
Citation: Forbus, J.J.; Berleant, D.

Discrete-Event Simulation in

Healthcare Settings: A Review.

Modelling 2022, 3, 417–433. https://

doi.org/10.3390/modelling3040027

Academic Editor: Alfredo Cuzzocrea

Received: 4 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Systematic Review

Discrete-Event Simulation in Healthcare Settings: A Review
John J. Forbus 1,* and Daniel Berleant 2,*

1 Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
2 Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
* Correspondence: jjforbus@ualr.edu (J.J.F.); jdberleant@ualr.edu (D.B.)

Abstract: We review and define the current state of the art as relating to discrete event simulation in
healthcare-related systems. A review of published literature over the past five years (2017–2021) was
conducted, building upon previously published work. PubMed and EBSCOhost were searched for
journal articles on discrete event simulation in healthcare resulting in identification of 933 unique
articles. Of these about half were excluded at the title/abstract level and 154 at the full text level,
leaving 311 papers to analyze. These were categorized, then analyzed by category and collectively to
identify publication volume over time, disease focus, activity levels by country, software systems
used, and sizes of healthcare unit under study. A total of 1196 articles were initially identified. This
list was narrowed down to 311 for systematic review. Following the schema from prior systematic
reviews, the articles fell into four broad categories: health care systems operations (HCSO), disease
progression modeling (DPM), screening modeling (SM), and health behavior modeling (HBM). We
found that discrete event simulation in healthcare has continued to increase year-over-year, as well as
expand into diverse areas of the healthcare system. In addition, this study adds extra bibliometric
dimensions to gain more insight into the details and nuances of how and where simulation is being
used in healthcare.
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1. Introduction
1.1. Background

Simulation is “the imitation of the operation of a real-world process or system over
time” [1]. It is a simplified model of a system of interest, used to study specific aspects of
the system. Simulations are used because they are so often faster, easier, less expensive,
and less risky than real-world observations and experiments, allowing decision makers
to test a variety of scenarios, make predictions, and study alternatives. Discrete event
simulations are stochastic, dynamic, and discretely-changing (the system state changes
at discrete points in time, as opposed to a continuously changing state like those seen in
system dynamics models).

Discrete event simulation (DES) has been used since the 1950s in diverse fields such
as manufacturing, supply chain management, military operations, computer and network
design, and even voting systems [2]. As computer processing power expands, the resources
necessary to model more complex systems becomes within the reach of an ever-increasing
pool of potential applications, further highlighting its utility and power [3].

DES, because it can model process flows that involve stochastic timings and decision
trees [4], is ideally suited to a manufacturing environment, where assembly lines, product
routings, and processing and queuing times are clearly defined [5], and the variation in
times at each step is well understood [6]. The healthcare industry is not wholly dissimilar
from a manufacturing environment [7].

In typical manufacturing DES scenarios, raw materials enter the system, are routed to
wait in queues, transformed and/or consumed via various processes, and finished goods
exit the system. Similarly, in a healthcare setting, sick or injured patients enter the system,
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wait in waiting rooms, are transformed via various processes (surgery, radiological exam,
course of treatment, etc.), and healthy patients exit the system. More recent advances in
DES consider long-term population health outcomes of different treatments, therapies, or
medications; the economic implications for quality-adjusted life years (QALY) are frequent
subjects of study [8].

1.2. The Need for DES in Healthcare

The healthcare industry, especially in the United States, is under increasing pressure
to do more with less. In the US, hospitals and clinics find themselves forced away from a
fee-for-service model and toward a value-based model, wherein the healthcare provider
receives a set annual payment from various payers, such as Medicare/Medicaid and the
state’s private insurers, and then expected to maintain a healthy patient population [9].
While value-based care should ultimately lead to lower costs for financial consumers, it
also means lower reimbursements for healthcare providers. This puts financial pressure on
healthcare providers to increase volume and throughput without sacrificing patient health,
staff safety, or population health outcomes [10].

These pressures are causing more healthcare providers to apply efficiency and quality
improvement techniques to their workflows. Some of the more commonly used tools
are well-known in manufacturing engineering, such as Lean and Six Sigma [11]. Both
are well-suited to small- to medium-scale improvement projects with well-defined scopes
and clear objectives. The use of the Deming Plan-Do-Study-Act improvement cycle is
used extensively in healthcare improvement projects [12]. The PDSA cycle is an iterative
improvement approach, wherein small proposed tests of change are tried in practice,
the results studied, and revisions or expansions made based on the results [13]. While
potentially very powerful, it has the disadvantage of being prohibitively disruptive for
large-scale changes. As more healthcare providers encounter this limitation, DES is being
applied to a greater number of hypothetical situations.

The “what if” ability of DES to test many configurations of different possible changes
allows decision makers to hone in on the leading candidates for practical application tests
of change, without burdening the healthcare staff with non-value-added churn [14]. Yet,
the healthcare industry is often considered particularly challenging for such quantitative
analyses [15]. Against this reluctance to apply such a powerful tool, much work remains to
demonstrate the utility of discrete event simulation to help build the healthcare systems
of tomorrow.

Discrete event simulation is well suited to addressing a wide range of scenarios. One
part of this range holds DES systems for optimizing resources, such as number of nurses
or GPs needed by the unit. Another consists of DES systems for comparing the resource
needs of alternative interventions, an approach in use particularly in the UK, Netherlands,
Australia and Canada. However, a designer should understand both the advantages and
disadvantages of DES in order to properly determine if it is the appropriate tool for the job.

1.3. Advantages

The ability of DES to try various scenarios in a virtual setting is far less expensive than
having to commit resources to test in the real world [1]. Additionally, a designer can test an
almost limitless number of different scenarios, increasing the likelihood of finding the ideal
configuration. Some software packages even have integrated linear programming tools,
allowing for the discovery of true optima.

As part of the ability to model different scenarios, the designer can also use the tool
to better understand a current system. The ability to either view years of operation in
moments, or slow the system to a crawl, allows the designer to see into the inner workings
of the system, to understand emergent system-level interactions, and to find event-level
bottlenecks. This allows the designer to identify constraints, excess capacity, and uneven
utilization, which can then be designed out for an improved system.
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Specific to the study of healthcare systems, discrete event simulation has several
advantages over other commonly used analytical tools. A significant area of focus in
healthcare DES is “health technology application,” which is the long-term economic impact
of various treatments on population health. For many years, Markov models were the tool
of choice for such studies [16]. While Markov models are computationally tractable, they
are poorly suited to modeling patient populations with comorbidities. In contrast, discrete
event simulation can model a patient population with a wide variety of symptoms and
disease processes, which can change over time. Discrete event simulation models are also
more accurate with respect to event timings, as they do not rely on defined system cycle
time like Markov models, thereby producing more accurate results [17].

1.4. Disadvantages

Discrete event simulation has disadvantages as well. Model building requires special-
ized skills in coding and mathematics. Many dedicated software packages exist that ease
the burden of coding, but they can incur a significant up-front cost, and each still has its
own syntax and grammar which requires time and experience to master.

Data collection, modeling, and results analysis can each be time consuming and
costly. Large simulations with multiple input variables can take many hours to resolve. A
simulation model output is only as good as the data input that drives it, and without taking
the time to ensure quality input data, the output may not yield usable results. Even with
good input data, the results may still be difficult to interpret, especially for someone not
accustomed to probabilistic outputs. Even for a well-trained designer, it can sometimes be
difficult to distinguish if variation in outputs across runs is caused by the proposed system
changes being studied, or just statistical noise [18].

The purpose of this systematic literature review is to define the current state of the art
with respect to the use and application of discrete-event simulation as applied to health
care settings and delivery. As the pace of DES use increases [15], so too should surveys of
the literature, to stay abreast of what is being done, how, and importantly, potential areas
for expansion. Additionally, we seek to expand upon prior review work by adding extra
dimensions in this systematic review, in an attempt to determine if there are areas of study
being overlooked by current research.

2. Materials and Methods
2.1. Literature Search Strategy

A literature search was conducted in the PubMed and EBSCOhost databases. The
searches were conducted on 8 January 2022, and covered articles published in calendar
years 2017 through 2021. This builds on the prior work by Zhang (2018) [15], who compiled
a systematic review of the literature through 31 March 2017. The search terms used were
“discrete event,” and “healthcare.” The search was limited to published journal articles
only; conference proceedings, books, magazines, and non-peer-reviewed papers were
omitted. There were no limitations on language or country of origin; however, if an English
translation was not available, the result was excluded.

To be included in the review, the articles had to meet the following criteria:

(1) have healthcare delivery as the primary system of interest,
(2) use discrete-event simulation as the primary modeling tool,
(3) demonstrate a clearly defined workflow of the system simulated as per the ISPOR-

SMDM modeling good research practice [19,20],
(4) quantify the inputs to and results from the study, and
(5) appear in peer-reviewed academic journals.

2.2. Search Results

The PubMed search returned 467 results, while the EBSCOhost search returned
719 results. Of the initial pool of 1186 articles, 253 results were duplicates. Another 622
were excluded at either the title-and-abstract level, or after the full text review: 351 because
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they were not focused on discrete event simulation; 120 because they were not focused on
healthcare applications; 127 because they were meta-studies (such as literature reviews); 20
were not journal articles; four were not available in English. This left a total of 311 articles
for the systematic review. This screening per the Preferred Reporting Items for Systematic
Reviews and MetaAnalyses (PRISMA) guidelines [21]. The PRISMA flow diagram is shown
in Figure 1.
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This systematized review is focused on the application of discrete event simulation
to solving healthcare-related problems. As such, only limited information was retrieved
from each article for the purpose of this analysis. Author, title, journal, date, simulation
application, simulation focus, disease process, country, healthcare setting, facility (or study)
size, subject age, and software used were the data points gleaned from each.

3. Results

The classification schema follows that outlined by Zhang (2018) [15]. It also expands
upon that work by adding extra dimensions of study—software, location, size, and age. The
simulation articles can be divided based on four primary purposes. The first is healthcare
system operations (HCSO), akin to traditional manufacturing operations management. This
is concerned with things such as resource utilization, scheduling, capacity planning, and
system diagnosis. The remaining three address different kinds of healthcare intervention,
but share a similar purpose from a health economics standpoint, namely, comparing cost
and effectiveness of different healthcare deliveries without specifically addressing budgets
or other resource. The second is disease progression management (DPM). This studies
population health outcomes, looking at long-term economic effects of treatments and the
relative merits of different care pathways. The third is health screening protocols, and the
effects of properly steering populations into different care pathways. The final purpose is



Modelling 2022, 3 421

health behavior modeling (HBM), which studies diseases either caused or exacerbated by
personal lifestyle choices, and how those choices can affect population health outcomes.

3.1. Healthcare DES over Time

Over the time period of this review, the number of DES articles about healthcare
applications (HCSO category) mostly rose each year. See Figure 2. For prior years the
number of healthcare-focused DES studies also generally increased year-over-year as noted
in Zhang’s (2018) [15] earlier review (Figure 3). A notable exception to the trend is 2021,
which may have been impacted by the global pandemic, like much of the world economy.
It is also possible that some of 2021’s published articles had not been uploaded to the
databases at the time of the search. It will be interesting to see if that number resumes its
climb in 2022 and beyond.
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3.2. Studies by Disease Process

As mentioned previously, DES is typically employed to solve a specific problem. In
healthcare, that is frequently either a specific disease process or specific functional area.
Healthcare system operations (HCSO) tends to focus more on the functional area, while
disease progression modeling (DPM), health behavioral modeling (HBM), and screening
modeling focus on the disease process. Even in the case of HCSO, the disease process
can factor into the type of study performed. Figure 4 shows the distribution of disease
processes studied excluding HCSO articles; Figure 5 shows the total distribution with
HCSO included.
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Cancer (all types) and circulatory disease (including heart disease, heart attack, stroke,
and thrombosis) are the most frequently studied disease progression models, perhaps
because they affect large numbers of people each year. Adding HCSO studies to the
analysis, general medicine and emergency medicine make strong showings. This can be
explained by what most HCSO models study, which are hospital emergency departments,
inpatient hospitals, and outpatient clinics, especially their flow and process optimization
problems. When viewed year-over-year, infectious disease models saw a large up-tick in
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2020 and 2021, as more simulations were devoted to the COVID-19 pandemic, either in
modeling the outbreak (DPM) [22] or in capacity planning for surges or mass-vaccination
clinics (HCSO) [23].

3.3. Disease Progression Modeling

When applied to disease progression modeling, DES is used to help understand the
course of a disease on a large population over long periods of time. The economic effects of
treatments, typically including quality-adjusted life years (QALYs), are modeled so that
researchers can make well-informed decisions about how to allocate treatment resources,
and which treatments are most effective for the investment of time, effort, and capital.
There are four main areas of focus within DPM. The most common, with 67 of 106 studies
(63.2%), studies the long-term economic outcome and impact of specific treatments. The
second, with 21 of 106 studies (19.8%), contains treatment comparisons. These look at
the long-term prognosis of one care pathway versus another. The third type, with 9 of
106 studies (8.5%), is screening models. These involve identifying target populations for
treatment and the outcomes of timely (or delayed) treatment. The fourth type, with 8 of
106 studies (7.5%), projects demand for treatments and therapies over time. One final study
was unusual for DPM studies. It was a system diagnosis study, comparing the effectiveness
of different DES models at modeling disease progression (0.9%) [24].

Of those studies of disease progression modeling, the vast majority (100 of 106, 94.3%)
were analyses at the population health level—that is, the total economic impact a health
system could expect to encounter. Two of 106 studies focused on multi-facility hospital
systems [25,26], and two on individual outpatient clinics [27,28] (1.8% each). One of the
46 studies was focused on an inpatient hospital [29], and one on an emergency depart-
ment [30] (0.9% each).

3.4. Healthcare System Operation

Healthcare system operations (HCSO) attempts to help decision makers allocate
constrained resources to meet demand in a timely and efficient manner by understanding
process flow, system bottlenecks, and resource allocations. Investigators can test different
process configurations against each other, or evaluate different patient arrival rates or
staffing patterns.

The functional area studied is more relevant to a discussion of HCSO than the disease
process (Table 1). It is beneficial to see what areas are being studied to identify demand.
Outpatient clinics were the largest plurality of studies, with 63 of 200 (31.5%). The most-
studied types of clinic were general/primary care and oncology, primarily concerned
with resource allocation to reduce visit length and increase throughput. Inpatient hospital
operations were the next largest segment, with 62 of 200 studies (31.0%). The individual
departments studied varied, but the largest sub-percentage were multi-department studies,
typically looking at total operational efficiency as a means to reduce inpatient length of
stay. The emergency department, with 49 of 200 studies (24.5%) was the third largest area
of focus. Emergency departments are often attached to inpatient hospitals, but the volume
of ED studies was large enough to warrant its own category. ED studies focused most
often on resource allocation and effects of operational change, to trial different scenarios
in simulations. Capacity planning also featured prominently in ED studies, with many
focused on surges during disasters. Multi-facility hospital systems were modeled in 12 of
200 studies (6.0%), focusing on resource allocation and capacity planning. The health care
system as a whole was studied 11 times (5.5%), primarily for system diagnosis purposes
(validating different DES models and techniques). There was one study each of emergency
medical transport (EMT) [31], a pharmacy [32], and a medical supply distributor [33],
0.5% each.
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Table 1. HCSO functional areas.

Outpatient clinic 63 31.50% Inpatient hospital 62 31.00%

General 12 6.00% Multi-department 17 8.50%

Hematology Oncology 8 4.00% Surgery 13 6.50%

Ophthalmology/Optometry 8 4.00% MedSurg unit 6 3.00%

Primary care 6 3.00% ICU 5 2.50%

Vaccine 4 2.00% Radiology 5 2.50%

Ob/Gyn 3 1.50% General 4 2.00%

Vascular 3 1.50% Acute care 1 0.50%

Ambulatory surgery 2 1.00% Administration 1 0.50%

Cardiac 2 1.00% Cardiac 1 0.50%

Orthopedics 2 1.00% Gerontology 1 0.50%

Telemedicine 2 1.00% Hospice care 1 0.50%

Urgent care 2 1.00% NICU 1 0.50%

Laboratory 2 1.00% Oncology 1 0.50%

Dermatology 1 0.50% Pathology lab 1 0.50%

Dentistry 1 0.50% Pediatric 1 0.50%

Maternal/child health 1 0.50% Pharmacy 1 0.50%

Neurology 1 0.50% Psychiatric ward 1 0.50%

Pediatric 1 0.50% Dialysis 1 0.50%

Radiology 1 0.50%

Sexual health 1 0.50% Pharmacy (Stand-alone) 1 0.50%

Emergency Department 49 24.50% Emergency Medical Service 1 0.50%

Multi-facility provider 12 6.00% Distributor (Medical Warehouse) 1 0.50%

Healthcare System 11 5.50%

HCSO Sub-Categories

Within the set of HCSO studies, it is informative to study the focus areas (Figure 6).
Of the 200 HCSO studies, 66 (33.0%) were focused on resource allocation. Those dealt with
topics such as maximizing throughput, minimizing wait time, and improving operational
efficiency. Forty-four of the studies (22.0%) dealt with the effects of operational change,
comparing two or more competing solutions against one another to determine which (if
either) should be implemented. Forty of the studies (20.0%) were capacity planning studies,
evaluating the system’s ability to handle possible changes in volume. Nineteen of the
studies (9.5%) evaluated different patient arrival templates, and thirteen (6.5%) evaluated
different staffing patterns. Thirteen (6.5%) were system diagnosis evaluations. These
compared the results of discrete event simulation models to real-world data to validate
which of the models is better suited to use in future studies. Only five (2.5%) were purely
economic analyses. Thus resource allocation, capacity planning, and effects of change
were the most commonly used applications within HCSO simulations. Economics and
scheduling both lagged behind.
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3.5. Screening Modeling

Three studies were identified as discrete event simulations of screening models. These
studies looked at the potential effects of changing the methods by which someone is
identified as having a particular disease or qualifying for a particular treatment pathway.
One studied cancer screening [34]; a second tuberculosis [35]; the third genotyping [36].
Each compared the long-term economic impact of screening potential patients for care, and
the resultant QALYs that treatment might generate.

3.6. Human Behavior Modeling

Human behavior modeling is a relatively new field in discrete event simulation. At an
individual level, human agents can be difficult to model. They have intrinsic motivators
and may make seemingly irrational decisions, which can be difficult to model. Only two
of the studies were found to deal with human behavior modeling. One looked at policies
that might affect rates of obesity [37]; the other compared smoking cessation strategies [38].
Both looked at economic impacts of the proposed interventions and the resultant QALYs.

3.7. Location Distribution

The locations of the health systems studies track generally with the population and
level of technological sophistication of the country. See Figure 7. It should not be surprising
that the United States and United Kingdom have the most published studies, with totals of
72 and 66, respectively. Of the USA’s 72 studies, 49 were focused on HCSO (68.1%), while 21
were focused on DPM (29.2%). The UK, meanwhile, had 29 of 66 studies (43.9%) focused on
HCSO, and 35 focused on DPM (53.0%). It is interesting to note that the US and UK place
an almost-inverse emphasis on their use of DES; the US prioritized operations over disease
management, while the UK focused on disease management over operations. The relative
lack of published articles from China is somewhat surprising, with only 14 studies released.

There were 24 countries with only one or two studies published. This indicates that
discrete event simulation as a healthcare improvement tool has worldwide application, and
is not limited only to developed nations. It also indicates a potential growth opportunity.
Developing nations have more flexibility in designing or redesigning their healthcare
delivery systems. As such, they have potential for future study and application of DES.

It should be noted that the countries listed are the countries in which the health system
of interest is located, not necessarily where the researchers were located or the research
was published.
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3.8. Software Usage

The initial computerized discrete event simulations in the 1950s were coded directly
in FORTRAN. The first dedicated discrete event simulation software package, General
Purpose Simulation System (GPSS), was developed by General Electric in 1960. From those
early days, all DES software tools have had six common features [39].

a. Random number generator to represent stochastic uncertainty
b. Process transformers to convert random numbers to statistical distributions
c. List processors to add, delete, and manipulate sets and set members
d. Statistical analysis routines to summarize model behavior
e. Report generators to present large data outputs
f. Timing mechanism to explicitly represent the flow of time

From those simple beginnings, there are now over 50 commercially available discrete
event simulation programs. There are even more software tools that can be used in discrete
event simulations, though they are not dedicated DES packages. Dias, Vieira, Pereira and
Oliveira (2016) [40] studied the relative popularity of dedicated commercial DES packages.
Two limitations to the study was that it only included dedicated DES packages, not multi-
purpose tools like Excel and R; and that it considered “popularity,” not objective usage
rates. “Popularity” was determined as a combination of publication references, database
references, social media presence, and web traffic. Their study showed stratification in the
popularity of DES tools. Arena was clearly the most popular tool, with ProModel, FlexSim,
Simul8, Simio, and AnyLogic in a second tier. Other tools were less popular.

Beyond the somewhat nebulous “popularity” survey, this review looked at which
software was used in the published articles (Figure 8). Of the 311 articles screened for
review, 47 did not specify the software used in the study. As per the popularity review,
Arena was the most popular software. It was also the most-frequently cited software, being
used in 49 of the studies. The other more popular software packages were: AnyLogic,
ExtendSim, FlexSim, ProModel, Simio, and Simul8. AnyLogic and Simul8 were both in
the second tier of most-frequently cited software, being used 35 and 31 times, respectively.
Simio, FlexSim, ExtendSim, and ProModel were decidedly third-tier in their published
usage, with 11, 11, 5, and 4 articles, respectively.
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The prior popularity study did not consider non-dedicated DES software. This sys-
tematic review indicates a potential area of improvement for future such studies, as R and
Excel are quite frequently used, with 32 and 31 citations, respectively. Python and Matlab
also saw moderate usage, with 14 and 9 citations, respectively. Notably, all four of those
tools lack the graphical flow visualization of the dedicated DES modeling tools.

It is also instructive to look at the distribution of software used by type of study. For
HCSO studies (Figure 9), the dedicated DES tools dominate in cited usage. Arena, AnyLogic,
and Simul8 are clearly the most-used tools, with 38, 30, and 24 citations, respectively. Those
dedicated tools all feature a graphical interface that visualizes the process flow. For HCSO
projects, this is particularly useful, as HCSO projects frequently model flows of people or
materials in a clinic or hospital, where spatial relations are important to the study.
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As a counterpoint, consider the cited usage of software in DPM projects (Figure 10). In
those, R and Excel clearly dominate, with Arena a distant third (with 27, 23, and 11 citations,
respectively). Simul8, AnyLogic, Simio, and TreeAge make up the next tier, with 6, 5, 3, and
3 citations, respectively. In DPM studies, temporal relations are far more important than
spatial. In fact, for many DPM studies, spatial relations are not considered at all. When
looking at population health outcomes across the entire healthcare system, the ability to
visualize entity process flow is much less important than in a HCSO project. As such,
graphical DES software loses much of its advantage. The widespread acceptance of R
and Excel, combined with their utility for other tasks, makes them good choices for use in
DPM studies.
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3.9. Simulation Size

The size of the system being studied, and the number of entities that pass through it,
will affect the speed and computational cost of the discrete event simulation. The size of the
health systems simulated varied wildly. See Figure 11. There were operational studies on
individual clinics that saw only 308 patients per year [41]. That scaled up to a multi-facility
regional system that treated 17 million patients per year [42]. The median size of HCSO
facilities modeled was 10,000 patients per year.

Similar wide variation was seen in DPM studies. Such studies ranged in size from clin-
ical studies with cohorts as low as 50 patients [43], up to studies of the entire health care sys-
tem, with millions of possible candidates [44]. The median DPM study was 10,000 patients.
The great variation in simulation sizes shows the utility of DES in addressing a wide
array of scenarios. This variation may be a consequence of the natures of the studies.
Typical HCSO models deal with a small-scale operational question, ranging in size from a
clinic/department, up to an entire hospital. Meanwhile, DPM models look at entire patient
populations across years, thus seeing far more entities pass through the system model.
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3.10. Patient Demographics

There are variations in practice between adult medicine and pediatric medicine. There
is also great variation in patient size in pediatrics, which in turn creates variation in medi-
cation dosing, treatment pathways, and process timings. Thus, simulations of processes
involving pediatrics would often be expected to show higher variation than in the adult
population. The vast majority of studies were focused on adult patients; 298 of 311 (95.8%)
studies were adult. This is not surprising for DPM models. See Table 2. As shown previ-
ously in Section 3.2, the majority of disease processes studied traditionally affect adults,
and especially geriatrics, more so than pediatrics. Of the HCSO studies around pediatrics,
the primary areas of focus were patient scheduling and resource allocation. There was one
study specifically focused on family medicine (that is, the treatment of both children and
adults), looking at capacity planning.

The bulk of models focus on adult patients exclusively. This is partly due to opportunity—
there are more and more-varied adult healthcare providers. This is to be expected, considering
how people access healthcare over the course of their lives. Barring an early chronic condition,
young people do not seek healthcare frequently; conversely, even nominally healthy adults
will require additional healthcare resources as they age, particularly those associated with
cancer, cardiovascular health, and gerontology. Another potential factor is the variation in
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pediatric patients, who range from birth to age 18. The wide variation in size and metabolic
function makes it challenging to code simulation models, with additional attributes that must be
tracked and programmed to account for the difference in patient populations. However, those
discrepancies between pediatric and adult patients also indicate an area of potential opportunity
of expansion and further study.

Table 2. Distribution of studies by target age.

Age

Focus Adult Pediatric Family

HCSO 190 9 1

DPM 103 3

Screening 3

HBM 2

Of the nine pediatric HCSO simulations, four were focused on emergency department
operational changes. This type of model is not terribly different from an adult-only model.
Two of them studied the effect of patient scheduling—one in a clinic setting, the other
in a surgical setting. One model studied the effect of staff scheduling, specifically in a
neonatology clinic. The other two investigated operational change and resource allocation
in a pediatric clinic.

4. Discussion

The search for this review used two databases, PubMed and EBSCOhost. Addi-
tional databases exist covering healthcare economics such as Embase, NHSEED and HTA,
while Medline is a subset of PubMed (www.nlm.nih.gov/bsd/difference.html accessed on
4 August 2022). However, the databases we used are comprehensive and for both to have
missed much of significance seems unlikely, and thus should be sufficient to support our
findings and conclusions.

The selection criteria could also be a limiting factor in gathering articles. By only
surveying peer-reviewed journal articles, some percentage of the academic work has
undoubtedly been missed. Some of the work in healthcare improvement via discrete event
simulation is not being written in academic journals, or in some cases, publicized in any
fashion. However, as before, it is reasonable to conclude that the body of literature included
contains most of the important work, and is a fair overview of the majority of the work
being done.

Finally, this review did not investigate the quality of the outcomes of the discrete
event simulations. A good way for an article describing a particular DES study to report
on the quality of its findings is the CHEERS or Consolidated Health Economic Evaluation
Reporting Standards [45]. Similarly CHEERS could, although it is outside the scope of
this report, potentially be used in a meta-analysis to compare the usefulness of DES across
various categories of DES applications. Even where the only outcome of a study is increased
certainty that the current process is superior to a proposed alternative, there should be a
defined outcome as a result of simulation.

5. Conclusions

Discrete event simulation is a stochastic, dynamic, discretely-changing modeling
method. It models the movement of entities through a transformative process over time.
Well-defined models, which have clearly defined objectives and are verified and validated
with input from process owners and decision makers, are capable of assisting decision
makers understand their system, the impact of possible changes, and therefore make
informed decisions to improve the system. It is well suited to analyzing a wide variety of
scenarios, but the computational requirements can limit the size of the models.

www.nlm.nih.gov/bsd/difference.html
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A wide array of software packages are available for discrete event simulation modeling.
While many have graphical interfaces, allowing for visualization of flow through the system,
that is not a requirement. Each software has its own nuances, such as grammar and syntax,
and requires the designer to learn the specifics of the tool.

The use of discrete event simulation in healthcare has continued to grow. Applications
in healthcare system operations are the dominant use of discrete event simulation in the
field. This should not come as a surprise, as those types of models are very similar to the
types of systems that DES was designed to address. With those models, resource allocation
and process efficiency are the most frequent objectives. While not originally designed to
model clinical outcomes, the continued expansion of discrete event simulation to clinical
simulations shows its adaptability and flexibility, along with its utility. Most clinically
oriented studies look at the long-term economic and quality-of-life outcomes for various
treatments, such as cancer and cardiovascular disease.

While much work has been done at an operational level and at a clinical level, there is
little evidence of simulation applied to healthcare at a strategic level. There is much focus
on operational flow and efficiency through individual facilities, and analyses of which
treatment pathways generate the best long-term health outcomes, but little on modeling
which system-level healthcare policies will affect population-level access to healthcare, or
how those policies will affect the quality of care. Given the turbulent nature of national-level
healthcare policy, especially in the United States, this is unfortunate.

Patient and staff scheduling have both been studied, but the intersection between
the two has not. Typically, either the patient population or the staffing pattern remains
fixed, and the other changed to find an ideal balance. A more robust approach would be to
identify an objective function taking both into account, and using DES to find the optimal
balance of both.
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