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Abstract: The structural health monitoring (SHM) technique is a highly competent operative process
dedicated to improving the resilience of an infrastructure by evaluating its system state. SHM is
performed to identify any modification in the dynamic properties of an infrastructure by evaluating
the acceleration, natural frequencies, and damping ratios. Apart from the vibrational measurements,
SHM is employed to assess the displacement. Consequently, sensors are mounted on the investigated
framework aiming to collect frequent readings at regularly spaced time intervals during and after
being induced. In this study, a LabVIEW program was developed for vibrational monitoring and
system evaluation. In a case study reported herein, it calculates the natural frequencies as well as the
damping and displacement parameters of a cantilever steel beam after being subjected to excitation
at its free end. For that purpose, a Bridge Diagnostic Inc. (BDI) accelerometer and a displacement
transducer were parallelly mounted on the free end of the beam. The developed program was capable
of detecting the eigenfrequencies, the damping properties, and the displacements from the accelera-
tion data. The evaluated parameters were estimated with the ARTeMIS modal analysis software for
comparison purposes. The reported response confirmed that the proposed system strongly conducted
the desired performance as it successfully identified the system state and modal parameters.

Keywords: structural health monitoring; damping; eigenfrequency; displacement; LabVIEW;
ARTeMIS

1. Introduction

SHM is a highly competent operative process dedicated to improving the resilience
of an infrastructure by evaluating its system state to validate numerical models and to
approve its safety standards by spotting structural abnormalities or damages. Therefore,
employing structural assessment methodologies in the civil engineering sector is deemed
to require a significant performance, attempting to find the infrastructure sustainability for
upcoming growth [1,2]. SHM is intended to provide a non-destructive assessment of the
structural conditions by means of evaluating the dynamic properties and investigating any
modification found in the structural behavior [3] at any time during its life span. Accelera-
tions, natural frequencies, and damping ratios are regarded as crucial system properties
to measure or assess in order to characterize the structural state [4] and investigate its
response to any inducement it may be subjected to during its operative working life [5].

Along with vibrational parameters, a displacement calculation is significant as it is
implemented to validate numerical models, determine the dynamic features of a struc-
ture [6], and assess the structural deterioration that the framework is subjected to [7]. The
structural performance of a civil engineering infrastructure may be analyzed accordingly
on the basis of the evaluated modal parameters along with in-time measurements. Such a
procedure facilitates the maintenance plan by prioritizing more damaged structures in the
aim of restoring and fixing them [8].

Modelling 2023, 4, 189–210. https://doi.org/10.3390/modelling4020011 https://www.mdpi.com/journal/modelling

https://doi.org/10.3390/modelling4020011
https://doi.org/10.3390/modelling4020011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://doi.org/10.3390/modelling4020011
https://www.mdpi.com/journal/modelling
https://www.mdpi.com/article/10.3390/modelling4020011?type=check_update&version=2


Modelling 2023, 4 190

Operational modal analysis (OMA) in the field of health monitoring is adopted to
qualify the system condition and identify any changes in the vibrational structural param-
eters [3,9,10]. This consists of converting the reported oscillation signals of a stimulated
system into a collection of parameters that are conveniently evaluated. Thus, sensing
detectors are mounted on the investigated framework in the aim of collecting frequent
readings at regularly spaced time intervals for the purpose of identifying unusual behavior
that can threaten the wellbeing of the structure [11].

2. Natural Frequency Calculations

The flowchart of Figure 1 illustrates the procedure involved in processing measure-
ments recorded by accelerometers in order to calculate the natural frequencies:
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Figure 1. Flowchart of the signal processing procedure for a natural frequency calculation.

When stimulating a structural component by a constant force, with different frequency
rates, the member denotes a more forceful response as the rate of vibration of the applied
force becomes closer to the system’s natural frequency, at which it reaches its optimal
reaction [12]. The reported dynamic oscillations can be represented either in time or in the
frequency domain [13].

The installed sensors report data in the time domain. The recorded signal is then
subjected to a fast Fourier transform (FFT) in order to convert the data into the frequency
domain (Figure 1). The fast Fourier transform technique allows the calculation of a power
spectral density by applying the hamming spectral window operator [14]. The calculation
of the frequency domain reveals high peaks, where each peak refers to one of the system’s
natural frequencies [12].

3. Damping Ratio Calculations

Besides the natural frequencies, OMA allows the damping of the ratio calculation. A
structure typically stores energy after being stimulated. Damping is the pace at which this
energy is gradually released, resulting in a reduction in the magnitude of an unrestrained
vibrational process [15]. However, damping property calculations are more challenging
compared to the natural frequency. Ciornei in 2009 adopted the logarithmic decrement in
displacement to measure the damming of a wooden beam, clipped from one end and free
from the second end. It was stimulated by an initial displacement. The logarithmic decline
of the measured reaction was used to compute the structural damping. This research
yielded accurate dynamic properties [16].

The damping ratios of a studied structure are associated with the natural frequencies.
Therefore, it is necessary to apply a bandwidth filter with cutoff frequencies surrounding
the eigenfrequency in order to calculate the relevant damping ratio (Figure 2).
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The flowchart of Figure 2 illustrates the procedure involved in the damping ratio
calculation when processing measurements recorded by the accelerometer.

4. Displacement Parameter Calculations

In addition to the calculation of the vibrational parameters, displacement quantifica-
tion is required to fully understand the structural behavior for health monitoring purposes.
While dynamic assessments are carried out in order to examine the infrastructure’s dynamic
properties, static evaluation is performed to determine the structural stiffness and load ca-
pacity [17] as they are implemented in seismic design [18], deterioration assessment [19,20],
system identification purposes [21,22], and structural health monitoring [23–26].

Despite their vital relevance in terms of being among the most helpful indicators of
an infrastructure’s health state, the application of sensors to calculating displacements
is limited [27]. This is due to the fact that many structures are located on steep terrains
where it is challenging to mount conventional displacement sensor networks, such as linear
variable differential transducers (LVDTs), in the absence of fixed reference points [28–30].

In order to evaluate the displacements, numerous methods can be considered that
are divided into connected and non-connected systems. Among the connected ones,
we can cite LVDTs, global positioning systems (GPSs) [31–33], and non-direct estimated
calculation using acceleration and velocity or strain-recorded data [34–39], whereas among
the non-connected, we can list the laser Doppler vibrometers (LDVs) [30,40], vision-based
schemes [41,42], or the total station [43].

Not only LVDTs but also all non-connected methodologies require a fixed
reference [44–46]. They offer precise evaluation but are typically unviable as they are
so expensive and difficult to implement [47].

Laser Doppler vibrometers (LDVs) do not necessitate any real interaction with the
intended point to measure, so these are gaining prominence [22,48]. However, their preci-
sion can be restricted by any natural phenomenon that does not ensure a clear atmosphere
enabling the direct visibility of the measured point. For example, the precision of the results
may be affected by bad or low-visibility weather, or if the location of the point is concealed
and the sensor cannot catch it. Moreover, LDVs are considered expensive compared to the
BDI accelerometer. Therefore, they are not suitable for long-term monitoring to keep them
on site. Although LDV is fairly precise when measuring parameters, it is only implemented
for short-range displacement. Furthermore, a single LDV can detect the displacement of a
single spot, which is considered inefficient [49,50].

The global positioning system (GPS) [51–54] is one of superior options. The GPS
implementation does not require any reference marks, however, due to its high cost and
relatively low precision, a displacement assessment can be performed at a predefined key
location where the calculated dislocation is large enough for the GPS to detect it. Generally,
GPS is used for surveying purposes [55,56], but it is not sufficiently accurate to be adopted
for displacement evaluation in the civil engineering field.

Structural displacement measurements may also be performed by adopting vision-
based approaches [57,58]. However, obstacles persist in the present system, including a
custom constructed optical apparatus [57] or treating complex signals and analyzing them
off-line [58]. Vision-based assessment was recently adopted with affordable cameras to
measure displacements [59–61]. However, due to bad vision, its implementation is not
recommended since it influences the precision of the results. Lee and Shinozuka in 2006,
presented a vision-based method for measuring the dynamic displacement of the Yeondae
bridge with two steel girders by adopting an authentic image processor. This approach
is inexpensive and simple to use, as it can measure dynamic displacements with great
accuracy [27]. The displacement results were close to the laser vibrometer carrying small
noise. However, environmental conditions such as wind can shake the camera and cloudy
weather may lead to inaccurate results that lower the precision of the captured images due
to missing light sources. Therefore, it is proposed for financial and technical aspects to
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quantify both the accelerations and displacements by implementing accelerometers as it is
effective without the need for reference benchmarks [35,62].

Due to the accelerometers’ ease of handling and set up, as well as minimal recorded
noise, researchers have considered indirect estimating techniques to translate the accel-
eration to displacement as a useful option to overcome all the difficulties imposed by
displacement sensors [28]. Both velocity and displacement measurements can be calculated
by integrating acceleration data collected by accelerometer sensors mounted on large and
complex civil engineering structures, making it the most efficient and least expensive tech-
nique [63,64]. It is feasible to calculate the displacement versus time by doubly integrating
the acceleration–time history as it is simple to mount accelerometers with a low-cost sensor
network. In a study carried out in 2017, Sekiya et al. adopted 10 MEMS accelerometers to
calculate the displacement of a bridge. The suggested methodology consists of applying a
high-pass filter (above 1 Hz) on the Fourier transform of the forced displacement part of
the acceleration, and then apply inverse FT to integrate the acceleration data and subtract
the drift from velocity after first integration and from the displacement at the second inte-
gration [65]. Recorded acceleration data may contain either low frequency noise or both.
Chiu in 1997 [66] described in his research that low-frequency noise may influence the
baseline and cause errors. This is due to sensors’ noise or the environmental background.
Therefore, the most essential obstacle to overcome in order to adopt an acceleration double
integration strategy is to reduce the inaccuracies induced by the calculations [67].

A high-pass filter is used in order to exclude low frequencies and noises, so that a clear
dynamic reaction is properly predicted from the acceleration [29].

The flowchart of Figure 3 illustrates the procedure involved in the displacement
calculation by integrating acceleration data.
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Experimental modal testing technique is a non-destructive assessment approach fre-
quently based on the excitation of a hammer: it defines the aspect of any structure with
regard to its dynamic qualities such as natural frequency, damping, and mode shapes [4,15].
In 2015, W. Prashant et al. performed an analytical and experimental modal testing two
distinct metals constituting a cantilever beam perturbed by a hammer stimulation. The
analysis result included the analysis of the natural frequency, damping. and mode shapes.
The NI LabView software was implemented to generate the frequency response compo-
nents and then calculate the modal parameters. Both the theoretical and real results show
strong similarity with a respectable margin of error [15].

In this study, a steel cantilever beam subjected to an operational and experimental
modal testing process involving excitations at its free end was tested in order to evaluate its
vibrational measurements and calculate its displacement. Accelerometers were installed to
record acceleration data, which were later used to calculate natural frequencies, damping
ratio, and displacement. In addition, a displacement transducer was used to measure the
displacement and validate the analysis procedure. Displacement was calculated by the
double integration of the recorded acceleration data, and a high-pass filter was implemented
(Figure 3). Both sensors were connected to a DAQ system developed by El Dahr et al. in
2022. It is based on a digital processor as it incorporates the collection and evaluation of the
measurement data [68]. The DAQ system comprises sensors to collect data and converts it
from physical values into electric waveform, an acquisition hardware component based on
the digital computer [69] to process the recorded signal and encode it from the signal to
numerical data as well as a server to receive the data and calculate the output through a
programming software: LabVIEW.
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A comparative analysis between the newly developed LabVIEW code and the ARTeMIS
modal standard version was performed to check the validity and effectiveness of the sug-
gested coding language.

Both programs were adopted to assess large projects. For instance, LabVIEW was
implemented by Li et al. in 2006 to develop the code to gather the signals recorded by
sensors mounted on the Shandong Binzhou Yellow River highway bridge located in China
for structural health monitoring purposes [70]. The same was observed for ARTeMIS, where
the ambient assessment of the Vasco da Gama bridge located in Portugal was analyzed
in ARTeMIS during the design validation stage. Moreover, it was adopted by projects
monitoring smaller bridges, such as the S101 highway bridge in Austria, to assess the
damage and degradation over time due to environmental influences [71].

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) platform is
a programming software that operates via a graphical interface, primarily adopted for
data acquisition and structural assessment purposes. The most notable advantage of
this technique is that it supports a defined conceptual analysis. It facilitates and ensures
efficient employment in different varieties of projects such as bridges, towers, and high-rise
buildings, while it shortens the computational burden by adjusting minor inputs to finally
detect modal properties.

Moreover, it overperforms different DAQ techniques considering its accuracy in
collecting data and the analysis strategy, owing to its topology design and the convenient
network of used sensors.

5. Experimental Benchmark Procedure

The test specimen was a cantilever beam with a steel plate cross-section of
80 mm height × 6 mm thickness and a total length of 1.86 m (Figure 4). Sensors were
mounted on the edge of the beam and measurements were taken upon perturbation. Ex-
citations were generated by arbitrary point loads exerted by a human finger pressing on
the edge of the beam. The beam was stimulated 8 times, each time with a non-constant
intensity. Data from a trademark triaxial accelerometer BDI and a displacement transducer
were recorded and saved on a PC. The BDI triaxial accelerometer has an accuracy of ±2 g.
The adopted displacement transducer from KYOWA electronic instruments was of type
DT-100A with a measuring capacity ranging between 0 and 100 mm. Both sensors were
calibrated before the experiment.
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6. Developed LabVIEW Program Topology
6.1. Import the Acceleration–Time Domain Data into LabVIEW

First, the imported (.txt) file comprises the recorded acceleration data from the ac-
celerometer in the X, Y, and Z directions and the displacement from the displacement
transducer (Figure 5). The Z direction of the accelerometer, transverse to the beam, will
be treated as the direction in which displacements were recorded by means of the dis-
placement transducer. Figure 6 shows that the developed LabVIEW program is capable of
counting the number of samplings and the duration of the recording time in second (s), the
sampling frequency in (Hz), and the sampling rate.
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Figure 6. Section retrieved from the developed LabVIEW code showing the series of functions
adopted to calculate the number of samplings, the sampling frequency, and the sampling rate.

6.2. Calculate the Mean Value and the Corrected Acceleration–Time Domain

The LabVIEW code calculates and eliminates the mean value from the recorded
acceleration in order to remove the offset from the raw acceleration–time graph. This offset
is considered a potential source of error if it is not eliminated. In order to calculate the
corrected acceleration–time domain, the mean value is subtracted from the raw acceleration–
time domain. Figure 7 shows that the calculated number of samplings and the sampling
rate are used along with the LabVIEW function Amplitude and Level Measurements to
calculate the mean value and subtract it from the recorded raw acceleration–time domain
to finally estimate the corrected acceleration–time domain.
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6.3. Calculate the System Eigenfrequencies

Figure 8 presents the corrected acceleration–time domain as it allows the user to select
which direction (X, Y, or Z) to show on the graph. For the corrected acceleration–time
domain, an FFT power spectrum and power spectral density (PSD) function was employed.
The signal from the PSD was then evaluated to find the peaks in terms of the natural

frequencies in (Hz) and their respective power in
[
(m

s )
2

Hz

]
.
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Figure 8. Section retrieved from the developed LabVIEW code showing the series of functions
adopted to calculate the system eigenfrequencies.

6.4. Butterworth Filter

Figure 9 shows the application of a filter on the corrected acceleration–time domain.
The LabVIEW function filter allows the user to select the filter design, the filter type, the
order, and the cutoff frequencies.
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Figure 9. Section retrieved from the developed LabVIEW code showing the series of functions
adopted to calculate and apply a filter to the corrected acceleration–time domain.

A second-order Butterworth filter was applied to the corrected acceleration–time
domain with a bandpass design to calculate the damping ratio and a high pass to calculate
the displacement, and setting appropriate frequency cutoffs.

6.5. Extraction of a Portion from the Filtered Acceleration

Figure 10 shows the adoption of the LabVIEW function Extract Portion of Signal that
grants the user the preference of choosing a portion from the filtered acceleration–time
domain by selecting its starting time and its duration.
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Figure 10. Section retrieved from the developed LabVIEW code showing the series of functions
adopted to extract a portion from the filtered acceleration–time domain.

This portion will validate that the integrations start at zero acceleration and will
undergo a series of mathematical operations in order to calculate the damping ratio
and displacement.

6.6. Damping Ratio Calculation

For the calculation of the damping ratio, the Hilbert transform method along with the
logarithmic decrement method were employed.

The Hilbert transform starts by selecting a portion of the corrected acceleration, where
the segment of data should start at an amplitude of zero. A filter design, filter type, the
order frequency, and the cutoff frequency are selected by the user. The damping can be
calculated for every detected natural frequency. Then, a (rectangular) window is selected.

From the LabVIEW library, the Hilbert function was adopted to find the real and
imaginary parts. From the real part, the upper envelop was formed and the damping ratio
was retrieved from the exponential fit function, as it was divided by the natural frequency
and multiplied by 100.
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The same was applied to the imaginary part, which was multiplied by (−1), and then,
the damping ratio was retrieved from the exponential fit function to be divided by the
natural frequency and multiplied by 100 in order to turn it into a percentage (Figure 11).
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Figure 11. Sections retrieved from the developed LabVIEW code showing the series of functions
adopted to calculate the damping ratio employing the Hilbert transform.

Similarly, the logarithmic decrement method requires the transformation of the accel-
eration signal into numerical values, with the selection of the filter design, filter type, the
order frequency, and the cutoff frequency. Moreover, the selection of a (rectangular)window
is required. Then, the selected acceleration–time domain is subjected to a peak detecting
function, since damping will be calculated from the peaks, and then, the chosen acceler-
ation peaks are turned into angular acceleration by being dividing by [(2π)2]. Then, the
exponential fit function is adopted in order to calculate the damping from the envelop
equation.

The damping ratio is calculated after being divided by the natural frequency and
multiplied by 100 in order to convert it into a percentage (Figure 12).
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Figure 12. Section retrieved from the developed LabVIEW code showing the series of the function
adopted to calculate the system damping ratio employing the logarithmic decrement method.

6.7. Displacement Calculation

For the displacement calculation, the corrected acceleration data are filtered and
subjected to its first integration. Then, the mean value in the newly calculated velocity is
evaluated to be eliminated so that no offset is present in the data. Then, the velocity is
subjected to new integration so that the displacement data are calculated. In this program,
displacement is presented in the unit of (mm) so it is multiplied by 1000, with its highest
and lowest values (Figure 13).
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Figure 13. Section retrieved from the developed LabVIEW code showing the series of functions
adopted to calculate the system displacement.

7. Estimation of Damping Parameters

Another important integral transform other than the Fourier transform is the Hilbert
transform [72]. Identifying the damping properties is very significant in structural vibration.
Modal parameters such as the damping of a structure might be calculated by computing the
logarithmic decrement that occurs between two adjacent peaks of decreasing amplitudes in
the time domain after a structure is stimulated. Unfortunately, the peaks are not precisely
recorded in real experimental records. Due to either nonlinearity or noise included in the
wave, a peak can a reach higher amplitude than the previous one leading to inaccurate
decreasing damping [73]. Therefore, the Hilbert transform is implemented to effectively
estimate the damping parameters.

Several researchers have suggested and implemented time–frequency assessment-
based system techniques for parameter detection [74]. The Hilbert transform technique,
like numerous other approaches, mainly the wavelet transform and empirical model
decomposition [EMD], is involved in converting the recorded multifrequency response
into one single frequency wave as a principal system response aiming to detect the system
state and calculate the modal properties [75,76]. Xia et al., in 2021, developed an adaptive
wave decomposition technique based on Hilbert vibration decomposition (HVD) for the
purpose of acquiring the natural frequency and damping ratio. It is achieved by computing
instantaneous system response for both linear and nonlinear systems. Whilst instantaneous
natural frequency and the damping ratio are considered to be stable for a linear system,
they have the tendency to fluctuate over time for nonlinear systems [5].

As stated by [73,77], the Hilbert transform of a signal x(t) is the following:

H[x(t)] =
∼
x(t)= π−1

∫ +∞

−∞

x(τ)
t− τ

dτ (1)

The integral is regarded to be a Cauchy principal value due to the potential singularity
when t− τ = 0.

The significance of the precedent equation allows the researcher to obtain a far more
in-depth understanding of the transformation. HT is considered a specific linear filter
in which the spectral components phases are moved by

[−π
2
]

without any magnitude
modification [77].

Where
∼
x(t) is an imaginary signal of −90◦ moved phase from the real signal x(t),

X(t) = x(t)+j
∼
x(t) (2)

The |vector sum| of the real and the imaginary signals is the amplitude:

|X|(t) =
√

x2(t) +
∼
x

2
(t) (3)
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The amplitude of a decaying sinusoid is the envelope:

|X|(t) = AOe−ζ ωnt (4)

Acceleration vs. time data were collected by accelerometers. After treating them with
the corresponding filter and cleaning the wave from any unwanted noise, the acceleration
vs. time graph has a cover equation to:

A(t) = AOe−ζ ωnt (5)

where: AO = initial amplitude, ζ = damping ratio, and ωn = natural frequency.
Results obtained in LabVIEW were compared with manual calculation for the natural

frequency and the ARTeMIS modal analysis for both damping and displacement.

8. Benchmarking Information between LabVIEW and ARTeMIS

ARTeMIS and LabVIEW are both software programs commonly used for data acquisi-
tion and analysis in the field of vibrational testing. ARTeMIS is considered a reference code,
as it was always implemented and tested by numerous sophisticated projects. However,
the developed LabVIEW code makes a significant contribution to the field. Both software
differ in their approach to uploading data.

Both programs demand the upload of the numerical data recorded by the accelerome-
ters mounted on the structure, along with the specification of the sensor’s sampling rate
before running the codes. It is noted that LabVIEW will not require the user to draw the
geometry of the structure or to specify the location of each sensor mounted on the structure.
Whereas ARTeMIS will request the drawing of the structure, the specification of the locus
of each sensor and allocation of each uploaded data with the specific directory (x,y,z) as the
adopted accelerometers are triaxial.

The simplicity of the input required for LabVIEW will protect the user from committing
any error and will save time. Moreover, it does not require one to readjust the code when
working on different projects. Each time, the user will upload the measurements recorded
by the sensors and will only specify the sampling rate.

Once the code runs, LabVIEW will provide the calculated measurements from natural
frequency, damping, and displacement for each accelerometer, whereas ARTeMIS will show
the response given by the most amplified signal.

For comparison reasons, the modal parameters were calculated with the ARTeMIS
modal analysis software using enhanced frequency domain decomposition (EFDD) method-
ology. It is important to identify the deterministic signals and to minimize their contribution
when calculating the vibrational measurements of the system after OMA due to the fact
that the employed force is not predetermined.

ARTeMIS presents the various decomposition methodologies that a researcher can
adopt to conduct an OMA. Among these, there are the frequency domain decomposition
(FDD) and the enhanced frequency domain decomposition (EFDD) [78]. FDD is considered
an effortlessly applicable decomposition method. However, it does not lead to damping
calculation, and it revolves around FFT analysis to effectively assess the natural frequency
of a system as it only uses an individual frequency channel. An addition to the FDD
approach is the EFDD technique, which provides a better estimation of the eigenfrequency
and takes damping calculation into account. Employing the EFDD enables one to assess
both the natural frequency and the damping ratio with great precision. Both the natural
frequencies and damping ratio were assessed in ARTeMIS for the sake of comparing the
results conducted on the newly developed LabVIEW program.

The developed LabVIEW program mainly relies on mathematical functions such as fast
Fourier transform (FFT) or power spectral density (PSD) for natural frequency calculation,
and Hilbert transform (HT) as well as the logarithmic decrement method for damping
calculation. These methods are considered the most suitable techniques and have been
adopted in many projects and research papers. For instance, FFT was adopted by Lin and
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Yang in 2005 for estimating the natural frequency of the Da-Wu-Lun bridge located in
Taiwan [79]. In 2007, Mengh et al. employed the FFT technique to calculate the natural
frequency of the pedestrian Wilford Bridge located over River Trent in Nottingham [80].
By employing the hamming spectral window operator, FFT enables the determination of
a power spectral density. The same was performed for the damping calculation, where,
on the one hand, this research study adopted the HT, as it was the most adopted by other
researchers. In 2014, Gonzalez and Karoumi calculated the damping of a bridge situated on
the northern part of Sweden using HT [81]. In 2004, Chen et al. adopted a newly emerged
empirical mode decomposition (EMD) technique along with HT (EMD-HT) to calculate
the damping of the Tsing Ma suspension bridge located in Hong Kong [82]. On the other
hand, a logarithmic decrement was also adopted, as Nakutis and Kaskonas calculated the
damping ratio of a two-girder bridge in 2010 using the logarithmic decrement approach [83].
In 2020, Chen et al. estimated the damping of long cables with the viscous-shear dampers
of the Sutong cable-stayed bridge located in China [84].

9. Results

The data of 44,565 samplings collected with a sampling frequency of 500 Hz and a
sampling rate of 0.002 were saved in a text file. These are the data collected by both the
accelerometer and the displacement transducer. Both are presented in the time domain
(Figures 14 and 15).
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Figure 14. LabVIEW graph showing the corrected acceleration–time domain recorded by the ac-
celerometer mounted on the cantilever beam.
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Figure 15. LabVIEW graph showing the displacement–time domain recorded by the displacement
transducer mounted on the cantilever beam.
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accelerometer and the displacement transducer. Both are presented in the time domain 

(Figures 14 and 15). 

 

Figure 14. LabVIEW graph showing the corrected acceleration–time domain recorded by the accel-

erometer mounted on the cantilever beam. 

 

Figure 15. LabVIEW graph showing the displacement–time domain recorded by the displacement 

transducer mounted on the cantilever beam. 

9.1. Natural Frequency 

For steel: the Young’s modulus E = 2 × 1011 

N/m2 
 The unit weight ρ = 7850 kg/m3 

b = 0.08 m, h = 0.006 m, L = 1.86 m 

The area: A = b × h = 0.00048 m2 

The moment of inertia: I = 
1

12
 b h3 = 1.44 × 10−9 

m4 

For the cantilever beam, the angular frequency ωn = √
𝐸 𝐼

𝜌𝐴

(𝛼𝑛)2

𝐿2 , for n (number of modes) 

= 1, 2, 3. 

Where 𝛼1 = 1.875, 𝛼2 = 4.694,  𝛼3 = 7.855 according to [85]. 

Therefore, ω1 = 8.88 rad/s, ω2 = 55.68 rad/s, ω3 = 155.92 rad/s. 

The unit weight ρ = 7850 kg/m3

b = 0.08 m, h = 0.006 m, L = 1.86 m
The area: A = b × h = 0.00048 m2

The moment of inertia: I = 1
12 b h3 = 1.44× 10−9 m4

For the cantilever beam, the angular frequency ωn =
√

E I
ρ A

(αn)
2

L2 , for n (number of
modes) = 1, 2, 3.

Where α1 = 1.875, α2 = 4.694, α3 = 7.855 according to [85].
Therefore,ω1 = 8.88 rad/s,ω2 = 55.68 rad/s,ω3 = 155.92 rad/s.
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The natural frequency fn = ωn
2π , therefore f 1 = 1.413 Hz, f 2 = 8.861 Hz, f 3 = 24.815 Hz.

LabVIEW was capable of extracting the first two natural frequencies equivalent to
1.4456 Hz and 8.217 Hz, with an error of 2.2% and 7.2%, respectively (Figures 16 and 17).
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For ARTeMIS, on the other hand, the first two natural frequencies were 1.396 Hz and
8.148 Hz, with errors of 3.39% and 0.84%, respectively, with that of the
LabVIEW (Figures 18 and 19).
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9.2. Damping

LabVIEW was programmed to calculate the damping ratio through the Hilbert trans-
form and logarithmic decrement method (Figure 20).
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Figure 20. LabVIEW graph showing the acceleration–time domain with envelops for the first eigen-
frequency calculated by the Hilbert transform.

The damping ratio was calculated around the two found natural frequencies of the
beam. For the first eigenfrequency, a second-order Butterworth bandpass filter was applied
on the acceleration–time domain recorded data, with cutoff frequencies between 1.40 and
1.49 Hz. According to the Hilbert transform, the damping ratio is 11% (Figure 21).
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According to the Logarithmic decrement method, the damping recorded for the first
eigenfrequency was 11% (Figure 22).
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Figure 22. LabVIEW graph showing the logarithmic decrement calculation of a damping ratio for the
first eigenfrequency.

The error margin between Hilbert transforms and the logarithmic decrement is 0%
for the first eigenfrequency. For the second eigenfrequency, a second-order Butterworth
bandpass filter was applied on the acceleration–time recorded data, with cutoff frequencies
between 8.1 and 8.2 Hz (Figure 23).
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Figure 23. LabVIEW graph showing the acceleration–time domain with envelops for the second
eigenfrequency calculated by the Hilbert transform.

According to the Hilbert transform, the damping ratio is 2.26% (Figure 24).
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Figure 24. LabVIEW numerical analysis showing the damping ratio for the second eigenfrequency.

According to the logarithmic decrement method, the damping recorded for the first
eigenfrequency was 2.3% (Figure 25).
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Figure 25. LabVIEW graph showing the logarithmic decrement calculation of the damping ratio for
the second eigenfrequency.

The error margin between Hilbert transforms and the logarithmic decrement is 1.7%
for the second eigenfrequency. The same analysis was conducted in the ARTeMIS modal
standard, and for the first eigenfrequency, a second-order Butterworth bandpass filter was
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applied on the acceleration–time recorded data, with cutoff frequencies between 1.40 and
1.49 Hz. OMA was conducted using the EFDD technique [86] to estimate the damping
around the first eigenfrequency.

According to OMA using the EFDD methodology in ARTeMIS, the damping recorded
for the first eigenfrequency was 11.295% with an error of 2.61% between ARTeMIS and
both the Hilbert transform and logarithmic decrement conducted in LabVIEW (Figure 26).
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The same analysis was conducted in the ARTeMIS modal standard, and for the second
eigenfrequency, a second-order Butterworth bandpass filter was applied on the acceleration–
time recorded data, with cutoff frequencies between 8.1 and 8.2 Hz. According to OMA
using the EFDD methodology in ARTeMIS, the damping recorded for the second eigenfre-
quency was 2.371% with an error of 4.68% between the ARTeMIS and Hilbert transform
conducted in LabVIEW, and 2.99% between ARTeMIS and the logarithmic decrement
conducted in LabVIEW (Figure 27).
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9.3. Displacement 

The displacement transducer was mounted on the structure for comparison pur-

poses. It recorded the displacement versus time for the eight excitations that the structure 

was subjected to. It recorded the highest displacement at the sixth excitation with a peak 

of 69.9 mm (Figures 28 and 29). 

 

Figure 28. LabVIEW graph showing displacement transducer displacement–time domain. 

 

Figure 29. LabVIEW numerical analysis showing the displacement recorded by displacement 

transducer. 

The acceleration–time data retrieved from the mounted accelerometer were treated 

be doubly integrated and enable the calculation of the displacement (Figure 30). 

Figure 27. ARTeMIS graph OMA through EFDD revealing the damping for the second eigenfrequency.
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9.3. Displacement

The displacement transducer was mounted on the structure for comparison purposes.
It recorded the displacement versus time for the eight excitations that the structure was
subjected to. It recorded the highest displacement at the sixth excitation with a peak of
69.9 mm (Figures 28 and 29).
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Figure 29. LabVIEW numerical analysis showing the displacement recorded by displacement transducer.

The acceleration–time data retrieved from the mounted accelerometer were treated be
doubly integrated and enable the calculation of the displacement (Figure 30).
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Figure 30. LabVIEW graph showing the displacement–time domain calculated from the accelerometer.

A second-order high-pass Butterworth filter was applied on the raw acceleration data
with a low cutoff frequency of 0.2 Hz. It recorded the highest displacement at the same
peak as the displacement transducer with a displacement equivalent to 65.9 mm. An error
of 5.7% between the displacement transducer and the displacement was retrieved from the
accelerometer (Figure 31).
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The same data were treated in ARTeMIS which showed that the displacement trans-
ducer was capable of recording the same highest displacement value at the sixth peak.

For acceleration–time data, ARTeMIS is capable with of doubly integrating these with
a high-pass Butterworth filter with a low cutoff frequency equivalent to 0.2 Hz, but only
with order 1.

The displacement calculated from the acceleration–time data in ARTeMIS is 62.7 mm
(Figure 32). With an error of 10.35%, the ARTeMIS is capable of double integration using
filtered acceleration data of the first order. According to the results concerning the natural
frequency, damping, and displacement calculation, LabVIEW was capable of calculating
all these parameters with an error of less than 5%, as it outperformed ARTeMIS as well
as gave the researcher the capability and the flexibility to choose a better filter, leading to
better results.
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10. Conclusions

In this study, a LabVIEW program was developed for vibrational monitoring and sys-
tem evaluation. It comprises a data acquisition and evaluation technique. The established
code is capable of reading the data collected by an accelerometer mounted on a structure in
the time domain, apply FFT and PSD in order to shift to the frequency domain, and extract
the eigenfrequencies from the highest recorded peaks. The collected measurements were
filtered for damping and displacement calculations. A Butterworth filter was adopted with
bandpass cutoff frequencies to surround each calculated natural frequency and calculate
the damping ratio through employing both techniques, namely the Hilbert transform and
the logarithmic decrement. The same filter was adopted with a high-pass cutoff frequency
to account for the low frequency noise coming either from the accelerometer itself or from
the background in order to doubly integrate the acceleration and calculate the displacement.
As a consequence of building-in all the aforementioned functions, the identification of
modal parameters such as eigenfrequencies, damping ratios, and displacement has be-
come effortlessly accessible. As it overcomes numerous challenges that arise in vibrational
measurement, identification allows its operation even by unexperienced users.

The developed program was capable of detecting the eigenfrequencies, damping, and
displacement from the acceleration data. The evaluated parameters were estimated with
the ARTeMIS modal analysis software for comparison purposes. Additionally, manual
calculation was performed to calculate the eigenfrequencies. Additionally, the displacement
from the displacement transducer was accounted for in the displacement comparison.

The calculated natural frequencies were 1.4456 and 8.217 Hz. A second-order Butter-
worth bandpass filter was adopted for the damping ratio evaluation. For the first natural
frequency, the cutoff frequencies were 1.40 and 1.49 Hz, and the damping ratio was 11%
for Hilbert and the logarithmic decrement. For the second natural frequency, the cutoff
frequencies were 8.1 and 8.2 Hz, and the damping ratio was 2.26 and 2.3%, respectively. A
second-order Butterworth high-pass filter was adopted for the displacement calculation
with cutoff frequency equal to 0.2 Hz. For the displacement, the double integration of the
acceleration data showed a displacement of 65.9 mm, as shown in Table 1 below.
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Table 1. A summary of the results obtained with the ARTeMIS modal analysis and the developed
LabVIEW program and through manual calculation.

Parameters Manual Calculation LabVIEW ARTeMIS

Natural frequency 1.41 Hz and 8.86 Hz 1.44 Hz and 8.21 Hz 1.39 Hz and 8.14 Hz
Damping 11% and 2.3% 11.29% and 2.37%

Displacement 69.9 mm 65.9 mm 62.7 mm

With an error of less than 5%, LabVIEW was capable of accurately calculating the
vibrational properties and the displacement. It outperformed the ARTeMIS software in the
available filtering order in the displacement calculation.

The reported response confirmed that the proposed system strongly conducted the
desired performance as it successfully identified the system state and the modal parameters.
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69. Itterheimová, P.; Foret, F.; Kubáň, P. High-resolution Arduino-based data acquisition devices for microscale separation systems.

Anal. Chim. Acta 2021, 1153, 338294. [CrossRef] [PubMed]
70. Li, H.; Ou, J.; Zhao, X.; Zhou, W.; Li, H.; Zhou, Z.; Yang, Y. Structural health monitoring system for the Shandong Binzhou Yellow

River highway bridge. Comput. Aided Civ. Infrastruct. Eng. 2006, 21, 306–317. [CrossRef]
71. Structural Vibration Solutions. Available online: https://svibs.com/applications/operational-modal-analysis/ (accessed

on 17 March 2023).
72. Korpel, A. Gabor: Frequency, time, and memory. Appl. Opt. 1982, 21, 3624–3632. [CrossRef] [PubMed]
73. Sumali, H.; Kellogg, R.A. Calculating Damping from Ring-Down Using Hilbert Transform and Curve Fitting (No. SAND2011-

1960C). In Proceedings of the Sandia National Lab. (SNL-NM), Albuquerque, NM, USA, 1 March 2011.
74. Kijewski, T.; Kareem, A. Wavelet transforms for system identification in civil engineering. Comput. Aided Civ. Infrastruct. Eng.

2003, 18, 339–355. [CrossRef]
75. Yang, J.N.; Lei, Y.; Pan, S.; Huang, N. System identification of linear structures based on Hilbert–Huang spectral analysis: Part 1:

Normal modes. Earthq. Eng. Struct. Dyn. 2003, 32, 1443–1467. [CrossRef]
76. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

77. Hahn, S.L. Hilbert Transforms in Signal Processing; Artech House. Inc.: Boston, MA, USA; London, UK, 1996.
78. Jacobsen, N.J.; Andersen, P.; Brincker, R. Using EFDD as a robust technique for deterministic excitation in operational modal

analysis. In Proceedings of the 2nd international operational modal analysis conference, Aalborg University, Aalborg, Denmark,
30 April 2007; pp. 193–200.

https://doi.org/10.1016/S0022-460X(03)00202-5
https://doi.org/10.1016/j.ndteint.2006.10.007
https://doi.org/10.1016/S0267-7261(00)00094-4
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:12(1413)
https://doi.org/10.1006/jsvi.2001.4087
https://doi.org/10.1016/j.ymssp.2004.09.008
https://doi.org/10.1080/01441647.2014.903530
https://doi.org/10.1016/S0263-2241(99)00006-8
https://doi.org/10.1088/0964-1726/12/5/016
https://doi.org/10.1016/j.proeng.2011.07.023
https://doi.org/10.1016/j.measurement.2016.01.024
https://doi.org/10.1016/j.ymssp.2013.02.007
https://doi.org/10.1016/j.measurement.2004.04.005
https://doi.org/10.1177/0142331213476987
https://doi.org/10.1016/j.engstruct.2017.05.036
https://doi.org/10.1785/BSSA0870040932
https://doi.org/10.1016/j.ymssp.2006.03.005
https://doi.org/10.32732/jcec.2022.11.3.113
https://doi.org/10.1016/j.aca.2021.338294
https://www.ncbi.nlm.nih.gov/pubmed/33714439
https://doi.org/10.1111/j.1467-8667.2006.00437.x
https://svibs.com/applications/operational-modal-analysis/
https://doi.org/10.1364/AO.21.003624
https://www.ncbi.nlm.nih.gov/pubmed/20396288
https://doi.org/10.1111/1467-8667.t01-1-00312
https://doi.org/10.1002/eqe.287
https://doi.org/10.1098/rspa.1998.0193


Modelling 2023, 4 210

79. Lin, C.W.; Yang, Y.B. Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification. Eng.
Struct. 2005, 27, 1865–1878. [CrossRef]

80. Meng, X.; Dodson, A.H.; Roberts, G.W. Detecting bridge dynamics with GPS and triaxial accelerometers. Eng. Struct. 2007, 29,
3178–3184. [CrossRef]

81. Gonzalez, I.; Karoumi, R. Analysis of the annual variations in the dynamic behavior of a ballasted railway bridge using Hilbert
transform. Eng. Struct. 2014, 60, 126–132. [CrossRef]

82. Chen, J.; Xu, Y.L.; Zhang, R.C. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT
method. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 805–827. [CrossRef]

83. Nakutis, Ž.; Kaškonas, P. Bridge vibration logarithmic decrement estimation at the presence of amplitude beat. Measurement 2011,
44, 487–492. [CrossRef]

84. Chen, L.; Di, F.; Xu, Y.; Sun, L.; Xu, Y.; Wang, L. Multimode cable vibration control using a viscous-shear damper: Case studies on
the Sutong Bridge. Struct. Control. Health Monit. 2020, 27, e2536. [CrossRef]

85. Mohd, A.; Naushad, A.; Najeeb, A. Dynamic Analysis of Cantilever Beam using LabVIEW. In Proceedings of the 2nd International
Conference on Recent Trends in Mechanical, Instrumentation and Thermal Engineering (MIT 2012), Bangalore, India, 3–4 August
2012; pp. 63–67.

86. Zhang, L.; Brincker, R. An overview of operational modal analysis: Major development and issues. In Proceedings of the 1st
International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005; pp. 179–190.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engstruct.2005.06.016
https://doi.org/10.1016/j.engstruct.2007.03.012
https://doi.org/10.1016/j.engstruct.2013.12.026
https://doi.org/10.1016/j.jweia.2004.04.003
https://doi.org/10.1016/j.measurement.2010.11.012
https://doi.org/10.1002/stc.2536

	Introduction 
	Natural Frequency Calculations 
	Damping Ratio Calculations 
	Displacement Parameter Calculations 
	Experimental Benchmark Procedure 
	Developed LabVIEW Program Topology 
	Import the Acceleration–Time Domain Data into LabVIEW 
	Calculate the Mean Value and the Corrected Acceleration–Time Domain 
	Calculate the System Eigenfrequencies 
	Butterworth Filter 
	Extraction of a Portion from the Filtered Acceleration 
	Damping Ratio Calculation 
	Displacement Calculation 

	Estimation of Damping Parameters 
	Benchmarking Information between LabVIEW and ARTeMIS 
	Results 
	Natural Frequency 
	Damping 
	Displacement 

	Conclusions 
	References

