏n
i=1 xi)∏n

i=1
(2 + αxi) ≥ 0. On the other hand, for α ∈ [−1/2n, 0), since 2 + αxi ∈ (0, 2] for any i = 1, . . . , n,
we have

1 + α

(
n

∏
i=1

xi

)
n

∏
i=1

(2 + αxi) ≥ 1 + 2nα

(
n

∏
i=1

xi

)
≥ 1 + 2nα ≥ 0.

Hence, for α ≥ −1/2n, we obtain

∂x1,...,xn Cα(x1, . . . , xn) ≥ 0.

The point (iii) is proved.

The proof of the proposition ends.

For the purpose of this paper, the copula defined in Equation (10) is called the generalized RP
(GRP) copula. It defines a new n-dimensional copula in the literature. For n = 2, we obtain the RP
copula, and for n = 3, the following expression is obtained:

Cα(x, y, z) = xyz
(1 + α)2(1 + αxyz)

(1 + αx)(1 + αy)(1 + αz)
, (x, y, z) ∈ [0, 1]3.
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The GRP copula density is given by

cα(x1, . . . , xn) = ∂x1,...,xn Cα(x1, . . . , xn)

= (1 + α)n−1 1 + α(∏n
i=1 xi)∏n

i=1(2 + αxi)

∏n
i=1(1 + αxi)2 , (x1, . . . , xn) ∈ [0, 1]n.

For any permutation of (x1, . . . , xn), say (xσ(1), . . . , xσ(n)), we have Cα(xσ(1), . . . , xσ(n)) =
Cα(x, . . . , xn). As a result, the GRP copula is exchangeable.

Of course, as for any multi-dimensional copula, the Fréchet–Hoeffding bounds hold. Thus, for
any (x1, . . . , xn) ∈ [0, 1]n, we have

max

(
1− n +

n

∑
i=1

xi, 0

)
≤ Cα(x1, . . . , xn) ≤ min(x1, . . . , xn).

Remark 8. The following inequalities, which can be of independent interest, can be deduced from the Fréchet–
Hoeffding bounds: For α ≥ −1/2n and any (x1, . . . , xn) ∈ [0, 1]n, we have

max

(
1− n +

n

∑
i=1

xi, 0

)
n

∏
i=1

(1 + αxi) ≤ (1 + α)n−1

(
n

∏
i=1

xi

)(
1 + α

n

∏
i=1

xi

)

≤ min(x1, . . . , xn)
n

∏
i=1

(1 + αxi).

From the GRP copula, we can construct various new n-dimensional distributions that have the
ability to define new parametric distributional models, with possible applications in various applied
fields (informatics, engineering, insurance, etc.). Indeed, based on n uni-dimensional cumulative
distribution functions, say F1(x), . . . , Fn(x), we define the following new n-dimensional cumulative
distribution function:

Hα(x1, . . . , xn) = Cα[F1(x1), . . . , Fn(xn)] =

(
n

∏
i=1

Fi(xi)

)
(1 + α)n−1[1 + α ∏n

i=1 Fi(xi)]

∏n
i=1[1 + αFi(xi)]

.

Thus, based on this function, there are an endless number of potential new n-dimensional distributions.

8. Summary
Beyond the Archimedean construction, non-polynomial ratio copulas are rare in the literature.

In this paper, we fill this gap by proposing five two-dimensional one-parameter copulas and one
multi-dimensional one-parameter copula, all based on an original ratio form. For a quick view of the
findings, the main copulas are summarized in Table 7.

Table 7. Summary of the main copulas, and their main properties.

Name Abbreviation Copula ((x, y, xi) ∈ [0, 1]3) α Domain ρ Domain

Ratio-polynomial RP xy
(1 + α)(1 + αxy)
(1 + αx)(1 + αy)

[
−1

4
, ∞
)

[−0.11, 0.19]

Second
ratio-polynomial RP xy

(1 + αx)(1 + αy)
(1 + α)(1 + αxy)

[
−1

2
, ∞
)

[−0.16, 0.39]

Ratio-sine RS xy
sin(αx) sin(αy)
sin(α) sin(αxy)

[
−π

2
,

π

2

]
[0, 0.37]

Ratio-arctangent RA xy
arctan(αx) arctan(αy)
arctan(α) arctan(αxy)

R [0, 0.27]

Ratio-logarithmic RL xy
log(1 + αx) log(1 + αy)
log(1 + α) log(1 + αxy)

[0, ∞)
Conjecture: [−1/2,∞)

[0, 0.13]
Conjecture: [−0.15,0.13]

Generalized RP GRP
(

n

∏
i=1

xi

)
(1 + α)n−1(1 + α ∏n

i=1 xi)

∏n
i=1(1 + αxi)

[
− 1

2n , ∞
)

−

Other copulas were presented in connection with the above (survival copulas, etc.). With
theoretical results, graphics, and numerical works, the key characteristics of these copulas were
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investigated. It is demonstrated that they are diagonally symmetric, but not Archimedean, not
radially symmetric, and not tail dependent. Furthermore, they are especially useful for modeling
positive moderate dependence, with some copulas allowing negative weak or moderate dependence
(such as the RP, SRP, and RL copulas). On this aspect, the more flexible seems to be the SRP copula.
The SRP copula also belongs to the family of the trigonometric copula, and in this sense, it can
draw attention for modeling correlations into phenomena that have a periodic, circular, or seasonal
nature. It is a fascinating line of work. In this study, the focus was put on the RP copula because
of its numerous manageable properties, including its closed-form expression of its product copula,
rho of Spearman, and its simple generalization to the multi-dimensional case (which defines the
GRP copula). Although the contributions are primarily theoretical, the proposed copulas offer a
framework for cutting-edge dependence models that could find use in a variety of fields. They can
also inspire the construction of new copulas of higher dimensions.

Last but not least, our findings imply some two-dimensional inequalities that may be of inde-
pendent interest to theoretical or applied researchers. The demonstrated inequalities are summarized
in Table 8. We recall that they come from the definitions of the introduced copulas and the fact that
they satisfy the Fréchet–Hoeffding bounds.

Table 8. Summary of the main inequalities deduced from our findings.

Inequality ((x, y, xi) ∈ [0, 1]3) α Domain

(1 + α)xy(1 + αxy) ≤ min(x, y)(1 + αx)(1 + αy)
[
−1

4
, ∞
)

max(x + y− 1, 0)(1 + αx)(1 + αy) ≤ (1 + α)xy(1 + αxy)
[
−1

4
, ∞
)

xy(1 + αx)(1 + αy) ≤ min(x, y)(1 + α)(1 + αxy)
[
−1

2
, ∞
)

max(x + y− 1, 0)(1 + α)(1 + αxy) ≤ xy(1 + αx)(1 + αy)
[
−1

2
, ∞
)

xysin(αx) sin(αy) ≤ min(x, y)sin(α) sin(αxy)
[
−π

2
,

π

2

]
max(x + y− 1, 0)sin(α) sin(αxy) ≤ xysin(αx) sin(αy)

[
−π

2
,

π

2

]
xyarctan(αx) arctan(αy) ≤ min(x, y)arctan(α) arctan(αxy) R

max(x + y− 1, 0)arctan(α) arctan(αxy) ≤ xyarctan(αx) arctan(αy) R
xylog(1 + αx) log(1 + αy) ≤ min(x, y)log(1 + α) log(1 + αxy) [0, ∞)

max(x + y− 1, 0)log(1 + α) log(1 + αxy) ≤ xylog(1 + αx) log(1 + αy) [0, ∞)

(1 + α)n−1

(
n

∏
i=1

xi

)(
1 + α

n

∏
i=1

xi

)
≤ min(x1, . . . , xn)

n

∏
i=1

(1 + αxi)

[
− 1

2n , ∞
)

max

(
1− n +

n

∑
i=1

xi, 0

)
n

∏
i=1

(1 + αxi) ≤ (1 + α)n−1

(
n

∏
i=1

xi

)(
1 + α

n

∏
i=1

xi

) [
− 1

2n , ∞
)
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