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Abstract: Additive Manufacturing (AM), or else Smart Manufacturing, has been an intrinsic concept
in Industry 4.0, offering flexibility and material efficiency. Certain limitations prevent AM from
being used in the industrial setting extensively, despite its advantages. Therefore, a literature review
on the process modelling approaches, their advantages and limitations was performed. The most
frequently used process modelling approaches were reviewed and summarized with respect to the
process modelling approach, scale and limitations. The different categories of process modelling
approaches were compared, with molecular dynamics being a promising modelling technique that
can be used in software applications. A new framework for modelling additive manufacturing
processes based on molecular dynamics was proposed in this work, combining previously published
manufacturing methodologies for the AM process, such as manufacturability, design and planning of
the AM. A validation plan followed, with the main parameters and details highlighted. The proposed
framework is offering a unique approach for modelling the AM process, based on parameters from
the manufacturing design, planning and process. This framework will be used in software platforms
for predicting temperature distributions and for optimizing shape and AM process.

Keywords: molecular dynamics; additive manufacturing; multiscale modelling; 3D-printing

1. Introduction

In March 2016, a new initiative was launched by America Makes and the American Na-
tional Standards Institute (ANSI), called America Makes and ANSI Additive Manufacturing
Standardization Collaborative (AMSC), in order to coordinate and accelerated the standard-
ization of industrial Additive Manufacturing (AM). According to AMSC, “AM, sometimes
referred to as three-dimensional (3D) printing, encompasses a variety of processes wherein a
3D object is produced from a digital model by adding successive layers of material to create
the object. In name, it stands in contrast to traditional or subtractive manufacturing where
material is removed through machining or other means to create an object” [1]. In the same
report [1], the need for standardization was highlighted, starting from the design of the object
to the maintenance protocols for machines, parts and systems required for AM.

In general, AM allows the creation of products with complex and highly customized
shapes, in the least amount of time required turnaround from design to product. It also
allows for a zero-defect approach, with minimum waste produced during the production
of the objects that can be used in various areas of applications, including biomedical and
aeronautical applications [2]. AM is a relatively new manufacturing approach, with a
promising future. It is considered less wasteful than traditional methods with potential
to affect the environmental impact of manufacturing in a positive way, using zero defect
principles [3]. In addition, other benefits include the ability to customize production, the
easy sharing of the digital files of the models and the ability to produce novel and complex
structures. However, there are certain limitations that prevent the application of AM in
industrial sector, such as the current high cost of production, the need for new material
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development, the gap in standardization approaches, the lack of mechanical and thermal
properties being validated, the lack of automation approaches that would improve the
efficiency and the need for post-processing steps that improve the surface of the additive
manufactured products.

AM is based on layer-by-layer processing using powder, resin or filament as a starting
material and heat to bond the materials together. The bonding is usually responsible for
defects, such as pin hole voids, incomplete melting, or filling. The challenge is to reduce
their occurrence, which could be done by modelling, optimization and standardization of
the procedure. Modelling approaches can be used to improve the outcome, by simulating
the steps involved, with key parameters being the scale of the approach, the aim, the use
of discrete or continuous methods, the constraints and assumptions that will be used and
the computational power and cost of the methods. There are three main approaches for
the modelling and simulation of AM Processes: Finite Element Analysis (FEA), Lattice
Boltzmann Method (LBM) and Molecular Dynamics (MD). The modelling methods can
be used in software platforms and applications in industry, in the form of Digital Twins
and Artificial Intelligence, to simulate the processes in real-time and provide tools for the
digitalization and optimization of AM processes.

Certain challenges are associated with the different modelling approaches and will
be listed later when comparing the different approaches. The aim of the current review is
to propose a new framework for modelling the AM approaches, by compiling a detailed
literature review of the modelling approaches used in AM, comparing the different ap-
proaches and highlighting the superiority of MD for industrial uses compared to the rest of
computational approaches.

2. Literature Review on Modelling for AM

Several reviews were performed and published in literature, identifying and summa-
rizing the types of AM processes and modelling approaches [4-9]. However, their focus
was on simply describing the types or approaches in a research level, neither focusing on
the industrial applications nor developing frameworks for AM modelling that could be
used in software applications.

Using the following key words “modelling”, “molecular dynamics”, “metal” and “laser
additive manufacturing” in Google Scholar, 148 papers were identified. Via title and abstract
checking for their compatibility to the subject, 117 articles were not included in this review
as irrelevant to the topic. The rest of the papers (n = 31) were categorized according to their
modelling approaches and information was collected. Categorization of literature according
to type of AM process and type of modelling approach used is found in Table 1 and Figure 1.

Table 1. Categorization of literature according to type of Additive Manufacturing and Modell-

ing approach.
Type of AM Modelling Approach Literature
Discrete Element Method (DEM) Averardi 2020 [10]
. . . Empirical Panda 2016 [11]
Selective Laser Sintering (SLS) MD Cheung 2014 [12], Hu 2017 [13], Zhang 2018 [14]
Particle-scale numerical modelling Maeshima 2020 [15]
Babuska 2019 [16], Etesami 2020 [17], Guo 2017 [18], Kurian
MD 2020 [19], Rahmani 2018 [20], Tan 2017 [21], Vo 2017 [22],
Wang 2020 [23], Yao [24], Nandy 2019 [25], Nandy 2020 [26]
Lattice Boltzmann Method Cattenone 2019 [27]
FE Johnson 2019 [28]
. . DEM Cao 2019 [29], Steuben 2016 [30]
Selective Laser Melting Process energy demand model Peng 2018 [31]
Multiphysics simulation Martin 2019 [32]
FVM/DEM Wang 2018 [33]
MD/DEM/FEA Zhang 2018 [34]
Phase Field Zhang 2018 [35]

Computational Fluid Dynamics Haley 2019 [36]
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Table 1. Cont.

Type of AM Modelling Approach Literature
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Figure 1. Distribution of models according to the selection of scale, e.g., atomic, particle or product
scale, and the properties or outcomes scale, e.g., nanoscale, microscale or macroscale.

The mathematical approaches are mainly grouped into empirical, analytical, numerical
or a combination of those methods. Empirical methods are based on the description of
experimental values and the adaptation of commonly used mathematical equations to fit
the experimental values. Analytical methods are used to fully describe the simulations
using mathematical expressions, but when this is not possible, numerical estimations
are used instead. Specific models used in AM simulations are: Phase-field models (PF),
Molecular Dynamics, Lattice Boltzmann Method and Fluid Dynamics. Numerical methods
include finite element analysis, finite volume methods and discrete element methods.

The different modelling approaches are modelling the AM at a different scale, rang-
ing from nanoscale to macroscale, and from a different aspect of the AM process, from
an atomic, cluster or product point of view (Figure 1). Starting from the nanoscale and
inter-particle level, Lattice Boltzmann method [27] may offer an insight on the particle
kinetics, but it requires significant computational efforts to simulate powder bed fusion
processes, making the process impossible to simulate more than a microscopic part of
the domain. Still on a nanoscale level, but after assuming a cluster of particles instead of
individual particles, the use of computational fluid dynamics has been proposed [36]. The
input parameters are the radius of the particle, the initial particle temperature, the initial
melt pool temperature, the equilibrium contact angle, but also material properties (such
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as density and viscosity), and thermophysical properties. The predictions resulted from
the Computational Fluid Dynamics fall between +50% of the respective numerical pre-
diction, because of the assumptions made in the analytical model, therefore this approach
does not provide accurate predictions that can address and fulfill the industrial demands
and requirements.

When using a Discrete Element Method (DEM), the approach assumes clustering
of atoms and addresses phenomena from a nano- to a microscale [10,29,30,33,34], with
input parameters being laser properties (power, scan rate, scanning geometry), powder bed
properties (layer thickness, working atmosphere, temperature, thickness) and particle prop-
erties (size distribution). The limitations are summarized as (1) being able to model only
single pass formation [29], (2) loss of definition in the output model [30] and (3) impact of
increased number of particles on the computational loop, as in slowdown of the modelling
approach [31]. DEM can be combined with other modelling approaches, such as Finite
Volume Method (FVM), to approach the AM from a cluster or product point of view [33].

The Particle-scale numerical modelling focuses on a microscale level and approach
on atomic/ cluster level, with input parameters being the laser properties (power, radius,
velocity, absorptivity, penetration depth), material parameters and modelling aspects (grid
space, nodes, material points). The disadvantage of this approach is the high computational
cost, which is compensated though by the potential of the method to develop a sophisticated
melting and crystallization simulation of the process [15].

Another approach at the microscale level is the process energy demand model, from a
cluster/produce point of view, with input parameters being mainly the laser properties
such as the laser power and diameter. The disadvantages of this technique are (1) the
high number of simplifications required, for the scanning strategy, powder morphology
and laser type and (2) the inability of the energy density to accurately reflect the material
specifications [31].

Phase-field modelling has been used in modelling AM, from a macroscopic point of
view on the atomic level [35]. The input parameters are laser parameters (laser power,
surface reflectivity, effective laser spot radius, scanning speed), material parameters (pow-
der bed porosity, reflectivity, surface emissivity), microstructure (porosity, mass density,
surface energy, grain boundary energy). The main limitation is the inability of the method
to simulate large domains.

Finite Element Analysis, a well-known technique, focuses on modelling macroscopic
phenomena, from a cluster point of view. The input parameters vary from study to study,
but throughout the approaches, the main disadvantage is the reduced sensitivity of the
method [28,34,37].

When empirical approaches are used, the main input parameters are the absorptivity of
the laser power system, laser power, the beam radius and the scan speed [11,38]. However,
the empirical approaches, since they are developed based on specific examples, thus lacking
the ability of providing a global modelling approach.

The Molecular Dynamics (MD) models phenomena on the nanoscale, such as the
sintering and the crystallization. The main advantages of the approach, besides providing a
better understanding on the complex physical phenomena governing the solidification and
microstructural evolution [19], are the (1) revealing of the effects of asymmetric heating
on the built part [12], (2) the potential of using coarse grain methods to scale up from the
nanometer range [12], (3) description of complex and quantitatively accurate temperature
distribution [19], (4) modelling of the interface of different materials at an atomic level [21]
and (5) understanding the power behavior during the spreading core and the particle
movement [24]. The disadvantages are summarized in (1) lack of experimental data for the
non-equilibrium thermodynamics and (2) lack of sophisticated potentials [17]. Despite the
limitations, MD is a powerful tool to study the physical and chemical phenomena during
sintering [27] but also to quantify the mechanical and physical properties of the materi-
als [25]. All modelling approaches have certain limitations that have been summarised and
presented in Table 2.
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Table 2. Identifying limitations in the most frequently used modelling approaches and how MD can

address this.
Modelling Limitations How MD Can Address This? Relevant Reference
Approach
* Ghuteing of o
. computational effort .
Lattice Impossible to simulate computational effort [12]
Boltzmann Method P . . e Ability to simulate larger
more than a microscopic !
. domains because of
part of the domain .
coarse grain method
Assumptions made in e  Good agreement
Computational Fluid Dynamics the analytical model between modelling and [25]
result in poor predictions experimental results
e  Because of clustering,
larger domains can be
Ability to model only modeled
single pass formation e  Good agreement
Loss of definition in the between modelling and
Discrete Element Method output model experimental data [12,17,25]
The more the particles, e  Clustering allows
the slower the modelling increased number of
approach particles without
increasing the
computational time
Particle-scale pumencal High computational cost e  Computational cost may [12,22]
modelling vary based on clustering
Hich number of e  Small number of
Jgh Bume . specifications, mainly
simplifications required ) .
o driven by computational
Inability of the energy
Process Energy demand model densi effort [19]
ensity to accurately .
. e  Better understanding of
reflect the material .
e complex physical
specifications
phenomena
Phase field Inability to simulate e  Ability to simulate large [12]
modelling large domains domains
Finite Element Analvsis Reduced sensitivity of e  High sensitivity at the [12,24]
Yy the method nanoscale level ¢
Empirical Lack of applicability in . i cabili
Increased applicabilit 11,38
methods other scenarios PP Y [ ]

3. Proposing a Framework for Modelling and Optimizing AM Using MD
3.1. Description of MD and Literature Review on MD Approaches in AM

Molecular Dynamics is a computer simulation method for analyzing the physical
movements of atoms and molecules. The atoms and molecules are allowed to interact
for a fixed period of time, giving a view of the dynamic “evolution” of the system. Most
commonly, the trajectories of atoms and molecules are determined by numerically solving
Newton’s equations of motion for a system of interacting particles where forces between
the particles and their potential energies are often calculated using interatomic potentials
or molecular mechanics force fields.
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As already mentioned, MD approaches are focusing on the nanoscale level, modelling
sintering and crystallization phenomena. For the calculation, it is important to select the
potential that will be used for the modelling between the molecules. The majority of the
papers (Table 1) are using embedded atom model (EAM) potential for the interatomic
interactions and large atomic/ molecular massively parallel simulator (LAMMPS) for the
simulation. In addition, it is vital to specify and determine boundary and initial conditions
for the problem to be well defined. Some studies use periodic, some shrink-wrapped and
some fixed boundary conditions. The aim of the papers using MD vary with most of
the papers focused on the investigation of the melting and sintering processes, while few
have used this approach to study the temperature gradient or the mechanical properties of
the products.

3.2. Proposing a Framework for Modelling and Optimization of AM Using MD

The proposed framework focuses on defining a simulation approach for additive
manufacturing based on molecular dynamics and on parameters derived from the additive
manufacturing approach. As already determined by the literature review (Table 1), MD
has been used in selective laser sintering, selective laser melting, wire arc AM and hybrid
AM, so these processes will be used basis in this framework when any process details will
be required. The overarching aim of this simulation is to be used as a basis for software
platforms and digital tools, that will simulate the physical system using digital twins or
artificial intelligence, predicting the outcomes by simulating what-if-scenarios, optimizing
the operations and improving the quality of processes and products by enhancing and main-
taining the repeatability and reproducibility of the AM process. Therefore, the proposed
framework is based and aligned with a combination of frameworks and methodologies
used for the manufacturability, the designing and the process of AM [40-42]. Figure 2
reflects this relationship between manufacturing frameworks and the current simulation
methodology, via the link between manufacturing parameters and modelling parameters.

AM starts from conceptualizing the functional requirements of the product, starting
from the conceptual design, identifying the basic properties and specifications of the 3D-
printed product. Based on the desired properties, the material is selected, which also
defines the selection of the AM process. Regarding the selection of the material, the most
important parameters are the material that will be used for the object, the size of the object,
the complexity of the structure and the desired properties of the product. These parameters
will determine the type of AM process, the time that will be required for the production of
the object and the parameters of the process, such as the melting temperature, power of
laser etc. The AM process will be defined based on the object, along with the properties of
the material, the laser beam properties and the process parameters.

Once material and process are selected, then the computer-aided design (CAD) is
created which will be used for the printing of the product. The process is then planned,
with the most important part being the identification of the best building strategy. The
AM process then takes place, and the product is ready to be post-processed to obtain the
optimal quality.

The parameters that control the manufacturing planning and process are presented in
the second box of Figure 2 (green colour), starting from the properties of the material used
in the AM process. It is important to know the chemical composition (pure metal vs alloy),
the powder granulometry, the melting temperature, the latent heat of fusion, the thermal
conductivity and the specific heat capacity density. These parameters offer an insight on
the melting and solidification phase of the AM process and affect the mechanical properties
of the product. The characteristics of the laser beam are also important, with main ones
being the laser power, laser beam spot diameter, scanned head speed and laser offset. Last
but not least, the building strategy is a result of the process planning and has an impact
on the manufacturing process. Before the start of the process, the parameters are initial
temperature (ambient temperature), powder layer thickness and powder bed dimension.
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Figure 2. Flowchart of the framework, with process setup defining the process parameters, process
parameters defining the modeling parameters (arrow number 1), modeling parameters defining the

simulation protocol (arrow number 2), while final process parameters post-simulation defining the

process (arrow number 3).

The simulation framework is strongly related to the selection of the modelling parame-

ters. These parameters are derived or defined by the manufacturing properties, such as the
material properties, laser beam properties and building strategy. More specifically, cluster
size, number of atoms and diameter of the particles are strongly related the material selected
for AM, while the selection of the potential equation depends on the atoms/molecules
involved. The laser beam properties define the laser profile (Gaussian or not), the sintering
temperature and the temperature range, but also the cooling and the heating rate. The
building strategy defines the initial velocity distribution of the molecules, the boundary

conditions and the time spent per step of the modelling procedure.
The simulation is then planned and performed by identifying and defining the follow-

ing

information:

Simulation protocol
Two- or three-dimensional structure

Dimensions of the simulation box

Number of layers
Before the simulation. The molecular dynamics approach will include details about

Timestep
the simulation, mostly about the size of the simulation box, the cluster size which is the
number of molecules that consist the particle, the potential equation (Morse potential,
Embedded Atom Method, Lennard-Jones) and the boundary conditions (periodic, fixed
etc.). In addition, the timestep needs to be specified, to match the kinetics of the natural

process. There are also four different ensembles which are listed as such:
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(a) Microcanonical, an adiabatic- no heat exchange process

(b) Canonical with constant temperature

(c) Isothermal-isobaric

(d) Generalized with slow dynamics of disordered spin systems and parallel tempering.
If the computational time is longer than expected, a redefinition of the modelling

parameters or adaptation of the simulation protocol will be required, until the simulation

is completed in a time that is acceptable for an industrial software or digital platform.

In order to decrease the time needed, one of the techniques used is the coarse-graining

method, where a group of atoms or molecules defines one particle, decreasing thus the

computational needs of the models (Figure 3).

[ B
00 0 0

Figure 3. Increase of the particle size (white shape) with increase of the number of atoms included in
the particle (blue circles), with D; < Ds.

3.3. Validation Plan of the Proposed Framework

Adapting a methodological approach for validation of computer models [43] for the
specific application, the validation plan will include the following list of steps:

1.  Specification of model parameters with specified range of values and associa-
ted uncertainties

Determination of criteria that will be used to evaluate the framework

Collection of data from the model

Analysis of the model output

Providing feedback and feedforward for the framework validation

SR

Before starting the validation process, one must define whether the validation parame-
ters will come from research or industrial AM process. Regarding the 1st step, the functional
requirements of the product will be defined, starting with a simple, yet frequently used
structure. The material selection will be based upon the functional requirements, with pure
metal powder as a first approach, followed by an alloy powder once the simulation has
been validated for pure metal powders. A selective laser melting approach will be used for
the validation work, with the design of the process following a simple building strategy
for validating the framework. Manufacturability of the product will be assessed based on
the framework suggested by Lianos et al. [42], followed by the process planning and the
final product. Based on the manufacturing framework, the main parameters of the material
properties, laser beam properties and building strategy will be defined.

Moving towards the simulation model, the model parameters will be determined;
initial values for the cluster size, number of atoms and particle diameters will be assumed,
but modified later based on the evaluation criterion that will be described in the next
paragraph. The equation for the potential relationship between the molecules will be
selected based on the material that will be used for the AM process and on the available
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literature. Laser profile, sintering temperature, temperature range and cooling/heating
rates will be defined or calculated from the laser beam properties and material properties
of the manufacturing process, with initial velocity distribution calculated from the ambient
temperature. Simulation related parameters such as boundary conditions, time per step,
dimensions of the simulation box and number of layers will be determined from the
computational capabilities of the simulator.

The evaluation criterion for the validation of the framework is the time requested
for the simulation completion. If the computational time is large, then new values for the
modifiable parameters (cluster size, number of atoms and diameter of particles) will be
assumed, and the new computational time will be evaluated.

Once the criterion is satisfied, the data from the model will be collected and ana-
lyzed, especially regarding the temperature distribution, the shape and the compositional
characterization from the simulated scenario, in comparison to the 3D-printed product.

4. Discussion

AM processes in industrial settings are still in its infancy, mainly because of a need for
more optimized, faster and more robust process against uncertainties. Therefore, frame-
works for manufacturing are required to formulate the manufacturing process, but the
biggest breakthrough will come from modelling and simulation tools that will provide a
real-time insight into the AM processes and improve the quality of the products (geometri-
cal, mechanical and physical characteristics) and the energy efficiency. In the current work,
a framework was proposed for the simulation of processes using molecular dynamics and
parameters deriving from the characteristics of the manufacturing aspect. The main param-
eters that need to de defined beforehand are the cluster size, number of atoms, diameter
of particle, potential equation, laser profile, laser temperature, temperature range, cooling
and heating rates, initial velocity distribution, boundary conditions and time per steps.

The modifiable parameters for the simulation are cluster size, number of atoms and
diameter of particles, since they are related to the computational time required for the
simulation. These parameters can be further modified if the computational time is longer
than expected for a simulation fit for industrial settings. One of the parameters that can
be optimized is the number of atoms per cluster with the higher the number of atoms per
cluster, the smaller the number of clusters per simulation will be. On one hand, a high
number of clusters (means a more complex structure and simulation, while a low number
of clusters results in a longer computational time. Particle diameter is also an important
parameter; small particle diameter means a more accurate description of the structural
characterization, but with longer computational time. In contrast, large particle diameter
leads to a less accurate structural characterization, in a much quicker time.

In literature, there are frameworks for the manufacturability of the AM products and
the modelling of AM processes, but to the knowledge of the authors there is no framework
for simulation of AM processes that is based on the manufacturing planning, process
and parameters. The frameworks in literature are focusing on the design [43,44], the
manufacturability and the optimization [42] of the processes, such as finding the optimal
building strategy [45].

On the other hand, modelling of AM is focusing on describing a layer-by-layer sim-
ulation of research-based AM using either molecular dynamics or finite element method
or physicochemical mathematical equations. Optimization of AM processes is limited
due to limited modelling approaches [4], because the physical phenomena involved are
complicated in their mathematical formulation. Applications for digital twins in AM have
been described [46], where the authors described the resources required for the digital twin
and included the material type, the laser light source, the controller synthesis, the sensing
device and any extra technologies required for real-time simulation.

Another challenge faced for the integration of modelling approaches in AM is the
lack of a monitoring software tool that will be able to monitor the process and provide
feedback in real time to the process simulation model. For this, integration of selected
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sensors is required and synchronization of robotic arm paths with the process execution
via the simulation model and controllers installed [47].

The currently proposed framework focuses on parameters and characteristics derived
from the manufacturing design, planning and process. In order to validate this theoretical
approach, a validation approach has been described based on the parameters used for the
AM design, planning and process. This way, the framework is validated using data from a
real case study from either a research- or industrial-based AM process.

5. Conclusions

AM processes in industry are still lacking in terms of repeatability, performance and
optimization. One way to address this is to develop a software tool that will provide a
real-time insight in the AM process. A molecular dynamics-based approach offers many
advantages such as increased accuracy in description of the melting and solidication phases,
while clustering of atoms into larger particles offers the possibility for simulation time
reduction without significant loss of accuracy. Therefore, in this paper, a framework for
molecular dynamics approach is proposed, based on the manufacturing planning strategy
and process via the use and translation of key parameters from the process itself to the
simulation key characteristics.

Future work will focus on studying case studies of AM processes, in order to highlight
the applicability of the process and its transferability in industrial case scenarios. In
addition, the limitations for full use of the framework in industrial settings will be described
and methodologies for overcoming this hurdle will be proposed. The development of a
software platform will signify the applicability of the approach in industry.
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