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Abstract: In recent years, bounded distributions have attracted extensive attention. At the same time,
various areas involve bounded interval data, such as proportion and ratio. In this paper, we propose
a new bounded model, named logistic Truncated exponential skew logistic distribution. Some basic
statistical properties of the proposed distribution are studied, including moments, mean residual life
function, Renyi entropy, mean deviation, order statistics, exponential family, and quantile function.
The maximum likelihood method is used to estimate the unknown parameters of the proposed
distribution. More importantly, the applications to three real data sets mainly from the field of
engineering science prove that the logistic Truncated exponential skew logistic distribution fits better
than other bounded distributions.

Keywords: Beta distribution; logit truncated-exponential skew-logistic distribution; truncated-exponential
skew-logistic distribution; maximum likelihood estimator; engineering science; fitting effect

1. Introduction

In daily life, data related to percentage and proportion are bounded. For example,
the proportion of charitable donations in income needs a bounded continuous distribution
to describe it; see Papke and Wooldridge [1]. In the statistical literature, Beta distribu-
tion is a famous bounded distribution. However, its cumulative distribution function
(cdf) is not a closed expression and contains special functions. Scholars have therefore
proposed bounded distributions that were more flexible than the Beta distribution. Topp
and Leone [2] proposed the Topp–Leone distribution, which was useful to model life
cycle phenomena and was used as an alternative to Beta distribution in many respects.
Pourdarvish et al. [3] studied a generalization of Topp–Leone distribution referred to as
the exponentiated Topp–Leone distribution. They discussed many aspects of this new
model, such hazard rate function, the moments, and the order statistics, and applied it
to milk yield data. Kumaraswamy [4] introduced another widely used distribution re-
ferred to as the Kumaraswamy distribution with bounded support, which was applicable
to many natural phenomena in which the process values were bounded on both sides.
Lemonte et al. [5] used the exponentiated Kumaraswamy distribution for reliability and
life analysis and emphasized that its advantage over Beta distribution was a simple explicit
formula of distribution and quantile function without involving any special function.

In recent years, there has been increasing interest in introducing new distributions
defined on bounded support. Gómez-Déniz et al. [6] described that log-Lindley distribution
could be effectively applied to different scenarios, such as actuarial settings or econometric
analysis. Especially in insurance, the log-Lindley regression model could be regarded as an
alternative to the classical Beta regression model. Altun and Hamedani [7] claimed that
the advantage of log-xgamma distribution lied in its simple form and certain flexibility
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through risk rate function, and it could be used to model life cycle data sets. Korkmaz [8]
showed that logit slash had a good fitting effect for high-kurtosis skewness data sets
with outlier observations and that the proposed model could be an alternative to the
classical bounded distributions available in the statistical literature to model percentage
and proportion. Mazucheli et al. [9] demonstrated that the unit-Weibull regression model
was more suitable for modeling health, accounting, and social science data sets than Beta
and Kumaraswamy regression models. Altun [10] discussed the flexibility of log-weighted
distribution through the educational-attainment and self-reported-health data sets of OECD
countries and a new regression for bounded response variable was introduced based on
the log-weighted distribution.

The Truncated-exponential skew-logistic (TESL) distribution is a member of the skew
logistic distribution family, which was studied by Mirzadeh and Iranmanesh [11]. Com-
pared with other skew logistic distributions, the TESL distribution has closed expressions of
the the probability density function (pdf), cdf, and quantile function. In addition, the TESL
distribution belongs to the exponential family. Therefore, the skewness parameter can be
derived more easily. Meanwhile, the TESL distribution can be used to model unimodal
data with certain skewness. Compared with other skew logistic distributions, the TESL
distribution was better than other models. A random variable Y has a TESL distribution
with parameters µ ∈ R, σ > 0 and λ ∈ R, denoted by TESL(µ, σ, λ), if its pdf is given by

fTESL(y; µ, σ, λ) =
λexp

(
− y−µ

σ

)
σ[1− exp(−λ)]

[
1 + exp

(
− y−µ

σ

)]2 exp

− λ

1 + exp
(
− y−µ

σ

)
, y ∈ R.

The cdf of Y is given by

FTESL(y; µ, σ, λ) =
1

1− exp(−λ)

1− exp

− λ

1 + exp
(
− y−µ

σ

)
, y ∈ R.

In this paper, we introduce a new bounded distribution, named by the logit TESL
(LTESL) distribution, which is generated from eY

1+eY , where Y follows the TESL distribution
introduced in the literature. The new distribution has closed and tractable properties, such
as its pdf, and cdf and quantile functions have explicit forms. Since the pdf of the proposed
distribution is explicit and straightforward, the parameters of the new distribution can be
estimated by maximum-likelihood estimation. The application results show that compared
with other bounded distributions on the unit interval, the new distribution provides better
modeling ability.

The rest of the paper is organized as follows: Some important mathematical properties
of the new distribution are derived in Section 2, such as cdf, moment, mean residual life
function, Renyi entropy, mean deviation, order statistics, exponential family, and quantile
function. The maximum-likelihood estimation of the new distribution is discussed in
Section 3. Simulation studies to evaluate the proposed methods are conducted in Section 4.
Three real data applications are studied in Section 5. Some conclusions are given in
Section 6.

2. Logit Truncated-Exponential Skew-Logistic Distribution

This section describes some basic properties of the LTESL distribution, which is
defined as follows.
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Definition 1. A random variable X has the LTESL distribution with parameters µ ∈ R, σ > 0
and λ ∈ R, denoted by LTESL (µ, σ, λ), if its pdf is given by

f (x; µ, σ, λ) =
λ

σx(1− x)

exp
(
− log( x

1−x )−µ

σ

)
[1− exp(−λ)]

[
1 + exp

(
− log( x

1−x )−µ

σ

)]2

× exp

− λ

1 + exp
(
− log( x

1−x )−µ

σ

)
, 0 < x < 1.

(1)

Proposition 1. Let X ∼ LTESL(µ, σ, λ); the cdf of X is given by

F(x; µ, σ, λ) =
1

1− exp(−λ)

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
, 0 < x < 1. (2)

Proof of Proposition 1. According to the variable substitution of the integral, we have

F(x; µ, σ, λ) =
λ

σ

∫ x

0

1
t(1− t)

exp
(
− log( t

1−t )−µ

σ

)
[1− exp(−λ)]

[
1 + exp

(
− log( t

1−t )−µ

σ

)]2

× exp

− λ

1 + exp
(
− log( t

1−t )−µ

σ

)
dt

= λ
∫ ∞

−
log( x

1−x )−µ

σ

exp(ω)

(1− exp(−λ))(1 + exp(ω))2 exp
(
− λ

1 + exp(ω)

)
dω

=
λ

1− exp(−λ)

∫ ∞

1+( x
1−x )

− 1
σ exp( µ

σ )

1
u2 exp

(
−λ

u

)
du

=
1

1− exp(−λ)

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
,

where ω =
log( t

1−t )−µ

σ and u = 1 + eω. Thus, the result is obtained.

We point out that F(x; µ, σ, λ) = FTESL
(
log
( x

1−x
)
; µ, σ, λ

)
. Next, we give some impor-

tant properties of the LTESL distribution.
Figure 1 shows the possible pdf curves of the LTESL distribution with different values

of parameters. From these Figures, we can see that the LTESL distribution has the following
pdf shapes: decreasing and unimodal. The LTESL distribution is a good choice to model
unimodal skewness data set.

Proposition 2. Let X ∼ LTESL(µ, σ, λ), the survival function (sf) of X is given by

S(x) = 1− F(x) = 1− 1
1− exp(−λ)

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
,
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the hazard rate function (hrf) of X is given by

h(x; µ, σ, λ) =
λ

σx(1− x)

(g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

×

exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
− exp(−λ)

−1

,

where g(y) = 1 + exp

(
−

log
(

y
1−y

)
−µ

σ

)
, and the reversed hazard rate of X is given by

r(x) =
f (x)
F(x)

=
λ

σx(1− x)

(g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
−1

.

Figure 1. The pdf curves of LTESL(µ, σ, λ) for different parameters.
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Figure 2 shows some hrf curves of the LTESL distribution with different values
of parameters.

Figure 2. The hrf curves of LTESL(µ, σ, λ) for different parameters.

In mathematics and statistics, moment is a set of measures of variable distribution
and morphological characteristics. For the next property, we deduce the r-order original
moment of the LTESL distribution and further obtain its mean and variance.

Proposition 3. Let X ∼ LTESL(µ, σ, λ); the rth moment of X is given by

µ
′
r = 1− r

1− exp(−λ)

∫ 1

0
xr−1

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
dx.

Proof of Proposition 3. According to the definition of rth moment, we have

µ
′
r = E(Xr) =

∫
Ω

Xrdp =
∫

Ω

∫ X

0
rxr−1dxdp =

∫
Ω

∫ ∞

0
I{X>x}rxr−1dxdp

=
∫ ∞

0
rxr−1

∫
Ω

I{X>x}dpdx =
∫ ∞

0
rxr−1P(X > x)dx

=
∫ 1

0
rxr−1(1− F(x))dx = 1−

∫ 1

0
rxr−1F(x)dx

= 1− r
1− exp(−λ)

∫ 1

0
xr−1

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
dx,

where IA is the indicator function and Ω is probability space. Hence, the result is ob-
tained.

Corollary 1. Let X ∼ LTESL(µ, σ, λ); the mean and the variance of X are given by

E(X) = 1− ∆1

1− exp(−λ)
,

Var(X) =
1

1− exp(−λ)

(
2(∆1 − ∆2)−

∆1
2

1− exp(−λ)

)
,
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where

∆1 =
∫ 1

0

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
dx,

and

∆2 =
∫ 1

0
x

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
dx.

Entropy is used to describe the degree of uncertainty of random variables. In the envi-
ronment where information is represented by probability distribution, entropy represents
the degree of uneven distribution of information. Renyi entropy is of great significance in
statistics and social ecology.

Proposition 4. Let X ∼ LTESL(µ, σ, λ), the Renyi entropy is of X, Rγ(x), is given by

Rγ(x) =
1

1− γ

γlog
(

λ

σ(1− exp(−λ))

)
+ log

∫ ∞

0

 1
x(1− x)

 (g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

γ

dx

,

where γ > 0 and γ 6= 1.

Proof of Proposition 4. Using the definition of Renyi entropy, we have

Rγ(x) =
1

1− γ
log
[∫ ∞

0
f γ(x; µ, σ, λ)dx

]

=
1

1− γ
log

( λ

σ(1− exp(−λ))

)γ ∫ ∞

0

 1
x(1− x)

 (g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

γ

dx


=

1
1− γ

[
γlog

(
λ

σ(1− exp(−λ))

)
+log

∫ ∞

0

 1
x(1− x)

 (g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

γ

dx

.

Proposition 5. The LTESL distribution belongs to the exponential family.

Proof of Proposition 5. Assume X ∼ LTESL(µ, σ, λ). Let g(x) be a function defined the
same way as in Proposition 2. Then the pdf of X becomes

f (x; µ, σ, λ) =
λ

σx(1− x)
g(x)− 1

[1− exp(−λ)]g2(x)
exp

(
− λ

g(x)

)
=

1
x(1− x)

[
1

g(x)
− 1

g2(x)

]
λ

σ[1− exp(−λ)]
exp

(
−λ

1
g(x)

)
, 0 < x < 1,

which means the pdf of the LTESL distribution can be rewritten as

f (x; µ, σ, λ) = h(x)c(λ) exp{w(λ)t(x)},

where t(x) = 1
g(x) , c(λ) = λ

σ[1−exp(−λ)]
, w(λ) = −λ and h(x) = 1

x(1−x)

[
1

g(x) −
1

g2(x)

]
.

Therefore, the result is obtained.

The mean residual life (MRL) function can be applied to reliability, survival analysis,
economics, actuarial science, and other fields. It describes the expected survival time of an
individual or object under the condition of survival at time t.

Proposition 6. Let X ∼ LTESL(µ, σ, λ), the MRL function of X is given by
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µX(t) =
1

δ(t)− exp(−λ)

exp(−λ)− tδ(t) +
λexp

( µ
σ

)
σ

∫ 1

t

x1− 1
σ (1− x)2− 1

σ δ(x)(
1 +

( x
1−x
)− 1

σ exp
( µ

σ

))2 dx− (1− t)exp(−λ)

,

where δ(y) = exp

− λ

1+
(

y
1−y

)− 1
σ exp( µ

σ )

.

Proof of Proposition 6. Using the definition of MLR function, we have

E(X− t|X > t)

=
1

S(t)

∫ 1

t
S(x)dx

=
1− exp(−λ)

δ(t)− exp(−λ)

[
(1− t)exp(−λ)

1− exp(−λ)
+

1
1− exp(−λ)

(
exp(−λ)− tδ(t)− (1− t)exp(−λ)

+
λexp

( µ
σ

)
σ

∫ 1

t

x1− 1
σ (1− x)2− 1

σ δ(x)(
1 +

( x
1−x
)− 1

σ exp
( µ

σ

))2 dx
)]

=
1

δ(t)− exp(−λ)

[
exp(−λ)− tδ(t) +

λexp
( µ

σ

)
σ

∫ 1

t

x1− 1
σ (1− x)2− 1

σ δ(x)(
1 +

( x
1−x
)− 1

σ exp
( µ

σ

))2 dx− (1− t)exp(−λ)

.

Thus, the results are derived.

Order statistics is a common and important statistic in mathematical statistics. It has a
wide range of applications in the field of parametric and nonparametric statistics.

Proposition 7. Let X1, X2, · · · , Xn be a random sample coming from LTESL(µ, σ, λ), and X(1) ≤
X(2) ≤ · · · ≤ X(n) denote the corresponding order statistics. Then the pdf and cdf of the kth order
statistic X(k) are, respectively, given by

f
(

x(k), µ, σ, λ
)
=

λn!
σ(k− 1)!(n− k)!

1
x(1− x)

(g(x)− 1)exp
(
− λ

g(x)

)
g2(x)

n−k

∑
i=0

(−1)2i+k−1
(

n− k
i

)(
δ(x)− 1

1− exp(−λ)

)k+i−1

,

F
(

x(k), µ, σ, λ
)
=

n

∑
j=k

n−j

∑
i=0

(−1)2i+j−1
(

n
j

)(
n− j

i

)(
δ(x)− 1

1− exp(−λ)

)j+i−1

.

Proof of Proposition 7. As we all know, the pdf and cdf of X(k) are, respectively, given by

f
(

x(k), µ, σ, λ
)
=

n!
(k− 1)!(n− k)!

(F(x))k−1(1− F(x))n−k f (x),

F
(

x(k), µ, σ, λ
)
=

n

∑
j=k

(
n
j

)
(F(x))j(1− F(x))n−j.

Hence, the results are obtained using Equations (1) and (2).
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The mean deviation can be used to measure the spread of a population. In the
following proposition, we derive the mean deviation of the LTESL distribution.

Proposition 8. Let X ∼ LTESL(µ, σ, λ), the mean deviation about the mean of X is given by

D(m) = −
2
(

m(δ(m)− 1)− λ
∫ ∞

g(m)((u− 1)σexp(−µ) + 1)−1 1
u2 exp

(
λ
u

)
du
)

1− exp(−λ)
,

where m = E(X).

Proof of Proposition 8. Using Equation (1) and D(m) = E[|X−m|], we have

D(m) =
∫ m

0
(m− x) f (x)dx +

∫ 1

m
(x−m) f (x)dx

= m
(∫ m

0
f (x)dx−

∫ 1

m
f (x)dx

)
+

(
−
∫ m

0
x f (x)dx +

∫ 1

m
x f (x)dx

)
= 2

(
mF(m)−

∫ m

0
x f (x)dx

)
= 2

(
m(1− δ(m))

1− exp(−λ)

λ

1− exp(−λ)

∫ ∞

g(m)
((u− 1)σexp(−µ) + 1)−1 1

u2 exp
(

λ

u

)
du
)

= −
2
(

m(δ(m)− 1)− λ
∫ ∞

g(m)((u− 1)σexp(−µ) + 1)−1 1
u2 exp

(
λ
u

)
du
)

1− exp(−λ)
.

Thus, the result is obtained.

In regression analysis, sometimes the mean value is not a simple analytic expres-
sion. Therefore, quantile can also be used as a choice of regression model. In addition,
the quantile function can also generate random numbers

Proposition 9. Let X ∼ LTESL(µ, σ, λ), the quantile function of X, Q(τ) = F−1(τ; µ, σ, λ), is
given by

Q(τ) =

(
− λ

log{1− τ[1− exp(−λ)]} − 1
)−σ

exp(−µ) +

(
− λ

log{1− τ[1− exp(−λ)]} − 1
)−σ ,

where 0 < τ < 1.

Proof of Proposition 9. For 0 < τ < 1, suppose there exists a x ∈ (0, 1) such that x =
F−1(τ; µ, σ, λ) = Q(τ); that is , F(x; µ, σ, λ) = τ. Then
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F(x; µ, σ, λ) =
1

1− exp(−λ)

1− exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
 = τ

⇔ exp

− λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

)
 = 1− τ[1− exp(−λ)]

⇔ − λ

1 +
( x

1−x
)− 1

σ exp
( µ

σ

) = log{1− τ[1− exp(−λ)]}

⇔
(

x
1− x

)− 1
σ

=
− λ

log{1−τ[1−exp(−λ)]} − 1

exp
( µ

σ

)
⇔ x =

(
− λ

log{1− τ[1− exp(−λ)]} − 1
)−σ

exp(−µ) +

(
− λ

log{1− τ[1− exp(−λ)]} − 1
)−σ .

Thus, the result is derived.

3. Maximum-Likelihood Estimation

In this section, based on LTESL distribution, we consider maximum-likelihood estima-
tion (MLE) to estimate its unknown parameters.

Let x1, x2, · · · , xn be a random sample from LTESL(µ, σ, λ). The likelihood function
is given by

L(Θ|x1, x2, · · · , xn) =

(
λ

σ(1− exp(−λ))

)n 1
n
∏
i=1

xi(1− xi)

exp

− n
∑

i=1
log
(

xi
1−xi

)
−nµ

σ


n
∏
i=1

(
1 + exp

(
−

log
(

xi
1−xi

)
−nµ

σ

))2

× exp

−λ
n

∑
i=1

1

1 + exp

(
−

log
(

xi
1−xi

)
−nµ

σ

)
,

where Θ = (µ, σ, λ) is the parameter vector. The log-likelihood function is given by

`(Θ|x1, x2, · · · , xn) = nlog
(

λ

σ(1− exp(−λ))

)
+

n

∑
i=1

log
(

1
xi(1− xi)

)

−

n
∑

i=1
log
(

xi
1−xi

)
− nµ

σ
− 2

n

∑
i=1

log

1 + exp

− log
(

xi
1−xi

)
− nµ

σ


− λ

n

∑
i=1

1

1 + exp

(
−

log
(

xi
1−xi

)
−nµ

σ

) .
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Therefore, the MLE µ̂MLE, σ̂MLE and λ̂MLE of µ, σ, and λ can be obtained by solving
the following equations. The partial derivatives, `µ, `σ, and `λ and set them to be 0, we have

`µ = − 1
σ

n + 2
n

∑
i=1

exp

(
−

log
(

xi
1−xi

)
−µ

σ

)

1 + exp

(
−

log
(

xi
1−xi

)
−µ

σ

) − λ
n

∑
i=1

exp

(
−

log
(

xi
1−xi

)
−µ

σ

)
(

1 + exp

(
−

log
(

xi
1−xi

)
−µ

σ

))2

 = 0,

`σ = − 1
σ2

n(σ− µ) +
n

∑
i=1

log
(

xi
1− xi

)
− 2

n

∑
i=1

(
log
(

xi
1−xi

)
− µ

)
exp

(
−

log
(

xi
1−xi

)
−µ

σ

)

1 + exp

(
−

log
(

xi
1−xi

)
−µ

σ

)

−λ
n

∑
i=1

(
log
(

xi
1−xi

)
− µ

)
exp

(
−

log
(

xi
1−xi

)
−µ

σ

)
(

1 + exp

(
−

log
(

xi
1−xi

)
−µ

σ

))2

 = 0,

`λ =
n
λ
−

n

∑
i=1

1

1 + exp

(
−

log
(

xi
1−xi

)
−µ

σ

) = 0.

Since the likelihood equation contains nonlinear functions, it is impossible to obtain
the explicit form of the MLE. Therefore, numerical methods such as the Newton–Raphson
method can be used to solve the above equations.

Fisher information can reflect the accuracy of parameter estimation. Therefore, we
have that the Fisher information of the LTESL distribution in the following

I(Θ) = −E

`µµ `µσ `µλ

`σµ `σσ `σλ

`λµ `λσ `λλ

,

where

`µµ = − 1
σ2

n

∑
i=1

g(xi)− 1
g2(xi)

(
2− λ(2− g(xi))

g(xi)

)
,

`µλ =
1
σ

n

∑
i=1

g(xi)− 1
g2(xi)

= `λµ,

`µσ =
1
σ2

n +
n

∑
i=1

g(xi)− 1
g(xi)

(
2− λ

g(xi)

)
− 1

σ2

n

∑
i=1

(g(xi)− 1)
(

log
(

xi
1−xi

)
− µ

)
g2(xi)

×
(

2− λ(2− g(xi))

g(xi)

))
= `σµ,
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`σσ =
1
σ2

 2
σ

n(σ− µ) +
n

∑
i=1

log
(

xi
1− xi

)
−

n

∑
i=1

(
2 +

λ

g(xi)

) (g(xi)− 1)
(

log
(

xi
1−xi

)
− µ

)
g(xi)


+

1
σ2

n

∑
i=1

(g(xi)− 1)
(

log
(

xi
1−xi

)
− µ

)2

g2(xi)

(
1 +

2
g(xi)

)
− n

,

`σλ =
1
σ2

n

∑
i=1

(g(xi)− 1)
(

log
(

xi
1−xi

)
− µ

)
g2(xi)

= `λσ,

`λλ = − n
λ2 .

4. Simulation

In this section, the MLE method is considered to estimate the unknown parameters
of LTESL distribution. We carry out simulation with R software, and the simulation
experiments are repeated N = 1000 times. In addition, we can generate random numbers
from LTESL distribution according to the following steps:

(i) Set µ, σ and λ.
(ii) Simulate u ∼ Uni f orm(0, 1).

(iii) Compute Y = F−1
TESL(u) = σ log

{
− log(1−u(1−exp(−λ)))
λ+log(1−u(1−exp(−λ)))

}
+ µ, then Y follows TESL(µ,

σ, λ).
(iv) Compute X = eY

1+eY , then X follows LTESL(µ, σ, λ).

The evaluation of point estimation is based on the empirical mean and the standard
deviation (SD) of each sample size. We set the sample size at n = 20, 30, 50, 100, 200, 500,
and 1000, and Θ = (1.5, 1, 1), (1.5, 2.5, 1), (−2, 1, 0.5), (3, 2, 4), and (5, 4, 6). The mean values
of the parameters and the corresponding SD are shown in Table 1.

Table 1. Parameter estimation of µ, σ, and λ under different samples.

n µ σ λ µ̂(SD) σ̂(SD) λ̂(SD)

20 1.5 1 1 1.6977 (0.3829) 1.0625 (0.1074) 1.3455 (0.2259)
1.5 2.5 1 1.7625 (0.4773) 2.4766 (0.4686) 1.3550 (0.4907)
−2 1 0.5 −1.8101 (0.4166) 1.0638 (0.1090) 0.8605 (0.4454)
3 2 4 3.0849 (0.6539) 2.0994 (0.1882) 4.1419 (1.0866)
5 4 6 4.3876 (3.0847) 3.8286 (0.7388) 6.4131 (3.2937)

30 1.5 1 1 1.6859 (0.3303) 1.0602 (0.0911) 1.3248 (0.2335)
1.5 2.5 1 1.7364 (0.4327) 2.4824 (0.3788) 1.2900 (0.3991)
−2 1 0.5 −1.8222 (0.3509) 1.0497 (0.0887) 0.8521 (0.4058)
3 2 4 3.0685 (0.5513) 2.0988 (0.1758) 4.1102 (0.9704)
5 4 6 4.4552 (3.0493) 3.8496 (0.6641) 6.2602 (3.1702)

50 1.5 1 1 1.6675 (0.2621) 1.0439 (0.0685) 1.3241 (0.2327)
1.5 2.5 1 1.6896 (0.3775) 2.4642 (0.3013) 1.2377 (0.3371)
−2 1 0.5 −1.8375 (0.3204) 1.0449 (0.0694) 0.8008 (0.3981)
3 2 4 3.0671 (0.5375) 2.0633 (0.1155) 4.0944 (0.8906)
5 4 6 4.6089 (2.9256) 3.8809 (0.5423) 6.3159 (2.9512)

100 1.5 1 1 1.6498 (0.1863) 1.0336 (0.0508) 1.2673 (0.1904)
1.5 2.5 1 1.6414 (0.3251) 2.4752 (0.2070) 1.1693 (0.2482)
−2 1 0.5 −1.8869 (0.2727) 1.0329 (0.0501) 0.7207 (0.4003)
3 2 4 3.0612 (0.5065) 2.0494 (0.0882) 4.0814 (0.7698)
5 4 6 4.7179 (2.4738) 3.9321 (0.4217) 6.1701 (2.4982)
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Table 1. Cont.

n µ σ λ µ̂(SD) σ̂(SD) λ̂(SD)

200 1.5 1 1 1.6055 (0.1407) 1.0255 (0.0367) 1.2033 (0.1506)
1.5 2.5 1 1.6173 (0.2528) 2.4899 (0.1435) 1.1330 (0.1496)
−2 1 0.5 −1.9161 (0.2115) 1.0246 (0.0367) 0.6526 (0.3547)
3 2 4 3.0527 (0.4729) 2.0395 (0.0652) 4.0809 (0.6951)
5 4 6 4.8571 (1.7233) 3.9687 (0.2688) 6.0921 (1.6962)

500 1.5 1 1 1.5424 (0.0811) 1.0135 (0.0213) 1.0932 (0.0657)
1.5 2.5 1 1.5315 (0.1407) 2.4957 (0.0914) 1.0526 (0.0784)
−2 1 0.5 −1.9879 (0.1547) 1.0135 (0.0209) 0.5145 (0.2679)
3 2 4 3.0489 (0.3303) 2.0250(0.0427) 4.0473 (0.4864)
5 4 6 4.8724 (1.3613) 3.9602 (0.2689) 6.0313 (1.3095)

1000 1.5 1 1 1.5134 (0.0551) 1.0101 (0.0153) 1.0196 (0.0142)
1.5 2.5 1 1.5016 (0.1031) 2.5001 (0.0642) 1.0150 (0.0222)
−2 1 0.5 −1.9998 (0.1288) 1.0104 (0.0156) 0.5007 (0.2368)
3 2 4 3.0241 (0.2209) 2.0162 (0.0285) 4.0245 (0.3483)
5 4 6 4.9665 (0.9635) 3.9914 (0.4599) 6.0643 (1.0431)

From Table 1, it can be seen that as the sample size n increases, the mean value of
estimators become closer to the true values and the SD decreases in all cases. In addi-
tion, the estimation is quite stable and the estimated values of all estimators tend to be
more accurate.

5. Applications

In this section, we use three real data sets to verify the practicability of the LTESL
distribution and compare it with some other bounded distributions, including the Beta
distribution, Kumaraswamy (Kw) distribution, unit-Weibull (UW) distribution, and expo-
nentiated Topp-Leone (ETL) distribution. The parameter estimates, minus log-likelihood,
Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Kolmogorov–
Smirnov (K-S) statistics (Dn) are listed in Tables 2–4. The Dn of K-S is given by

Dn = sup
i=1,··· ,n

|Fn(x(i); Θ̂)− F(x(i); Θ̂)|,

where Θ = (µ, σ, λ) is MLE of Θ, Fn is the empirical distribution for the sample data,
and x(i) are the ordered data defined before. Meanwhile, the AIC and BIC are defined as

AIC = −2`(Θ̂) + 2k,

BIC = −2`(Θ̂) + k log(n),

where `(Θ̂) is the log-likelihood function for Θ, k is the number of parameters of the model,
and n is the size of the data set. The minimum values for AIC or BIC and maximum
value for p-Value represent the best-fitted model on the data sets. Compare the LTESL
distribution with the distributions defined on (0, 1) interval as follows.

(1) Beta distribution:

f1(x) =
1

B(µ, σ)
xµ−1(1− x)σ−1, µ, σ > 0,

where B(µ, σ) is the beta function.
(2) Kw distribution:

f2(x) = µσxµ−1(1− xµ)σ−1, µ, σ > 0.

(3) UW distribution:
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f3(x) =
1
x

µσ(−log(x))σ−1e−µ(−log(x))σ
, µ, σ > 0.

(4) ETL distribution:

f4(x) = 2µσ(1− x)[x(2− x)]µ−1[1− xµ(2− x)µ]σ−1, µ, σ > 0.

Data set 1: The first data set is related to the perforation operation on the metal plate,
which has been considered by Dey et al. [12]. It represents 50 burr observations on the
metal plate, for which the hole diameter is 9 mm and the sheet thickness is 2 mm. These
data are related to the two different machines being compared. The data are: 0.06, 0.12,
0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16,
0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04,
0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18, 0.16.

Table 2 shows the parameter estimator results of the LTESL, Beta, Kw, UW, and ETL
distributions for data set 1. The corresponding minus log-likelihood, AIC, BIC, and p-Value
are also presented. As seen from Table 2, we find that the LTESL distribution has the
minimum values for AIC or BIC, and maximum value for p-Value compared other bounded
distributions.

Table 2. The MLEs and the goodness of fit statistics for data set 1.

Models µ σ λ -Loglike AIC BIC Dn p-Value

LTESL −0.5314 0.5229 8.0339 39.8750 85.7499 91.4860 0.1360 0.2868
Beta 1.5924 8.1127 - 53.3012 110.6023 114.4264 0.1659 0.1137
Kw 1.4895 12.9468 - 55.1892 114.3783 118.2024 0.1706 0.0795
UW 0.0839 2.9690 - 49.9912 103.9823 107.8063 0.2014 0.0297
ETL 1.9888 9.6583 - 57.1006 118.2132 122.0372 0.1633 0.1242

Figure 3 shows the empirical distribution function for data set 1 and the estimated
bounded distributions. From Figure 3, the LTESL distribution provides a qualified fit for
data set 1. The distribution of sample points is roughly the same as the LTESL distribution
by the Q-Q plot presented in Figure 4.

Figure 3. Estimated cdfs for data set 1.
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Data set 2: The second data set covers the effective failure time of 20 components,
which are taken from Nigm et al. [13]. These data are given as follows: 0.0009, 0.0040,
0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252, 0.1404, 0.1498, 0.1750, 0.2031,
0.2099, 0.2168, 0.2981, 0.3465, 0.4035, 0.6143.

Table 3 shows the estimated value of the parameters, AIC, BIC, and p-value of these
bounded distributions. It can be seen that LTESL distribution provides the best fit among
these bounded distributions.

Table 3. The MLEs and the goodness of fit statistics for data set 2.

Models µ σ λ -Loglike AIC BIC Dn p-Value

LTESL 0.0521 1.1282 5.5045 8.7928 23.5856 26.5728 0.0967 0.9828
Beta 0.7235 3.8239 - 17.2022 38.4404 40.4319 0.0990 0.9782
Kw 0.7748 3.4567 - 17.1707 38.3414 40.3329 0.0984 0.9797
UW 0.1546 1.7223 - 16.4145 36.8291 38.8205 0.1428 0.7580
ETL 0.7334 1.8797 - 17.1990 38.3979 40.3894 0.1075 0.9558

Figure 4. Cont.
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Figure 4. Q-Q plot for data set 1.

Figure 5 shows the fitted cdf’s of the LTESL, Beta, Kw, UW, and ETL distributions for
data set 2 and suggests that the fit of the LTESL distribution is reasonable. The correspond-
ing Q-Q plots are also displayed in Figure 6.

Figure 5. Estimated cdfs for data set 2.

Data set 3: The third data set considers 30 failures of an aircraft air conditioning
system (in hours), which has been studied by Linhart and Zucchini [14]. This data set has
recently been normalized to obtain data between 0 and 1 by Bantan et al. [15]. The data are:
0.086792453, 0.984905660, 0.328301887, 0.026415094, 0.452830189, 0.052830189, 0.233962264,
0.177358491, 0.849056604, 0.267924528, 0.928301887, 0.079245283, 0.158490566, 0.075471698,
0.018867925, 0.045283019, 0.452830189, 0.041509434, 0.011320755, 0.052830189, 0.267924528,
0.041509434, 0.052830189, 0.041509434, 0.060377358, 0.339622642, 0.003773585, 0.060377358,
0.196226415, 0.358490566.
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Table 4 shows the parameter estimates, AIC, BIC, and p-Value for all fitted bounded
distributions. According to Table 4, the LTESL distribution is more suitable than other
bounded distributions for optimal data fitting.

Figure 6. Q-Q plots for data set 2.
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Table 4. The MLEs and the goodness-of-fit statistics for data set 3.

Models µ σ λ -Loglike AIC BIC Dn p-Value

LTESL −1.6004 1.0764 0.6850 9.2575 24.5150 28.7186 0.1253 0.6874
Beta 0.5082 1.3509 - 13. 429 30.4858 33.2882 0.1913 0.1953
Kw 0.5367 1.3541 - 13.5348 31.0696 33.8720 0.1879 0.2116
UW 0.2775 1.4576 - 15.1922 34.3845 37.1869 0.1733 0.2934
ETL 0.5239 0.8074 - 12.5732 29.1464 31.9487 0.2046 0.1406

Figure 7 shows the fitted models for data set 3. In Figure 7, we note that the LTESL dis-
tribution has better fitting than other bounded distributions. In addition, the corresponding
Q-Q plots are also displayed in Figure 8.

Figure 7. Estimated cdfs for data set 3.

Figure 8. Cont.
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Figure 8. Q-Q plot for data set 3.

6. Discussion

A new three-parameter LTESL distribution on bounded interval is introduced. The ba-
sic statistical properties of LTESL distribution are studied in detail, including moment, MRL
function, Renyi entropy, mean deviation, order statistics, exponential family and quantile
function. The maximum likelihood method for unknown parameter estimation of the pro-
posed distribution is discussed through a simulation study. According to the analysis of real
data sets in three engineering science fields, the results show that the new distribution has a
better fitting than Beta, Kw, UW, and ETL distributions. Moreover, the LTESL distribution
can be a good choice for processing some data in the field of engineering science.
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