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Abstract: Creating video games can be a very complex process, which requires taking into account
various hardware and software limitations. This process is even more complex for mobile games,
which are limited to the resources that their platforms (mobile devices) offer in comparison to
game consoles and personal computers. This restriction makes performance one of the top critical
requirements, meaning that a videogame should be designed and developed more carefully. In order
to reduce the resources that a game uses, there are optimization techniques that can be applied in
different stages of the development. For the purposes of this article, we designed and developed a
simple shooter videogame, intended for Android mobile devices. The game was developed with the
Unity game engine and most of the models were designed with the 3D computer graphics software
Blender. Two versions of the game were developed in order to study the differences in performance:
one version that applies basic optimization techniques, such as low poly count for the models and the
object pooling algorithm for the enemy’s spawn; and one where the aforementioned optimizations
were not used. Even though the game is not large in scale, the optimized version achieves a better
user experience and needs less resources in order to run smoothly. This means that in larger and
more complex video games these optimizations could have a bigger impact on the performance of
the final product. To measure how the techniques affected the two versions of the game, the values
of frames per second, batches and triangles/polygons were taken under consideration and used as
metrics for game performance in terms of CPU usage, rendering (GPU usage) and memory usage.

Keywords: mobile game performance; optimization techniques; android; low poly; object pooling;
blender; unity

1. Introduction

With the evolution of technology, mobile devices like smartphones and tablets have
acquired a particularly important place in society. In the field of the video game industry,
they have succeeded in becoming the top platform on the market, due to their portability
and the majority of affordable games that they offer [1]. Nowadays, mobile video games
are one of the most popular ways of entertainment [2,3]. However, in order to achieve
both portability and size restrictions, several compromises have to be made in terms of
hardware components and software. This fact creates a significant difference in performance
compared to a computer or a console. Despite the numerous videogames that exist and the
popularity that they have achieved, game development is not an easy procedure, especially
when the target platforms are mobile devices. Therefore, video games for those specific
platforms should be designed and developed in such a way that makes proper use of the
system resources and at the same time provides a smooth experience for the user.

The literature on various types of mobile games reports various challenges. Trisnadoly
and Kreshna [4] in an end user survey of an educational mobile game reported problems in
game performance and user satisfaction. The main problems that were recorded after a
gap analysis in terms of game performance were: the file size of the game; the duration
of installation; and delay between scenes. Xanthopoulos and Xinogalos in a review of
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location-based services for mobile games investigate the additional challenges imposed
by the specific type of mobile games due to the need for determining the user’s location,
as well as best practices for battery efficiency and game performance [5]. The additional
challenges imposed by the need to determine the location of a user are: providers’ trade-
offs in accuracy, speed and battery efficiency; constant re-estimation of the user’s location;
and varying accuracy of location estimation from different sources. Chehimi et al. [6]
benchmarked the available software and hardware back in 2006 for investigating challenges
in the quality of graphics and the underlying effects on battery life for 3D mobile games
and highlighted the need for standarization.

No matter what the specific type of a mobile game is, providing a smooth gameplay to
the user without using too many system resources requires the application of optimization
techniques. Optimization techniques can be applied in every aspect of a video game. For
example, during model designing we should avoid adding details to a model by using a
higher number of polygons, because this will increase the resources that a system needs in
order to render it. In addition, adding these details through a texture is a way to make the
rendering procedure less expensive [7]. Another aspect of optimization refers to the game
mechanics; for example, efficiently recycling game objects, such as the opponents that need
to be spawned and eliminated multiple times.

Choi et al. [8] in a contemporary study, proposed a scheme for optimizing energy
efficiency (CPU and GPU usage) of mobile games, called System-level Energy-optimization
for Game Applications (SEGA). The proposed scheme makes use of the following tech-
niques: Lsync-aware GPU DVFS governor; adaptive capacity clamping; and on-demand
touch boosting. Ng et al. [9] proposed an algorithm for optimization of collision detection
between groups of objects in mobile shooting games. More specifically, the algorithm
aims at an effective usage of memory in order to avoid lags or crashes. Kwon et al. [10]
investigated the use of optimization techniques for dealing with the challenge of execution
offloading for 3D video games. Their research resulted in a streaming-based execution
offloading framework that deals with the data transfer cost of rendering and game state
with the ultimate goal of a better user experience. Finally, Hasan et al. [11] present a study
on character and mesh optimization for video games (computer and mobile games) based
on reducing poly count and deleting parts that are not necessary for a mess.

This article aims to contribute to the research on optimization of mobile games per-
formance by investigating basic optimization techniques for 3D mobile games. This is
considered important since, nowadays, the stakeholders include people coming from var-
ious fields, as noted in [12]. For example, teachers and students design and implement
mobile games for usage as learning aids for their classes or in the context of course/thesis
projects, respectively. It is of vital importance to provide guidelines for applying basic
optimization techniques that have a proven improvement in game performance and can be
applied by people that are not experts in mobile game development. In line with this, in
this article we investigate the following research question:

What is the impact of basic optimization techniques on 3D mobile game performance?

The basic optimization techniques investigated collectively include low poly models,
merge vertices (as a means of achieving low poly models), textures and materials, occlusion
culling and object pooling. These techniques aim to optimize the value of frames per
second, batches and triangles/polygons in order to improve game performance in terms of
CPU usage, rendering (GPU usage) and memory usage.

In order to investigate the research question of the study, the aforementioned optimiza-
tion techniques were used for developing a 3D mobile game. Specifically, two versions of
the same game were developed and compared, one that uses these techniques and one that
does not. The experiment had three phases. Firstly, we compared the data on the lowest
FPS at the beginning of the game. Then we captured two snapshots during runtime, one
with the lowest FPS value and one from when the FPS value was close to 60, from a set
of 900 frames. For each one of the two snapshots we compared the results between the
two versions. The first two phases of the experiment took place on a personal computer
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and were compared based on how they affected CPU usage, rendering and memory. In the
last phase the two versions were executed on a mobile phone and some moments during
gameplay were compared for studying how they performed on a physical device.

The rest of the article is organized as follows. In Section 2 a brief description of the
optimization techniques is provided. In Section 3 the methodology of the study is presented,
while in Section 4 the two versions of the mobile game utilized in the study are analyzed.
In Section 5 the results of the study are presented and in Section 6 some final conclusions
are drawn.

2. Optimization Techniques

Before diving into optimization techniques, we should bear in mind that the mobile
devices that are currently on market do not all have the same capabilities [7]. This results
from the constant rising of technology and the emergence of more powerful systems.
Furthermore, for older models, optimization techniques can prove to be demanding or
meaningless because the device does not have enough processing power to meet the
requirements of a modern video game [7]. Therefore, the developer should choose from the
beginning the range of devices which s/he wants the game to run. This is also the case for
studies on the effects of various optimization techniques, such as the ones summarized in
the previous section, which always define the devices that were utilized in the experiments.

2.1. Low Poly Models

Every model which is used in game development consists of polygons. A higher
number of polygons means that the assets are more realistic and have more details [13,14].
However, this can be quite expensive in resources, during rendering. In order for the
rendering procedure to be accomplished, all the polygons that are needed to display the
model have to be converted into triangles. This happens because GPUs can only render
objects that consist of triangles [13]. Essentially, during game development, the models that
will be used should consist of meshes with a low number of polygons, which are easier to
draw on screen. The designer should use and combine simple shapes to create the objects
s/he wants to incorporate into the video game. Then, using textures and shaders, more
details can be added. Another thing to keep in mind that could affect performance is the
number of models. Unity’s documentation (2017 edition), mentions that for mobile devices
there will be a positive result if each mesh has a number of polygons between 300 and
1500 [14]. However, those numbers might be incorrect depending on the number of models
that are inside a game scene; it could also be a factor that will make a game developer
reduce or review the existing optimization techniques. Even though the best way to make
a low poly model is to design it from the beginning, there are ways to achieve polygon
reduction for an object. Blender, for example, has an option to reduce polygons for existing
models. By adding the decimate modifier to an object, the model designer is able to reduce
the number of faces through the value of the ratio which is available on the window of the
modifier (Figure 1). It should be noted that the process of designing models with reduced
polygons/triangles from the beginning is more efficient than reducing them to an existing
one. This happens because a small ratio value for the decimate modifier could corrupt the
final object.



Modelling 2022, 3

204

6= a v

Copy

Collapse 'In-Subdivide Planar

1.0000

Figure 1. Menu panel on Blender for the decimate modifier.

2.2. Merge Vertices

A similar technique with the decimate modifier is ‘merge by distance’. This tool
provides the possibility of simplifying a mesh, by joining the selected vertices which are
close to the distance given by the user [15]. During model designing there are many times
when one face of an object can end up on top of another one. For example, during copying
and pasting, the user may forget to delete the old model, and as a result the new one will
come and cover the old without the designer realizing it. In the final model this can have
particularly negative effects, such as not applying the texture properly or altering this
specific element. The ‘merge by distance’ option, with a value of 0 for the distance, provides
the possibility of dealing with duplicates in the selected vertices. For values greater than
0 in the distance, long-distance combinations occur and this gives a result similar to the
decimate modifier.

2.3. Textures and Materials

Colors can have a critical impact in gameplay, as they can add liveliness and realism
to a scene or not. To apply color on objects in Unity, information about the texture and
color must be provided in order to draw on its surface. Meshes are used to describe
the shape of an object, while materials are used to describe the surface. The materials
contain information on colors and textures, as well as references to Unity shaders [16]. For
the game that is going to be presented in this article we used color pallets, which is an
excellent solution for storing colors when we want to save resources. In order to achieve
this technique, there are some requirements. Initially, the UV map of the model should be
generated through Blender (Figure 2).

The next step is to create the color pallet. Each model can have a unique pallet or there
could be one pallet for the entire game. The first option is more flexible in case there is a
need to change the color of a model later during development. Creation of color pallets
could be accomplished through any image editing software. After creating the pallet, we
load it on Blender and the final step is to choose and align the faces to the desired color
on the pallet (Figure 3). At the end of this process the model is exported and loaded into
Unity. Along with the model (a) .png file of the color pallet has to be imported as well. To
use the texture, a material is required on which the created image will be rendered, while
the material can be assigned later to the model with the colors occupying the side defined
in Blender.
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Figure 3. Selected faces on desired color inside the pallet.

2.4. Occlusion Culling

From the beginning, the camera in Unity draws every object that it can find inside
its angle of view, even those which are hidden behind obstacles. Designing the assets for
a scene is quite an expensive process and there is no point in doing it for parts that are
not visible to the player [17,18]. Getting rid of this issue and saving some resources can
be achieved through occlusion culling. ‘Baking’ the scene using occlusion data will lead
Unity to ignore parts on the scene that are getting covered by other objects, like a wall [17].
This solution results in the reduction of the geometry which is designed per frame and
consequently allows a partial increase in the performance. In order for an object to be baked
as occlusion data it must first be classified as occluder static or occludee static (Figure 4).
This can be done from the static option list for each game object. As for the dynamic objects
inside a scene, they are capable of acting as an occluder during the execution of the game,
but not as an occludee. To include dynamic game objects in the occlusion culling action,
the dynamic occlusion option must be enabled in each renderer component for all the
assets [18].
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Figure 4. Set game object as occluder and occludee static.

2.5. Object Pooling

Deleting and creating objects is a basic element for every game. For example, the
enemies tend to be removed from the game scene after their elimination. This procedure
applies for many other objects in game which “disappear” when they complete their
purpose. To create and delete objects in Unity we use the functions instantiate (... ) and
destroy (... ), respectively. With the continuous use of these two functions the garbage
collector is being activated more often. The garbage collector is responsible for freeing
memory space from objects that reserved it when they were created and they have to be
removed because they are not needed any more [19]. If these assets are large in number and
have a high number of polygons, during removal they could increase the CPU usage and
the problem of heap fragmentation could occur [20]. One way to deal with this problem
is to use object polling. In this process a multitude of instances of each object, which are
required to be regularly displayed and deleted from the game, are created and integrated
into a data structure, such as a list. Then if there is a need to use an item, the first available
in the structure is activated on the scene. After fulfilling its purpose, it is deactivated and
becomes available for use again. In that way there is a specific number of GameObjects and
their operation is recycled without the functions instantiate ( ... ) and destroy ( ... ) being
used multiple times. Furthermore, because the objects have already been created and they
exist on the scene, deactivated, the render needs fewer resources [20]. One of the problems
that someone may encounter with this method is that the game will try to activate more
items than those that are available in the structure. Therefore, the total number must be
chosen correctly so that there are not too many items or fewer than the game needs. Several
ways for implementing the object pooling technique are available.

3. Methodology of the Study

For the purposes of the study, a simple video game intended for Android mobile
devices was designed and developed. The game was developed with the Unity game
engine and most of the models were designed with the 3D computer graphics software
Blender. Two versions of the game were developed in order to study the differences in
performance: one version that applies basic optimization techniques, like the ones briefly
reviewed in Section 2; and one where the aforementioned optimizations were not used.
The two versions of the game are presented in Section 4.

The two versions of the game were then compared in terms of their performance.
Data recording during game initialization and game play took place on a computer with a
remote connection to a mobile phone and with the profiler showing the last 900 frames. The
following measurements were made: performance was investigated at the beginning of
the game where all the objects are loaded; and during gameplay where the main character
constantly eliminates opponents; finally, the FPS count during gameplay on the mobile
phone was investigated.
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For the comparison between the two versions of the game, the following metrics were
used for measuring and evaluating performance [21]:

e  Frames per second (FPS);
e  Batches;
e  Triangles/polygons.

Improvements to their values were expected to result in better game performance
in CPU usage, rendering and memory. In the following paragraphs the aforementioned
metrics, as well as the tools utilized for keeping track of them, are briefly described.

3.1. Frames per Second (FPS)

Frames per second (FPS) refers to the number of images that are updated every second
on the screen. Each image represents a frame [22]. The fast image projection gives the
illusion of movement to the human eye. Thus, the larger the number of frames or images
projection per second, the smoother the movement is [21].

1000/target FPS = time per frame (ms) €))

FPS is one of the most common metrics for evaluating the performance of video games,
because it affects the end user’s game performance as well [23]. A low number of frames
means that it is quite difficult for someone to play the game, while a higher number means
that a game runs smoothly. In other words, the rate at which the frames are rendered can
impact the player’s performance affecting the overall experience. In order to calculate the
FPS for a game we need to know the processing and displaying capabilities of a system
along with the corresponding requirements of a game. These insights about frame rate
can guide players to purchase new hardware, and even affect the development on new
hardware [24]. This specific metric can be seen in Unity via the profiling tool, but also
Blender makes references to FPS when an animation is created.

3.2. Batches

Any object that the user wants to be visible on the scene of his/her game is sent by
Unity to the GPU in order to design it, using the selected graphics API for each platform [25].
This action is known as draw call [25]. Draw calls should be applied in every object that is
used for game purposes in order to give it the appropriate vertices, shaders, textures and
more. However, in cases where there are a high number of models, these calls can put a lot
of strain on the GPU, especially on mobile devices. The solution to this problem is given
through reducing the batches [26]. More specifically, models that have the same materials
can be combined in a batch in order to be rendered together [25]. As a result it is possible
to minimize runtime memory consumption, along with CPU and GPU workloads [26].
Essentially, batches are a way to find out and fix any abuse of the aforementioned modeling
materials.

3.3. Triangles/Polygons

Each model used for game development purposes consists of triangles/polygons.
The greater the number of polygons we encounter in an object, the more realistically it is
represented [13,14]. However, a fairly realistic model with many polygons requires greater
processing power from the GPU and CPU in order for it to be displayed. There are also
bigger requirements in the field of memory usage for a complicated model mesh. So, one
way to optimize a video game model is to use as few polygons as possible to represent
it [11]. A proper reduction of polygons/triangles, as mentioned in [11], can lead to less
usage in computing resources, which are required to display the models, without losing
their quality. Furthermore, because GPUs can only render triangles [13], it is necessary for
all the polygons of a model to be converted into triangles in order for the render process to
be accomplished.
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3.4. Profiling Tools

It is important for a game developer to have knowledge of the resources’ requirements
by each of the video game functions. Profiling tools allow an in-depth look at issues related
to the performance of the video game, such as the percentage of memory occupied, CPU
or GPU usage by every process and much more [27]. This action could help a developer
identify with more ease the parts with the highest cost in resources and take the appropriate
actions to reduce it. For this article, the main tool used was the profiler that is already
embedded in Unity. Unity Profiler is a quite good tool to start the process of monitoring
and evaluating the performance of a game [27]. The second tool, which is actually a script,
was used to count the FPS during gameplay. Even though the profiler has this kind of
functionality, it can only monitor the game running on the computer. So, the measurement
of the game’s FPS, on mobile devices, is being done via a script that calculates frames per
second over an interval.

4. The Two Versions of the Game

For this experiment two versions of the same game were developed. One uses opti-
mization techniques, and the other does not. The main purpose of this comparison was to
show how much of a difference some simple techniques could make to a game, especially
when it is created for mobile devices. First, there should be a more in-depth look at those
techniques.

In the non-optimized version, we used static objects that have the problem of faces
inside faces, such as the barracks presented in Figure 5. During the first design, some faces
of the barrack model tended not to be visible to the player. The way to produce most of
the low poly models was by connecting simple shapes with one another. As a result, there
might be cases where faces from one object hide inside another. This increases the poly
count, and Unity has to render them, even though they are not visible. It might also create
strange effects. For example, if two identical static objects were placed at the same position,
Unity would try to render them both, but this is going to create a strange and unwanted
behavior because each object will try to cover the other.

(a) (b)

Figure 5. (a) Barrack model from the improved version of the game. (b) Barrack model from the
non-improved version of the game.

The next difference has to do with the usage of occlusion culling. For this technique,
in the optimized version the occlusion culling was enabled and all the static objects were
marked as occluder or occludee static, so Unity would not render the whole map but only
the part inside the camera view.

The next two actions that were taken to improve performance were those that had
the biggest impact. In the non-optimized version, some of the assets inside the scene had
a high polygon count. The barracks, the water tower, the trees and sand piles were some
of the static objects that had a large number of polygons. In the non-static models, the
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enemies were those that were not low poly. The differences in triangle count between the
two versions can be seen in Table 1.

Table 1. Triangle count for some of the models in improved and non-improved versions of the game.

Model Improved (Triangles) Non-Improved (Triangles)
Barrack 808 6584
Tree 2190 5640
Water tank 4400 6088
Sand 2512 130,050
Enemy 3296 25,585

But how does this triangle reduction affect the game models in terms of appearance?
In Figures 5-8 the models for the two versions are presented. The assets are extracted from
Unity, which means that they are the ones the player is able to see during gameplay.

LI ER RN AR RN R RN

(a) (b)

Figure 6. (a) Water tower model from the improved version of the game. (b) Water tower model from
the non-improved version of the game.

(@) (b)

Figure 7. (a) Tree model from the improved version of the game. (b) Tree model from the non-
improved version of the game.
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(a) (b)

Figure 8. (a) Sand pile model from the improved version of the game. (b) Tree model from the
non-improved version of the game.

As for the non-static objects, we have the enemies which fall into 3 types. Since their
model is the same and the only different thing is their texture, there is only one example of
an enemy presented in Figure 9.

Figure 9. (a) Red enemy model from the improved version of the game. (b) Red enemy model from
the non-improved version of the game.

The last technique that separated the two versions was object pooling. The non-
optimized version did not use it. So, it created and deleted the enemies every time via the
functions instantiate() and destroy().

5. Results

Before presenting the performance results for the two versions of the game, a few
words about the experiment environment should be mentioned. The total number of
enemies which could be on the map simultaneously was 100 and they appeared every half
a second. Data recording took place on a computer with a remote connection to a mobile
phone and with the profiler showing the last 900 frames. Those two factors need to be
mentioned, because they affected the data on the profiler. The measurements are divided
into three parts. Initially, there is the performance calculated at the beginning of the game
where all the objects were loaded. Then, there is a recording from gameplay where the
main character constantly eliminated opponents. Finally, the FPS count during gameplay
on the mobile phone is presented. For the comparisons, emphasis is on CPU usage, the
rendering process and memory.
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5.1. Loading Results on a Personal Computer
5.1.1. Loading Results CPU Usage

For the first 900 frames from the beginning of the game the profiler produced the
results presented in Figure 10 for the non-optimized version. The particularly large spike
seen at the beginning constitutes the transfer between the menu scene to the main game and
the loading of all objects. The graph shows some deviations from 30 FPS, which is justified
by the start of the algorithm for the production of the opponents. However, without the
graph from the optimized version it is hard to make assumptions.

* Playmode~ @ I Clearon Play DeepProfile Call Stacks =

Figure 10. Profiler results for the beginning of the non-optimized version of the game.

In Figure 11 the results from the first 900 frames from the optimized version of the
game are presented. At first glance, the CPU usage graph contains a large spike when
switching scenes, similar to that of the non-optimized version. However, every other spike
that forms after this point does not fall below 30 FPS; but what happens with the other
components (rendering and memory) in the two versions? To answer this question, the
profiler data are presented.

5.1.2. Loading Results on Rendering

Table 2 contains rendering data recorded on the big spike during the start of the game.
The table refers to both versions.

Table 2. Rendering data for both versions from the beginning frame in CPU usage diagram.

Variables Optimized Version Non-Optimized Version
SetPass Calls 49 57
Draw Calls 103 109
Batches 103 109
Triangles 1754 k 7348k
Vertices 307.3k 656.4 k
Used Textures 13/3.3 MB 25/3.4 MB
Render Textures 12/103.5 MB 13/93.7 MB
Render Textures Changes 3 5
Used Buffer 470/22.2 MB 2013/38.3 MB
Vertex Buffer Upload in Frame 128/20.6 MB 140/32.6 MB
Index Buffer Upload in Frame 114/1.3 MB 126/3.2 MB
Shadow Casters 89 78
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Figure 11. Profiler results for the beginning of the optimized version of the game.

The first variable was set pass calls, which is the number of times Unity has to switch
between shaders for the different objects that exist in a scene, and is determined by the
materials and their complexity [28]. The optimized version seemed to have 49 of these calls
while the non-optimized version had 57. The next variable was draw calls, which are the
requests to the GPU to display an object [25]. If there are two objects with two different
materials, then the GPU will tilt twice to display them. The values appeared to be 109
and 103 for the non-optimized and the optimized versions, respectively. Exactly the same
values were found for batches. The next value refers to the total number of triangles that
were loaded in this specific frame. For the optimized version there were 175.4 k triangles,
while for the non-optimized one there were 734.8 k. Vertices for the non-optimized version
reached up to 656.4 k and for the optimized version 307.3 k. Those two last variables had
such a difference because for the non-optimized version of the game, the models were quite
expensive in terms of resources. The variable used textures refers to the amount of textures
Unity uses per frame [28]. The used textures for the optimized version were 13 with size
3.3 MB and for the non-optimized 25 with size 3.4 MB. Next, there is render texture, which
has to do with the number of textures that are rendered per frame [28]. As shown in Table 2,
even though the non-optimized version had a higher number of rendered textures, they
had smaller memory size in comparison with those of the optimized version. Moving on,
the render texture changes suggest the number of times Unity sends one or multiple textures
to render per frame [28]; again the value for the optimized version was smaller than for
the non-optimized. Used buffers is the total number of GPU buffers. More specifically,
it includes vertex, index and compute buffers, components that are needed in order for
the rendering procedure to be accomplished [28]. For this variable there is one of the big
differences between the two versions. In the optimized version, there were 470 buffers
with a total size of 22.2 MB, while in the non-optimized there were 2013 buffers with a size
of 38.3 MB. The vertex and index buffer upload in frame define the amount of geometry that
is being sent from CPU to GPU in a frame. Their difference is that vertex buffer upload
represents vertex/normal/texccord data and the other, triangle indices data [28]. For both
vertex and index buffer upload the optimized version had better results in terms of number
and size. Lastly, there are shadow casters, which include the number of shadows that game
objects produce [28].
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5.1.3. Loading Results on Memory

Regarding memory, results for the two versions are presented in Table 3.

Table 3. Memory data for both versions from the beginning frame in the CPU usage diagram.

Variables Optimized Version Non-Optimized Version
Total Used Memory 0.63 GB 0.82 GB
GC Used 15.4 MB 14.4 MB
Gfx Used 45.2 MB 61.9 MB
Audio Used 1.9 MB 1.9 MB
Video Used 264 B 264 B
Profiler (Used) 375.1 MB 0.53 GB
Total Reserved Memory 0.88 GB 1.08 GB
GC Reserved 32.8 MB 23.7 MB
Gfx Reserved 45.2 MB 61.9 MB
Audio Reserved 1.9 MB 1.9 MB
Video Reserved 264 B 264 B
Profiler (Reserved) 391.0 MB 0.55 GB
System Used Memory 1.51 GB 1.68 GB
Textures 834/154.1 MB 808/146.2 MB
Meshes 109/62.7 MB 123/102.5 MB
Materials 110/234.7 MB 102/245.8 KB
Animation Clips 29/5.5 MB 35/8.5 MB
Asset Count 5992 6456
Game Object Count 5413 450
Scene Object Count 13761 1929
Object Count 19753 8385
GC allocation in Frame 6084/09 B 3853/0.6 MB

Firstly, there is the total used memory, which is the total value of memory that Unity
uses and tracks [29]. For the optimized version the value was 0.63 GB while for the non-
optimized it was up to 0.82 GB. The total reserved memory used in Unity relates to tracking
purposes and pool allocations [29]. The difference between the two versions was exactly
1.0 MB with the non-optimized version having the best value. Then, there is the GC used
memory and GC reserved memory, which represent the used heap size and the total heap size
that manage code uses and those parts of memory produce garbage that are collected [29].
Next, there is the Gfx used memory and Gfx reserved memory, which represent the amount
of memory that the driver uses on textures, render targets, Shaders and mesh data [29].
Furthermore, audio used and audio reserved show the estimated memory usage for the
audio system [29]. Respectively, the video used and video reserved memory show the usage for
the video system. There is also the profiler used and reserved memory, which shows memory
that the profiler consumes and reserves from the system [29]. Finally, there is the system
used memory, which is the memory that is used by the system in order to run the game.
However, the memory profiler does not track all memory usage in the system [29]. From
the comparison of the variables fotal used, total reserved and system used memory, the two
versions of the game were not very far from each other. It should be noted that the profiler
variable was ignored because in real life scenarios it will not affect the game. However,
for the variables asset, game object, scene object and object count, values were a lot higher
for the optimized than the non-optimized version. This is because the optimized version
used the object pooling algorithm for the opponents. Basically, all the enemies (100 in
total) were being created and disabled at the start of the game. So, they were still counted
as game objects in the scene. If the same number of objects was being spawned for the
non-optimized version, there would be an even greater difference between them in terms
of memory.
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5.2. Gameplay Results on a Personal Computer

The next phase of the experiment refers to the performance of the game, which in
production is required to be as smooth as possible for the best user experience. In this case,
the main character of the game moved within the predefined map, destroying enemies,
while new ones were constantly created. New enemies were created every half a second
from specific points on the map. Moving on, the profiler graphs in Figure 12 show the
components usage in the non-optimized version.

ory

ated In Frame

Figure 12. Profiler results for gameplay of the non-optimized version of the game.

From the CPU usage diagram, we can see that there were spikes that reached close
to the limit of 30 FPS and one that exceeded it. However, no comparison can be made yet.
One more observation that can be made is that in the memory diagram, the GC allocation
(red line in the memory diagram) was quite often seen. In Figure 13, a track about the state
of the optimized version of the game is captured.

In Frame

Figure 13. Profiler results for the gameplay of the optimized version of the game.

In the specific frames that represent the diagram of the CPU usage, there were smaller
spikes in comparison to the non-optimized version and none touched the limit of 30 FPS.
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Furthermore, the line for the GC allocation had fewer spikes in the optimized version.
In order to continue, more data from rendering and memory usage processes should
be presented. For both rendering and memory usage there will be two frames under
consideration: the first is the one that hit the lowest FPS, and the other is one that was close

to 60 FPS.

5.2.1. Rendering Data

From the data presented in Figures 12 and 13 we extracted for both game versions
a snapshot with the lowest FPS and one with an FPS value close to 60. The differences
between the two versions for the gameplay moment with the lowest FPS value are presented
in Table 4, and those for the frame with a value of FPS close to 60 are presented in Table 5.

Table 4. Rendering data from a gameplay snapshot with the lowest FPS in the CPU usage diagram.

Variables

Optimized Version

Non-Optimized Version

Set Pass Calls
Draw Calls
Batches
Triangles
Vertices

Batched Draw Calls
Batches
Triangles
Vertices

Used Textures
Render Textures
Render Textures Changes
Used Buffer
Vertex Buffer Upload in Frame
Index Buffer Upload in Frame
Shadow Casters

60
227
224
490.3 k
1.0M
(Dynamic Batching)
9
6
231k
15.5k
(End Dynamic Batching)
18/3.5MB
12/103.7 MB
2
5213/37.2 MB
5/367.7 KB
3/135.2 KB
253

65
248
246

3.5M
48M

5

3
232k
15.7k

30/4.7 MB
13/103.7 MB
3
12542/95.4 MB
5/374.1 KB
4/135.6 KB
263

Table 5. Rendering data for a frame with approximately 60 FPS in the CPU usage diagram.

Variables

Optimized Version

Non-Optimized Version

Set Pass Calls
Draw Calls
Batches
Triangles
Vertices

Batched Draw Calls
Batches
Triangles
Vertices

Used Textures
Render Textures
Render Textures Changes
Used Buffer
Vertex Buffer Upload in Frame
Index Buffer Upload in Frame
Shadow Casters

67
253
249
574.7 k
12M
(Dynamic Batching)
11
7
415k
279k
(End Dynamic Batching)
18/3.5 MB
12/103.7 MB
2
4933/37.3 MB
5/367.7 KB
5/0.6 MB
266

70
260
253

34M
48M

13

6
38.6 k
26.1k

28/3.5 MB
13/103.7 MB
3
12522/93.3 MB
5/374.1 KB
4/0.6 MB
262

In Table 4, the rendering data that refer to the snapshot with the lowest FPS value for
both game versions are presented. According to Table 4, it is obvious that in the optimized
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version there was a smaller number of set pass calls, draw calls and batches, which means
that there was a slightly better grouping of objects. So, fewer resources were needed for
displaying the objects because they were being drawn as one object. The variable triangles
and vertices differ significantly between the two versions and that is because the models in
the non-optimized version had more details and were a bit more realistic, which costs more
resources in order to be drawn. Dynamic batching variables seemed to have lower values
for the non-optimized version, and the reason behind that could be that in the optimized
version there were more types of different objects being rendered. The next difference
that appears has to do with used textures; in the optimized version their value was 18 with
a size of 3.4 MB, while in the non-optimized version their value was 30 with a size of
4.7 MB. The variables render textures and render textures changes did not have much of a
difference between the two versions, while the size of the render textures in memory was the
same. A particular gap was observed in used buffer values where the optimized version had
5213 buffers with a size of 37.2 MB, while the non-optimized version had 12,542 buffers
with a size of 95.4 MB. The values for vertex and index buffer upload were quite close in both
cases. Lastly, in the optimized version shadows for some objects had been disabled because
they did not offer any difference to the final game. That is one reason that can explain the
difference for shadow casters, while another one is that there were fewer dynamic objects
visible in the scene in the optimized version than in the non-optimized.

Table 5, as already mentioned, summarizes data collected for a frame with approx-
imately 60 FPS. Most of the variables tended to follow the same pattern as those from
Table 4. Those are set pass calls, draw calls and batches, which in the optimized version had
slightly better results. The vertices and triangles continued to have a similar big gap between
the two versions. The differentiation comes in the fields of dynamic batching, where with
fewer draw calls and batches for the optimized version, more objects were sent to be drawn.
A slight difference was recorded for shadow casters, which in the optimized version were 266
and in the non-optimized 262. This situation can be explained by the number of dynamic
objects that existed in the scene and created shadows.

5.2.2. Memory Data

In this section, the results for the memory component of the part of the game that
achieved the lowest FPS (Table 6) and the part with an FPS value close to 60 (Table 7) are
presented.

Table 6 includes the data from memory usage, which represent the frame with the
lowest FPS value reached by the game in the CPU diagram. According to Table 6, the
total used memory for the optimized version was 0.93 MB, which is lower than the value
for the non-optimized version. The GC usage went up to 19 MB for the optimized version.
For this specific version, GC tends not to be called so often, but when it does it uses more
memory. For the non-optimized version GC was 17.2 MB. The Gfx used memory showed a
difference of 60.3 MB between the two versions with the non-optimized capturing most
of it. Expensive models are one of the reasons that a game ends up with high Gfx used
memory. Audio usage differed only by 0.1 MB, while for video the values were exactly the
same. The memory being used for profiler purposes was 0.61 GB and 0.58 GB for the
optimized and the non-optimized versions, respectively. However, this part of memory
was captured only for monitoring purposes of the game and does not affect the final app.
Similar results were obtained for the corresponding reserved variables. The total memory
that the system needed in order to run the game (system used memory) for the optimized
version was 1.81 GB, while for the non-optimized it was up to 1.98 GB. The rest of the
variables refer to the number of game objects used from Unity. What is most interesting
is the number of objects (game object count, scene object count and object count), which were
particularly large for the optimized version. As already mentioned, the object pooling
technique is responsible for this behavior. In more detail, the objects were created and
disabled at the beginning. When there was a need for opponents, the game manager just
made visible the number of enemies that it needed, without creating them from scratch
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and affecting the performance much. These actions explain their effect on the profiler and
the reason why they did not consume much resources in the gameplay time.

Table 6. Memory data for the frame with the lowest FPS in CPU usage diagram.

Variables

Optimized Version

Non-Optimized Version

Total Used Memory
GC Used
Gfx Used
Audio Used
Video Used
Profiler (Used)
Total Reserved Memory
GC Reserved
Gfx Reserved
Audio Reserved
Video Reserved
Profiler (Reserved)
System Used Memory
Textures
Meshes
Materials
Animation Clips
Asset Count
Game Object Count
Scene Object Count
Object Count
GC Allocation in Frame

0.93 GB
19.0 MB
66.1 MB
29 MB
264 B
0.61 GB
1.16 GB
24.6 MB
66.1 MB
29 MB
264 B
0.63 GB
1.81 GB
878/166.3 MB
107/62.7 MB
103/234.7 MB
29/5.5 MB
5923
5458
14,006
19,929
9/506 B

0.99 GB
17.2 MB
128.5 MB
2.8 MB
264 B
0.58 GB
1.23 GB
24.4 MB
128.5 MB
2.8 MB
264 B
0.60 GB
1.98 GB
922/175.1 MB
133/104.2 MB
196/251.1 KB
35/8.5 MB
6464
2097
5585
12,049
6/384 B

Table 7. Memory data from a frame close to 60 frames per second in the CPU usage diagram.

Variables

Optimized Version

Non-Optimized Version

Total Used Memory
GC Used
Gfx Used
Audio Used
Video Used
Profiler (Used)
Total Reserved Memory
GC Reserved
Gfx Reserved
Audio Reserved
Video Reserved
Profiler (Reserved)
System Used Memory
Textures
Meshes
Materials
Animation Clips
Asset Count
Game Object Count
Scene Object Count
Object Count
GC allocation in Frame

0.85 GB
16.4 MB
66.1 MB
29MB
264 B
0.58 GB
1.15GB
24.6 MB
66.1 MB
29MB
264 B
0.61 GB
1.80 GB
878/166.3 MB
107/62.7 MB
103/234.7 MB
29/5.5 MB
5923
5465
14032
19955
199/57.3 KB

1.00 GB
17.7 MB
126.4 MB
2.8 MB
264 B
0.59 GB
1.24 GB
24.4 MB
126.4 MB
2.8 MB
264 B
0.62 GB
1.99 GB
922/175.1 MB
133/104.2 MB
106/251.1 KB
35/8.5 MB
6464
2105
5629
12093
7/424 KB

The recording of memory data near the limit of 60 FPS is shown in Table 7. The
tracks that accounted for the used and reserved memory were not very different from
the results shown in Table 6. So, there was no difference in the relationship between the
two versions. The same goes for the variables concerning the number of objects and their
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materials (textures, meshed, materials and animation clips). However, for the specific frame
and especially for the optimized version, there were many memory allocations from GC
but the memory size being allocated was smaller than that in the non-optimized version.
Furthermore, it was the largest value for this variable among all the other recorded frames.

5.3. Gameplay on a Mobile Device

The analysis for the two versions of the game presented in Section 5.2 refers to a
personal computer. Both the optimized and the non-optimized version did not cause any
problem to the system, because it had quite a few resources compared to an Android mobile
device. For the purposes of the experiment and in order to study an image of the game
running under real conditions, a frame count was performed for the different versions
on an Android device. The device that was used for the experiment was Xiaomi Mi Note
10 Lite and the specifications are presented in Table 8. The frame count was calculated
via a script that is able to print the FPS on the screen. For the two versions of the game,
representative snapshots from different parts of the game are presented along with the
results.

Table 8. Mobile device specifications.

Xiaomi Mi Note 10 Lite Specifications

CPU Qualcomm SDM730 Snapdragon Octa-core MAX 2.2 GHz
RAM 6 GB

Storage 64 GB

Display 6.47 inches
Batter Li-Po 5260 mAh

5.3.1. Optimized Game on the Mobile Device

In Figure 14, a screenshot for the first seconds of beginning the optimized version of
the game is presented, where most of the assets were finishing with loading.

Figure 14. Beginning of the optimized version of the game.

In general, for the specific version the FPS value ranged between 50 and 60, regardless
of the number of enemies and the various actions that can reduce performance on a system.
Those actions are a high number of collisions between colliders, continuous creation and
destruction of game objects, etc. As shown in Figure 14, the frames increased to 59.96 for
the beginning of the game.

Figure 15 presents a screenshot of the game after some gameplay and the elimination of
52 enemies, with an FPS value of 56.45. At this point, if there was any interference with the
smooth user experience it would have already made an appearance, but the optimization
techniques imported inside the game were able to handle most of the issues that could
have made the game unplayable. As anyone can see, there were plenty of opponents on the
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map that made collisions and tried to attack the main character. However, all these actions
were not enough to change the smooth user experience.

Figure 15. Snapshot after the elimination of 52 enemies in the optimized version of the game.

A drop in the value of FPS was recorded after the extermination of 72 enemies, but
even in this case it did not fall below the limit of 50 frames, as can be seen in Figure 16.

Figure 16. Snapshot after the elimination of 72 enemies in the optimized version of the game.

5.3.2. Non-Optimized Game on the Mobile Device

Figure 17 presents a snapshot for the beginning of the non-optimized game version
with the lowest number of frames per second.

Figure 17. Beginning of the non-optimized version of the game.
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The FPS value for the specific case reached 52.13, which is quite reduced in comparison
with the optimized version. From the early stages of the game, there was interference with
the smooth user experience.

After 19 eliminations, the FPS value fell to 24.58 (Figure 18), which means that the
game was not smooth any more. The FPS limits that can make a game playable or not are
determined by the game type. Some games might be playable with 20-30 FPS, but for a
game with a faster-paced gameplay it might have a negative effect on user reflexes. This
is true, at least, for the newer games that are optimized for 60 FPS during release. So, for
the non-optimized version the game could still be played but it did not offer the same
experience as the optimized one. This situation continued for the duration of gameplay.
After the elimination of 52 opponents, as shown in Figure 19, the frames were reduced even
more and fell to a value of 22.15.

Figure 19. Snapshot after the elimination of 52 enemies in the non-optimized version of the game.

The differences between the two versions on a system with reduced resources were
noticeable in contrast to the gameplay on the computer, where they seemed to be close.
Lastly, in Figure 20 we can see that after 75 eliminations, the FPS value was 24.52.

The game in the non-optimized version came back to 50-60 FPS when there were a
few or no enemies on the map.
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Figure 20. Snapshot after the elimination of 75 enemies in the non-optimized version of the game.

6. Discussion and Conclusions

In this article, we investigated some basic optimization techniques which could be
used during mobile game development with the aim of improving game performance
in terms of CPU usage, rendering (GPU) and memory usage. The basic optimization
techniques investigated collectively included low poly models, merge vertices, textures
and materials, occlusion culling and object pooling. These techniques aim to optimize:
the value of frames per second for achieving a smooth game experience; the number of
triangles/polygons of the models; and the batches that are sent to the GPU for rendering.
The low poly models, merge vertices and the creation of textures and materials in our study
were accomplished with Blender. However, the same results could be accomplished by
every 3D computer graphics software package [11]. Even though the Unity environment
was used in our study, only one of the referenced techniques was described depending on
it and that is occlusion culling. However, occlusion culling is a common technique offered in
several game engines, such as Unreal Engine, Turbulenz, Sio2, Shiva, Ogre3D [12].

In order to investigate the impact of the aforementioned optimization techniques
on game performance, two versions of a simple mobile game were implemented and
comparatively analyzed. The one version used the referenced optimization techniques and
the other did not, while both versions were tested in two different systems.

Initially, the two versions of the game were tested on a personal computer, where we
recorded a snapshot with the lowest FPS value during the beginning of each game version.
The results of the two versions were quite close, with the optimized version accomplishing
better results for all the components (CPU usage, rendering and memory). At this point it
must be stated that in the optimized version we used the object pooling algorithm and
all the enemies were already on the scene, which explains the difference in the number of
game objects. However, despite the multiple assets that existed on scene for the optimized
version, it still had better performance [30].

The next phase of the study included a comparison between two in-game moments,
for each version, where all the game mechanics were running (producing waves of enemies,
attacking the player, the player is trying to eliminate enemies etc.). Two snapshots were
extracted from the CPU usage diagram: one with the lowest FPS value from a set of
900 frames; and one where the FPS value was close to 60. Those two points were analyzed
from the rendering and memory perspective. In terms of rendering, the optimized version
gave slightly better results for most of the variables in both cases. In terms of memory
usage, the non-optimized version used higher poly models, which means that the memory
used during gameplay to store them was higher than that in the optimized version (Gfx
memory). Furthermore, there were parts, like used audio and video, where values captured
the same amount of memory for both versions. There were also parts such as GC that used
less memory size for the non-optimized version than the optimized version, because there
were fewer calls on GC to clear memory space. Overall, the optimized version made a
better use of memory for both snapshots.
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Lastly, we could not talk about mobile games without testing our game on an actual
mobile device. This device was a Xiaomi Mi Note Lite 10 with the specifications mentioned
in Table 8. For this part of the experiment, we compared the two versions during runtime.
The differences in the FPS for the two versions were very clear in the mobile environment.
From the beginning until the end of the game, the FPS for the optimized version ranged
between the values of 50 and 60. This means that the user experience was smooth all the
time. However, the non-optimized version could not keep up. The value of FPS when there
was some action on the map was between 20 and 30, which caused the game to lag at some
points.

In general, the optimization techniques that were investigated in the context of our
study affected the performance in a positive way and were able to make the mobile
game playable. Previous research on the field has investigated frame rate and resolu-
tions [23], frame rate and player performance [24], character and mesh optimization in 3D
games [11], optimization of collision detection in shooting games [9], execution offloading
in 3D games [10], as well as optimization of energy consumption in mobile games [8].
Although several studies on optimization techniques in mobile games have been carried
out, their results cannot be directly compared with the results of our study. In contrast with
previous studies, we investigated the impact of a number of basic optimization techniques
on a 3D mobile game collectively. These techniques are among the most well-known ones
and are simple enough to be applied even by non-experts in the field of game development.
The work presented can be utilized as a reference for applying the investigated optimization
techniques in a straightforward manner, but also for replicating the study.

Future work could investigate the impact of each one of the examined optimization
techniques on mobile game performance in isolation, while further optimization techniques
could be investigated, such as code optimization and reducing unnecessary physics. More-
over, optimization of other critical performance areas could be investigated, such as [31]:
loading speed; frame rate consistency; Ul element loading; power consumption; thermal
stress and so on.
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