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Abstract: Multiple factors, many of them environmental, coalesce to inform agricultural decisions.
Farm planning is often done months in advance. These decisions have to be made with the infor-
mation available at the time, including current trends, historical data, or predictions of what future
weather patterns may be. The effort described in this work is geared towards a flexible mathematical
and software framework for simulating the impact of meteorological variability on future crop yield.
Our framework is data driven and can easily be applied to any location with suitable historical
observations. This will enable site-specific studies that are needed for rigorous risk assessments and
climate adaptation planning. The framework combines a physics-based model of crop yield with
stochastic process models for meteorological inputs. Combined with techniques from uncertainty
quantification, global sensitivity analysis, and machine learning, this hybrid statistical–physical
framework allows studying the potential impacts of meteorological uncertainty on future agricultural
yields and identify the environmental variables that contribute the most to prediction uncertainty.
To highlight the utility of our general approach, we studied the predicted yields of multiple crops
in multiple scenarios constructed from historical data. Using global sensitivity analysis, we then
identified the key environmental factors contributing to uncertainty in these scenarios’ predictions.

Keywords: stochastic modeling; Gaussian processes; agricultural modeling; crop yield; water
management; global sensitivity analysis

1. Introduction

Characterizing uncertainty in model predictions is important for understanding risk
and constructing robust models which aid in the decision making process. The risks of
agricultural business decisions, which can include planting and harvesting schedules,
irrigation needs, and market prices, depend heavily on environmental factors, which are
inherently uncertain. In this work, we describe the development of a flexible framework for
modeling aspects of the agricultural system and understanding the impact of meteorologi-
cal variability on crop yields. Our approach relies on coupling stochastic process models of
important meteorological factors (e.g., temperature, wind speed, and solar radiation) with
a physical model of crop yield based on the well-known Penman–Monteith equation. We
demonstrate the utility of our combined statistical–physical modeling framework through
a probabilistic characterization of the impact of irrigation limits on yield and by leveraging
global sensitivity analysis to identify the meteorological factors that contribute most to
uncertainty in yield predictions.

The importance of making appropriate agricultural decisions cannot be overstated.
Worldwide increases in population have led forecasters to predict a 70% increase over
2018 levels of food production will be needed to meet demand by 2050 [1]. As farmers
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work towards meeting this goal, they are faced with difficulties imposed by climate change
and increasingly limited resources. Mean values for environmental parameters are being
shifted (e.g., average temperature is increasing), and the variability in these parameters is
increasing (e.g., the variance of daily temperature is growing) [2,3]. In addition, farmers
have a vested interest in adopting economically and environmentally sustainable agri-
cultural practices. Consumer interest in local agriculture is also continuing to grow [4,5]
and there are many environmental and socioeconomic advantages to smaller scale local
production [6–8]. The COVID-19 pandemic in particular has highlighted the resilience of
local food supply networks [9].

Significant improvements in data collection and reporting help farmers adjust their
practices and incorporate strategies to maintain their livelihoods [1]. Measurements for
a wide variety of environmental metrics, taken in an almost continuous time frame, are
reported from stations located throughout the country. This data inundation can lead to
information overload, where there is no clear understanding of how these metrics and
their associated uncertainties couple to affect dynamic processes. Decision support systems
help extract useful information from big data and can thus guide decision making and
increase efficiency (see, e.g., [10,11]). However, there are indications that the majority of
advanced digital agriculture products benefit large producers and agribusinesses more
than small producers and individual farmers [12]. This benefit limitation highlights the
need for easy-to-use automated decision support tools that can enable all farmers to benefit
from advanced data analysis, modeling, and machine learning.

Our focus is on the development of support mechanisms for small, local farming
operations, which tend to be resource limited but who are playing increasingly important
roles in community food supplies [4]. Our proposed framework could help bring the
digital agriculture revolution to these important smaller scale farmers, and the framework
used in this work is easily scaled to an agricultural plot of any size. With climate change
adaptation in mind, we focus on characterizing uncertainty in water usage and the impacts
of different crop choices and watering strategies on yield. While climate change will
likely have impacts on the economic aspect of cropping decisions, there is a more direct
connection with environmental processes. This work therefore focuses on characterizing
uncertainties in environmental processes and propagating those into uncertainties into
predicted yield. The techniques developed here could also be easily extended to problems
with other decision inputs.

This work was motivated by our earlier efforts to help farming communities simulta-
neously manage crop and water portfolios [13–16]. Unlike those previous efforts, the focus
in this work was on the development of a data-driven framework that is computationally
efficient and amenable to uncertainty quantification. We leveraged publicly available his-
torical data, advanced statistical modeling of temporally varying environmental variables,
and process-based physical models of soil hydrology to provide probabilistic predictions
of crop yield under varying climate conditions and farmer decisions (e.g., crop choice and
irrigation strategies). In particular, we focused on uncertainties stemming from variable
meteorological conditions and their impacts on available soil moisture and crop yield.
In addition to quantifying prediction uncertainty, we used global sensitivity analysis to
identify the most impactful environmental variables under different climate conditions
(wet or dry). This can be seen as a first step towards a more all-encompassing framework
to analyze farming choices under uncertainty. Techniques similar to those presented here
could also be used for other decision inputs.

In the following sections, we describe the models used to compute the metrics needed
to evaluate farming decisions and the strategies used to provide a statistical characterization
of parameters which feed into the associated metrics. We demonstrate the robustness of
our framework by evaluating yields under different irrigation strategies using modeled
environmental forecasts. The framework predicts crop responses under stressed conditions,
which can show farmers the tipping points for the crops they have planted.
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2. Physical Model

This section provides an overview of the analytical physics-based models and the
environmental parameters used to predict yield. Our overall approach is to provide
forecast information for these parameters and evaluate the impacts on yield and the
associated water use. In the subsequent section, we describe the strategy for statistical
incorporation of environmental time series and the use of observations to calibrate the
statistical representation to a given location.

The FAO guidelines model yield as a function of evapotranspiration [17], which is the
transfer of water from the land to the atmosphere through evaporation from the soil and
transpiration from plants. The FAO model equation for yield is given as [18](

1 − Ya

Ym

)
= Ky

(
1 − ETa

ETm

)
(1)

where Ya is the actual yield, Ym is the maximum yield, Ky is the yield response coefficient,
ETa is the actual crop evapotranspiration, and ETm is the maximum crop evapotranspiration
in unstressed conditions. The coefficient Ky measures the sensitivity of a plant to a water
deficit and changes over a growing cycle. For instance, values for Ky are higher for plants
during the flowering period and smaller during the ripening stage [18].

The maximum crop evapotranspiration is defined as [17]

ETm = ET0Kc (2)

where Kc is the crop coefficient and ET0 is the baseline reference evapotranspiration. The
crop coefficient also depends on the growth stage of the plant; it adjusts the baseline
evapotranspiration to account for the presence of evapotranspiration due to crops.

Combining Equations (1) and (2) and solving for actual yield Ya gives

Ya = Ym

(
1 − Ky

(
1 − ETa

ET0Kc

))
. (3)

2.1. Modeling Evapotranspiration

Evapotranspiration appears in Equation (3) as a main predictor of yield; it serves as a
proxy for the amount of water consumed by the plant, which is an indicator of its health.
The plant water consumption depends on the amount of water available in the soil, which
in turn depends on the soil type, soil conditions, and several environmental parameters.

The association between reference evapotranspiration and environmental parameters
is defined by the Penman–Monteith equation [18], which models ET0 as

ET0 =
0.408δ(Rn − G) + γ 900

T+273 u2(es − ea)

δ + γ(1 + 0.34u2)
. (4)

The parameters on the right are described in Table 1. Weather stations collect obser-
vations of the meteorological parameters temperature (T), wind speed (u2), atmospheric
pressure (Pa), and actual vapor pressure (ea). The remaining parameters are derived from
these observable variables using the relationships described below. We obtained predictions
for ET0 by training on historical records of these variables and using statistical modeling to
build forecasts.
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Table 1. Definitions of parameters in the Penman–Monteith equation. We used historical data to de-
velop stochastic models for radiation, temperature, wind speed, and vapor pressure in the framework.

Variable Definition

ET0 Reference evapotranspiration [mm day−1]

Rn Net radiation at the crop surface [MJ m−2 d−1]

Pa atmospheric pressure [kPa]

G Soil heat flux density [MJ m−2 d−1]

T Mean daily air temperature at 2 m height [◦C]

u2 Wind speed at 2 m height [m s−1]

es Saturation vapor pressure [kPa]

ea Actual vapor pressure [kPa]

δ Slope vapor pressure curve [kPa ◦C−1]

γ Psychrometric constant [kPa ◦C−1]

Following [18], the saturation vapor pressure es is given by

es = 0.6108 exp
[

17.27T
T + 237.3

]
.

The slope of this curve, δ = ∂es
∂T is given by

δ =
∂es

∂T
=

4098es

(T + 237.3)2 .

According to [18] the psychrometric constant γ is proportional to the atmospheric
pressure

γ = 0.665 × 10−3Pa.

The net radiation Rn is estimated using the Stefan–Boltzman law with the corrections
for humidity described further in [18]. The expression is

Rn ≈ σT4(0.34 − 0.14
√

ea),

where σ = 4.903 × 10−9 is the Stefan–Boltzman constant.
The value of the soil heat flux density G is positive when the soil is warming and

negative when cooling. It is small relative to the net radiation at the crop surface and is
often ignored (G = 0). Given the stochastic nature of net radiation, we adopt the common
assumption of G = 0 in our model [18].

2.2. Modeling Soil Water Availability

A plant’s access to water is determined by soil water availability. After a precipitation
event, an amount of water is held in the soil until it is removed through plant uptake
or evaporation. The field capacity of water is the amount of water left in the soil once
drainage decreases. As water is removed from the soil, the soil forms a stronger bond with
the remaining water, impeding the plant’s ability to use it. This water quantity, known as
the wilting point, is the water content in the soil matrix where plants will continuously
wilt. Thus, the total water available, TAW, depends on the difference between the water
content at field capacity, θFC and the water content for the wilting point, θWP, multiplied
by the root depth Zr [18]:

TAW = 1000(θFC − θWP)Zr
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Water content is a dimensionless variable, and Zr has units [m], meaning TAW has
units [mm]. This relationship signifies TAW depends on both the rooting depth and the
soil type. Common values of θFC and θWP for different soil types are listed in [18,19].

In addition to having access to water, a plant must be able to pull the water quickly
enough from the soil to satisfy the evapotranspiration requirements of its growth stage.
The stronger bonds developed between the soil matrix and the water as the water content
is reduced deter this transfer and cause the plant to experience water stress before the
wilting point is reached. Thus, in reality a plant can access only a fraction p of TAW before
suffering water stress. This is known as readily available water RAW; that is,

RAW = pTAW.

The root zone depletion rate Dr is the water shortage relative to field capacity [18]; at
field capacity, Dr = 0. Once evapotranspiration begins (i.e., a plant uses available water),
field capacity is reduced—or depletion increases. This continues until Dr reaches RAW, or
when plants undergo water stress. After this point, evapotranspiration is reduced as plants
can no longer access needed water supplies. Thus, the actual transpiration ETa differs from
the reference transpiration ET0. Assuming evapotranspiration from the soil is negligible,
ETa can be determined using [18]

ETa = KsKcET0 (5)

where Ks is the (dimensionless) water stress coefficient which depends on the soil type and
available water. When the root zone depletion rate Dr is above the readily available water
RAW, Ks is determined using

Ks =
TAW − Dr

(1 − p)TAW
, (6)

Otherwise, Ks = 1. The seasonally changing Kc values lead to each crop having
four distinct growing phases over a given growing season. We use piece-wise linear
interpolation to obtain intermediate Kc values when needed [18].

The root zone depletion rate Dr is modeled by the differential equation

∂Dr

∂t
= −(P − RO)− I − CR + ETa(Dr) + DP. (7)

which defines the depletion rate as the difference between water entering the system
and water exiting the system. Water sources include precipitation P, runoff from the soil
surface RO, the net irrigation depth I that infiltrates the soil, and capillary rise from the
groundwater table CR. Water leaves the system through evapotranspiration ETa(Dr), and
water loss out of the root zone through deep percolation, DP. We emphasize the explicit
dependence of evapotranspiration on Dr, which occurs through the water stress coefficient
as seen in Equations (5) and (6).

We simplify the model by assuming both DP and RO are zero, and by assuming the
water table is deep enough for CR to also be zero [18]. In our framework, we represent
precipitation stochastically and note that the impact of these assumptions could potentially
be accounted for by modifying the statistical description of the precipitation. We update
the root zone depletion using the explicit temporal discretization of the simplified version
of Equation (7). Let the subscript i denote the day of the simulation. The update of Dr from
day i − 1 to day i then takes the form

Dri = max{0, Dri−1 − Pi−1 − Ii−1 + ETa(Dri−1)}, (8)

where the max is included to ensure that even after discretization, root zone depletion is
also negative, which it should be by definition.
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2.3. Strategies for Irrigation

We examine the impacts of three distinct irrigation procedures to generate the value
of the irrigation, I, and measure the total amount of water used annually. Specifically, we
consider no irrigation, limited irrigation, and full irrigation. In the no irrigation case, I = 0.
In the full irrigation case the daily value of I is set for each crop using the following process:

Step 1: The Ks value is updated based on the previous day’s zone depletion, Dr:

Ks = min
{

1.0,
TAW − Dr

(1.0 − p)TAW

}
Step 2: The value of ETa is assigned using Ks as defined in Equation (5).
Step 3: The necessary irrigation is computed as the difference between the root zone

depletion (as computed in Equation (8)) and readily available water:

I = max{Dr − RAW, 0}.

In the limited irrigation case, a cap is specified on the amount of water that can be
used per acre of planting per day, Imax, and the daily irrigation value satisfies:

I = min{Imax, max{Dr − RAW, 0}}.

3. Statistical Characterization of the Environment

The reference evapotranspiration ET0 defined in (4), and thus the yield, depends on
the environmental parameters listed in Table 1. Historical meteorological observations from
systems such as the California Irrigation Management Information System (CIMIS) [20]
can be used to drive the model described in Section 2, but these deterministic simulations
are limited in their utility. They cannot predict into the future without accurate forecasts
of the weather, and being deterministic, cannot be used to characterize uncertainty in
future predictions. The following sections describe our approach for overcoming these
challenges with additional statistical models of the environmental parameters. These
models were trained on historical CIMIS data and allowed us to construct a coupled
physical-statistical model that is amenable to uncertainty quantification and global sensi-
tivity analysis, enabling us to assess which meteorological components contribute the most
to prediction uncertainties.

3.1. Gaussian Process Background

Gaussian processes (GPs) are a key building block in our statistical modeling approach.
A GP is a continuous analog of a vector-valued Gaussian distribution. Whereas a Gaussian
distribution is completely characterized by a mean vector µ and a covariance matrix Σ, in
the GP setting, this becomes a mean function m(t) and a covariance function k(t, t′), both of
which depend on an independent variable t ∈ RD. For a process u(t) ∼ GP(m(t), k(t, t′))
and any finite collection of points t1, t2, . . . , tN , the vector [u(t1), u(t2), . . . , u(tN)] will have
a multivariate Gaussian distribution. In our applications, t represents time and D = 1.
GPs are a flexible way of describing random fields. The form of the covariance kernel,
in particular, can be chosen to reflect the underlying structure of the field (e.g., periodic-
ity and multiscale behavior). The sections below demonstrate how we leverage this to
model the environmental fields needed to compute the reference evapotranspiration ET0.
For variables such as precipitation, which are not naturally represented as Gaussian ran-
dom variables, we use Gaussian processes to capture temporal correlations in parameters
of more complicated statistical models. Note that while we model each environmental
variable independently, the models are trained on the same data, and the predictions of
different parameters are only conditionally independent; the predictions will be corre-
lated. The historical observations and periodic structure tie future values of the different
environmental parameters together.
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We designed covariance kernels to represent our prior knowledge about the envi-
ronmental parameters. To do this, we leverage the fact that sums and products of valid
covariance kernels are also valid covariance kernels. This allows us to capture relatively
complex structure by combining canonical kernels with closed forms. In particular, we
consider combinations of four different parameterized families of covariance kernels: ra-
dial basis kernels, Matern kernels, periodic Matern kernels, and constant kernels. All of
these kernels are available in the GPy python package [21]. Parameters in the kernels are
optimized by GPy to maximize the likelihood of historical CIMIS training data. When
optimizing the GP hyperparameters, it is possible for length scales in the covariance kernels
to become small and therefore cause the GP to behave like white noise as it tries to capture
structure in noisy data. To prevent this from occurring, we place Gamma hyperprior
distributions on the length scales that encourage the optimized length scales to capture the
annual correlations observed in the data.

3.1.1. RBF Kernel

The radial basis function (RBF) kernel is given by

kRBF(t, t′; σ, L) = σ2 exp
(
−1

2
∥t − t′∥2

L2

)
, (9)

where σ2 is the marginal variance of the process and L is a length scale that controls how
quickly samples of the GP vary over time. The form of the RBF kernel guarantees all
samples of a GP with kernel kRBF(t, t′; σ, L) are infinitely differentiable.

3.1.2. Matern Kernel

The Matern family of covariance kernels are a generalization of the RBF kernel where
the differentiability can be varied by a parameter ν. In this work we consider Matern
kernels with ν = 3/2, which results in continuously differentiable functions. The form of
the kernel is given by

k32(t, t′; σ, L) = σ2

(
1 +

√
3∥t − t′∥

L

)
exp

(
−
√

3∥t − t′∥
L

)
, (10)

where again σ2 is the marginal variance and L is a length scale parameter.

3.1.3. Periodic Matern Kernel

In the GP setting, a covariance kernel defines a reproducing kernel Hilbert space
(RKHS) of functions. The periodic Matern class of covariance kernels comes from the con-
sidering a subspace of the Matern RKHS that contains periodic functions. Following [22],
the family of periodic Matern kernels takes the form

kp(t, t′; σ, L, τ) = F(t)G−1F(t′), (11)

where

F(t) =
[

sin
(πx

τ

)
, cos

(πx
τ

)
, sin

(
2πx

τ

)
, cos

(
2πx

τ

)
, . . . , cos

(N f πx
τ

)
, sin

(N f πx
τ

)]
is a vector containing evaluations of a 2N f trigonometric basis functions with the same
period τ and defined on some interval [a, b]. The matrix G is given by

Gij =
L3

12
√

3σ2

∫ b

a

(
3
L2 Fi(t) + 2

√
3

L
dFi
dt

+
d2Fi
dt2

)(
3
L2 Fj(t) + 2

√
3

L
dFj

dt
+

d2Fj

dt2

)
dt

+
1
σ2 Fi(a)Fj(a) +

L2

3σ2
dFi(a)

dt
dFj(a)

dt
,
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which is the Gram matrix of the trigonometric basis computed in the Matern kernel’s RKHS.
Note that this periodic kernel is different than the simpler periodic kernel
σ2 exp[−2 sin2(π∥t − t′∥/P)/L2] described in [23]. A discussion of the differences can
be found in [22].

3.1.4. Constant Kernel

We also employ a constant kernel, which takes the form

kc(t, t′; σ) = σ2. (12)

The term “constant” is used to describe this kernel because all realizations of a GP
defined by kc will be constant functions. This kernel is useful when combined with other
kernels because it allows modeling constant, but unknown, offsets.

3.1.5. White Noise Kernel

A GP with no temporal correlation (i.e., white noise) has a covariance kernel of
the form

kw(t, t′; σ) = σ2δ(t − t′) (13)

This kernel is used to capture observation noise and small scale variations with length
scales shorter than our daily observations can capture.

3.2. Stochastic Process Models for Environmental Parameters
3.2.1. Temperature

The air temperature T(t) has both quasi-periodic annual cycles (higher in summer,
lower in winter) and long term trends (e.g., a week-long heat wave). To capture the quasi-
periodic structure, we use the product of a periodic kernel kp and RBF kernel kRBF. We then
add an RBF kernel to capture the long term trends. White noise and constant kernels are
used for observation noise and mean temperatures, respectively. The resulting kernel takes
the form

kT(t, t′; θT) = kp(t, t′; σ1, L1, τ = 1) kRBF(t, t′; σ1, L2)

+ kRBF(t, t′; σ3, L3) + kc(t, t′; σ4) + kw(t, t′; σ5), (14)

which has seven free parameters θT = [σ1, L1, L2, σ3, L3, σ4, σ5] that can be tuned to the
historical data. The period of the periodic kernel is fixed to 1 year to capture the known
annual cycles of the temperature.

3.2.2. Net Radiation

The net radiation Rn(t) has a similar structure to temperature; it has annual cycles
and long term trends. We therefore employ a kernel with the same form as kT , but with
different parameters:

kR
(
t, t′; θR

)
= kp

(
t, t′; σ1, L1, τ = 1

)
kRBF

(
t, t′; σ1, L2

)
+ kRBF

(
t, t′; σ3, L3

)
+ kc

(
t, t′; σ4

)
+ kw

(
t, t′; σ5

)
, (15)

where again θR = [σ1, L1, L2, σ3, L3, σ4, σ5].

3.2.3. Atmospheric Pressure

Unlike the temperature and net radiation, the atmospheric pressure must, by defini-
tion, be positive. Instead of using a Gaussian process directly on the pressure, we treat
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pressure as a lognormal process. In particular, log(Pa) ∼ GP(0, kPa(t, t′)) , where kPa again
takes the form

kPa(t, t′; θPa) = kp(t, t′; σ1, L1, τ = 1) kRBF(t, t′; σ1, L2)

+ kRBF(t, t′; σ3, L3) + kc(t, t′; σ4) + kw(t, t′; σ5). (16)

Figure 1 shows that the atmospheric pressure observations from CIMIS have a quasi-
periodic structure to the temperature and net radiation.
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Figure 1. Training and forecast data for environmental parameters. The training data (in black) were chosen from a sequence
of dry or wet years according to the SPI in Figure 2. The forecast is shown in blue dots, with the envelopes around the data
representing 2 standard deviations of the mean. The key distinction between these model training scenarios is the seen in
the wet years having noticeably more precipitation events.

3.2.4. Modeling Precipitation

The daily precipitation P(t) is more complicated to model than the previous environ-
mental variables; there are many days where no precipitation occurs and P(t) cannot be
well-represented by a GP directly. Instead, we employ a similar approach to [24] and use a
GP to describe the probability of a rain event occurring. Let bt be a Bernoulli random vari-
able that is 1 when nonzero precipitation occurs on day t and 0 otherwise. The probability
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of a rain event on day t is then P[bt = 1]. Now, let z(t) ∼ GP(0, kz(t, t′)) be a latent GP and
assume that

P[bt = 1] = Φ(z(t)), (17)

where Φ(·) is the CDF of a standard normal distribution. This is commonly called a probit
model and is used extensively in Gaussian process classification problems.

The latent GP z(t) and Bernoulli random variable bt provide a statistical model of
when rain events will occur, but do not describe the amount of precipitation. If a rain
event occurs, we randomly sample a precipitation amount using the empirical cumulative
distribution function of nonzero precipitation amounts Φ̂P : R → [0, 1], which can be
estimated from historical CIMIS data. The precipitation P(t) is given by

P(t) = btΦ−1
u (ut), (18)

where ut ∼ U[0, 1] is an independent uniform random variable. Notice that (18) is a mixture
model for the precipitation where the probabilities in the mixture are time-dependent and
use the latent GP z(t). The kernel used to construct z(t) is given by

kP(t, t′; θpre) = kp(t, t′; σ1, L1, τ = 1) kRBF(t, t′; σ1, L2)

+ kRBF(t, t′; σ3, L3) + kc(t, t′; σ4). (19)

Using GPy [21], the parameters are estimated from historical observations of precipi-
tation events by maximizing the Bernoulli likelihood.

3.2.5. Modeling Wind Speed

Like precipitation, adequately capturing the structure in wind speed observations
requires a more sophisticated statistical model. Here we employ a hierarchical model
combining a Gamma distribution for marginal wind speeds with temporal GP processes
for the parameters in the Gamma distribution.

The average daily wind speed is modeled as a Gamma random variable with time-
varying parameters α(t) and β(t). These parameters are related to the time-varying mean
and variance of the Gamma distribution via

α(t) =
m2(t)
v(t)

,

and

β(t) =
m(t)
v(t)

.

where m(t) is the mean of the Gamma distribution and v(t) is its variance. Modeling
the wind speed is now a problem of modeling the mean m(t) and variance v(t) of the
Gamma distribution. Given the ability of Gaussian processes to capture both annual
cycles and medium term trends, we model both m(t) and v(t) with conditionally inde-
pendent Gaussian processes (given the observations). In particular, we assume priors
m(t) ∼ GP(0, km(t, t′)) and v(t) ∼ GP(0, kv(t, t′)), where the kernels are constructed
as before:

km(t, t′; θm)

= kp(t, t′; σ1, L1, τ = 1) kRBF(t, t′; σ1, L2) + kRBF(t, t′; σ3, L3) + kc(t, t′; σ4) (20)

kv(t, t′; θv)

= kp(t, t′; σ1, L1, τ = 1) kRBF(t, t′; σ1, L2) + kRBF(t, t′; σ3, L3) + kc(t, t′; σ4). (21)
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As training data for m(t) and v(t), we took the 50 day running mean and running
variance of the CIMIS wind speed data. Random realizations of the wind speed, such as
those in Figure 1, can be obtained by sampling m(t) and v(t), then computing α(t) and
β(t), and finally drawing (conditionally) independent realizations of the Gamma random
variable for each time.

4. Numerical Results

In this section we demonstrate the capability of the framework by comparing irrigation
strategies for the yields of several crops using weather information from the California
Irrigation Management Information System in Butte County, CA [20]. Forecasts were
developed by training on historical data and projecting for a specified set of years into the
future. The uncertainty in the training set was projected into the forecast information.

An overview of the modeling framework is given in Figure 3. The user has the ability
to designate parameters that effect the modeling on a regional, farm-specific, or municipal
level. At the regional level, the training data can be designated to reflect any environmental
trends desired. We tested these capabilities by training data on years designated as wet or
dry based on historical precipitation events; see Figure 2.

For the farm-specific component of the model, the soil and the crop portfolio param-
eters are required to reflect what would typically be grown over the the desired forecast
period. Municipally or self-enforced limits on the amount of water an individual farm is
allotted per acre may be adjusted to predict the effects these limitation have on annual
yield and water usage.

The framework was written in python and run using an interactive python notebook.
In addition to the use of the standard numerical python and pandas libraries, extensive
use was made of the Gaussian processes framework in python, Gpy, maintained by the
Sheffield machine learning group [21].

Figure 2. Monthly standardized precipitation index (SPI) from the National Integrated Drought Information System for
Butte County, CA. Prefixes D and W denote dry and wet; indices 0–4 correspond to abnormal, moderate, severe, extreme,
and exceptional wet and dry periods.
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Figure 3. Overview of the stochastic modeling workflow. Note that repeated sampling of trained environment-specific
parameters leads to distributions for a modeled crops yield and paired irrigation use in three distinct situations: no irrigation,
restricted irrigation, and unrestricted irrigation.

4.1. Classification of Forecasting Data

We culled model training data for both wet and dry periods from the annual CIMIS
data recorded from 2015–2020 at Station 12 in Butte County, CA. Wet and dry periods are
categorized using the monthly standardized precipitation index (SPI) from the National
Integrated Drought Information System [25]. The SPI index characterizes meteorological
drought on a timescale ranging from 1 to 72 months, with the SPI depicting the standard
deviations that observed cumulative precipitation in a region deviates from the given
climatological average. The resulting classification for Butte County is depicted in Figure 2.
The modeling framework was then trained using data from 2015, 2018, and 2020 designated
as dry years, and 2016, 2017, and 2019 designated as wet training years.
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Once the model was trained using environmental data, a collection of forecasts (or
samples) were used to predict the yield and corresponding water use for the different
irrigation strategies. The projected environment contains uncertainty which mimics the
uncertainty seen in its training information.

Examples of the training and forecast environmental data are shown in Figure 1.
Amounts of daily precipitation seem to be roughly the same for wet and dry years, but the
number of precipitation events is much larger in the wet years (on the right). The forecast
data are in blue, and the training data are in black. The forecasts mimic the variability in
the training data but are slightly higher.

Figure 4 shows the subtle differences observed in the predictive kernels for the model
for radiation, temperature, and air pressure. The expected values for the maximum net
radiation and air temperature kernels occurred slightly earlier in the year when trained with
the dry year data. With the designated training datasets established, simulated scenarios
could be used to study how these slightly different environmental events impact yield and
water used under distinct irrigation strategies.
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Figure 4. Plots of daily averages for environmental parameters for wet and dry seasons. Net radiation
is on the (left), temperature is in the (middle), and vapor pressure is on the (right).

4.2. Example Farming Environment

Once the environmental forecasting has been trained, the framework integrates specific
farm properties via the types of soil and crop portfolio. For the purposes of this work,
the farm had three representative crops grown, using the irrigation scenarios discussed
in Section 2.3. Alfalfa, lettuce, and strawberries were chosen, as they have distinct water
needs and growing seasons.

Recall that three scenarios for irrigation were considered: full irrigation ensures
each crop gets the full amount of water it needs; no irrigation has only precipitation
as the available water source; and limited irrigation has a cap value on the maximum
allowed daily irrigation. Unless specified, the default maximum daily irrigation was set to
0.0075 acre-feet per day. The crop coefficients for alfalfa, lettuce, and strawberries used in
the model are given in Table 2. The planting dates given in the table were established in
pairs, denoting when a crop is put into the ground and subsequently harvested. Lettuce
was modeled using biannual growing seasons.

Table 2. Crop parameters used in this study [17,18].

Crop Ky
Ym

[metric tons/acre]
Kcbeg Kcmid Kcend Zr [m] p

Planting Dates
(start, end)

Alfalfa 1.1 9.072 0.4 0.95 0.9 1.0 0.55 (0, 365)

Lettuce 1.0 2.722 0.0 1.0 0.95 0.4 0.3 (15, 120), (258, 349)

Strawberry 0.85 4.536 0.4 0.85 0.75 0.25 0.2 (60, 273)

Soil characteristics on individual farms can be defined to reflect effects of available
groundwater on crop growth. In all modeling presented here, the values of field capacity
and wilting point, θFC, and θWP, were set to 0.12 and 0.045 respectively, reflecting a sandy
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soil structure; however, any soil structure may be specified. The rooting depth, Zr, for each
crop was fixed, but could be adjusted over a growing season.

Predicted growth for an acre of strawberries during a dry year forecast is shown in
Figure 5. The projected annual precipitation is shown in the bottom graph in order to
establish a connection between available water and strawberry growth. When root zone
depletion (Dr), shown just above precipitation, is above the threshold value of readily
available water (RAW), crops do not have enough water for full growth. This is seen in the
corresponding reduction in ETa (graphed in the top panel) during this same time period. In
our simulations, the initial value of Dr was randomly initialized to a value between 0 and
the maximum root zone depletion determined by the rooting depth of the crop. The initial
increase in ETa, which occurs a fifth of the way into the year, corresponds to strawberry
planting. Values of ETa increase according to plant growth, and the leveling of ETa shown
in the dotted black line indicates the lack of available water to ensure continued growth.
Irrigation levels for the planted strawberries can be seen in the second panel from the top.
When irrigation is unlimited, strawberries are allowed to take as much water as needed
to ensure maximum growth. Dips in maximum irrigation requirements correspond to
spikes in precipitation events. Under the limited irrigation scenario, the maximum daily
threshold was met during a sequence of drier days, when crops need water for growth and
precipitation events fall short of supplying this requirement.

The aggregated yield for strawberries over the same forecast event is shown in Figure 6.
Restrictions on irrigation have a substantial impact on annual yield, with a significantly
lower harvest under the no irrigation strategy. Limited irrigation resulted in an overall
difference of around 1 metric ton, whereas no irrigation reduced yield by three times
as much.

To further understand the response of the yield model to the irrigation strategies
and forecast data, we generated 1000 realizations of the environmental parameters and
computed water use and yield for three different crops. The annual water use and yields
for alfalfa, lettuce, and strawberries are shown in Figures 7 and 8, for both wet and dry
training data.

As seen in Figure 7, on average, more water is required during a dry forecast (the
grey distributions), regardless of the crop or the irrigation strategy. For a crop with a low
water requirement, such as lettuce, limiting the amount of irrigation has little effect on the
annual water consumption. The amount of water needed by lettuce fell below the allotted
irrigation for much of the growing season.

Yield distributions for the crops under each irrigation strategy are shown in Figure 8.
Results for each crop occupy a row, going from full to no irrigation left to right. For
each crop, the variation in yield was smallest using a full irrigation strategy, regardless of
whether a wet or dry forecast was used. Variability increased as irrigation amounts were
reduced; greater variability can be seen in crops requiring more water (i.e., strawberries
and alfalfa), especially with a dry forecast. As expected, average yields for each crop
were larger in the no irrigation scenario with a wet forecast. The average yields for each
crop were also relatively close as long as some irrigation strategy was used; significant
reductions occurred when no supplemental water was provided, regardless of the forecast
environment. The average predicted yield for strawberries with limited irrigation was
larger for dry years than wet years, despite the extra stress put on the crops in dry years. As
discussed later in Section 5.2, this was likely caused by the greater sensitivity of strawberry
yield to net radiation; dry years tend to see more solar radiation and thus larger yields.
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Figure 8. Distributions of annual yield (in metric tons) for alfalfa, strawberries, and lettuce under all three irrigation
strategies: full (ful), limited (lim), and no irrigation (noi). Both wet and dry forecasts were used; yields were maximized
under full irrigation. Average yields were cut in half when no irrigation was used.

4.3. Varying Limits on Water Use

We also considered the impact of the irrigation cap on the water usage and yield. These
caps were modeled with a uniform distribution; water use samples were combined with
wet and dry forecasts to generate information on water use and yield as the cap changed.
Water caps ranged from 0 acre-feet per day to 0.025 acre-feet per day. For comparison, the
results in the previous section used an irrigation limit of 0.0075 acre-feet per day.

The increase in Figure 9 shows the change in water use as the maximum additional
water increases. As expected, with full irrigation, regardless of forecast environment, water
use was maximized. The graph of annual water use for a limited irrigation strategy shows
an increase until the irrigation cap is around 0.015 acre-feet per day. Once above this value,
annual water use never exceeds more than 2 acre-feet. Water use in the dry environment
exceeds that of the wet environment in both full and limited irrigation options.
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4.3 Varying limits on water use

We also considered the impact of the irrigation cap on the water usage and yield. These caps were modeled with
a uniform distribution; water use samples were combined with wet and dry forecasts to generate information on
water use and yield as the cap is changed. Water caps ranged from 0 acre-feet per day to 0.025 acre-feet per day.
For comparison, the results in the previous section used an irrigation limit of 0.0075 acre-feet per day.

The increase in Figure 9 shows the change in water use as the maximum additional water increases. As
expected, with full irrigation, regardless of forecast environment, water use is maximized. The graph of annual
water use for a limited irrigation strategy shows an increase until the irrigation cap is around 0.015 acre-feet
per day. Once above this value, annual water use never exceeds more than 2 acre-feet. Water use in the dry
environment exceeds that of the wet environment in both full and limited irrigation options.

The plot for sampled yield in Figure 10 tells a similar story. The caps on water use are again modeled with a
uniform distribution, and strawberry yields are computed for samples of the water cap and wet and dry forecasts.

The water use cap affects strawberry yield when irrigation is limited, with yields increasing (nonlinearly)
with the cap. However, once the cap exceeds 0.015 acre-feet per day, the yield becomes constant, indicating this
is a threshold value for water use. In addition, when no irrigation is used, we see the slightly higher annual yields
in the wet environment as compared to the dry.

Figure 9: Annual irrigation used for strawberries with water limits drawn from a uniform distribution
(on the right) along with sampled wet and dry forecast environments (along the top). Water use is
maximized after a threshold water limit is reached.

16

Figure 9. Annual irrigation used for strawberries with water limits drawn from a uniform distribution (on the right) along
with sampled wet and dry forecast environments (along the top). Water use was maximized after a threshold water limit
was reached.

The plot for sampled yield in Figure 10 tells a similar story. The caps on water use
were again modeled with a uniform distribution, and strawberry yields were computed
for samples of the water cap and wet and dry forecasts.

The water use cap affected strawberry yield when irrigation was limited, with yields
increasing (nonlinearly) with the cap. However, once the cap exceeded 0.015 acre-feet
per day, the yield became constant, indicating this is a threshold value for water use. In
addition, when no irrigation was used, there were slightly higher annual yields in the wet
environment as compared to the dry.
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Figure 10: Sampled values of strawberry yield with water caps drawn from uniform distribution (on the
right) and wet and dry forecasts (on the top). An irrigation cap 0f 0.015 acre-feet per day seems to be
a threshold value.

17

Figure 10. Sampled values of strawberry yield with water caps drawn from uniform distribution (on the right) and wet and
dry forecasts (on the top). An irrigation cap 0f 0.015 acre-feet per day seems to be a threshold value.

5. Global Sensitivity Analysis
5.1. Background

The statistical models of the environmental parameters not only allow us to character-
ize the uncertainty in predictions of yield; they also enable us to identify the environmental
processes that contribute most to the prediction uncertainty. In particular, we are able to
compute two types of global sensitivity information: the main effects and the total effects.
Main effects measure the fraction of predicted yield coming solely from a single parameter
and do not capture higher order interactions between the parameters.

Let θi denote the ith vector-valued model parameter (e.g., daily precipitation) and let
Yj denote the predicted yield of crop j. The main effect of parameter θi on Yj is given by

Mji =
Varθi

[
Eθ∼i

[
Yj|θi]

]]
Var[Yj]

(22)
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These expectations do not have closed-form expressions because Yj depends on the
nonlinear physics-based yield and hydrologic models described in Section 2. The ex-
pectations are also high dimensional because each parameter θi corresponds to a daily
time series of one environmental parameter. To overcome these challenges, we employed
one of the Monte Carlo approximations described in [26]. Let A = {θ(a,1), . . . , θ(a,N)}
and B = {θ(b,1), . . . , θ(b,N)} be two sets of parameter samples, each with N independent
samples. Let θ(abi ,k) denote the vector [θ(a,k)

1 , . . . , θ
(a,k)
i−1 , θ

(b,k)
i , θ

(a,k)
i+1 , . . . , θ

(a,k)
1 ], which is the

same as the sample θ(a,k) except that the ith component θ
(a,k)
i has been swapped with the

corresponding θ
(b,k)
j from B.

Following [26], we approximate the main effect Mji using the estimator

M̂ji =
1

Nσ̂2
j

N

∑
k=1

Yj(θ
(b,k))

(
Yj(θ

(abi ,k))− Yj(θ
(a,k))

)
, (23)

where σ̂j ≈ Var[Yj] is a Monte Carlo estimate of the variance of the yield for crop j using all
2N samples from both A and B. Mathematically, σ̂2

j is given by

1
2N − 1

N

∑
k=1

(
Yj(θ

(a,k))− µ̂j

)2
+
(

Yj(θ
(b,k))− µ̂j

)2
, (24)

where µ̂j is an estimate of the mean yield

µ̂j =
1

2N

N

∑
k=1

Yj(θ
(a,k)) + Yj(θ

(b,k)). (25)

While main effects only measure the first order impact of a parameter on the output
variance, total effects include interactions to measure the total impact of each parameter on
the prediction variance. Mathematically, the total effect of parameter θi is given by

Tji =
Eθ∼i

[
Varθi

[
Yj|θ∼i]

]]
Var[Yj]

. (26)

We again employed a Monte Carlo estimate of Tji from [26]; the total effects estimator
is given by

T̂ji =
1

2Nσ̂2
j

N

∑
k=1

(
Yj(θ

(a,k))− Yj(θ
(abi ,k))

)2
. (27)

In this work we used independent random sampling in the estimators. More ef-
ficient quasi Monte Carlo (QMC) estimators are commonly employed in (23) and (27)
(e.g., [26]), but these methods are not suitable for our high dimensional setting where θ has
1826 components.

Both the main effects and total effects can be interpreted as a fraction of the prediction
variance Var[Yj] stemming from one of the environmental variables θi, either without
considering interactions or with interactions. They therefore quantify the relative impact
that uncertainty in each of the environmental parameters has on uncertainty in the yield.

5.2. Sensitivity Results

To compute the global sensitivity indices Mji and Tji for each crop and parameter,
we used N = 104 samples to construct the sets A and B. The process was repeated for
both wet and dry scenarios to understand how the sensitivities change with environmental
conditions. Our test used limited irrigation with an irrigation cap of 0.0075, which tends to
slightly stress crops (see Figures 9 and 10).
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For the six vector-valued parameters in our model, computing the sensitivity indices
required a total of 2(2N + 6N) = 16 × 104 model evaluations. The main effects and total
effects for alfafa, lettuce, and strawberries are shown in Tables 3 and 4. The strawberry
sensitivities are also visualized in Figure 11.

Table 3. Main effects for each crop in both wet years and dry years. MaxIPerDay = 0.0075.

Crop Net Radiation Temperature Wind Speed Pressure Precipitation Depletion

W
et

Alfalfa 5.32 × 10−01 4.73 × 10−02 0.00 × 10−00 3.44 × 10−01 4.81 × 10−02 3.44 × 10−02

Lettuce 0.00 × 10−00 4.08 × 10−02 2.94 × 10−01 0.00 × 10−00 4.14 × 10−01 6.62 × 10−03

Strawberries 5.29 × 10−01 0.00 × 10−00 0.00 × 10−00 4.37 × 10−01 0.00 × 10−00 6.45 × 10−02

D
ry

Alfalfa 0.00 × 10−00 7.24 × 10−02 0.00 × 10−00 9.17 × 10−01 0.00 × 10−00 1.36 × 10−01

Lettuce 0.00 × 10−00 0.00 × 10−00 0.00 × 10−00 1.47 × 10−00 0.00 × 10−00 0.00 × 10−00

Strawberries 4.22 × 10−01 2.02 × 10−01 0.00 × 10−00 3.86 × 10−01 0.00 × 10−00 6.42 × 10−02

Table 4. Total effects for each crop in both wet and dry years. MaxIPerDay = 0.0075.

Crop Net Radiation Temperature Wind Speed Pressure Precipitation Depletion

W
et

Alfalfa 2.81 × 10−01 3.86 × 10−01 2.31 × 10−02 1.90 × 10−01 2.63 × 10−02 1.18 × 10−01

Lettuce 3.60 × 10−01 4.30 × 10−01 3.19 × 10−02 2.60 × 10−01 6.14 × 10−02 1.94 × 10−05

Strawberries 3.09 × 10−01 4.56 × 10−01 2.53 × 10−02 2.00 × 10−01 2.63 × 10−02 2.79 × 10−03

D
ry

Alfalfa 6.10 × 10−01 1.27 × 10−01 1.37 × 10−02 1.62 × 10−01 1.10 × 10−02 1.16 × 10−01

Lettuce 5.55 × 10−01 2.28 × 10−01 3.16 × 10−02 2.38 × 10−01 1.40 × 10−02 7.26 × 10−07

Strawberries 6.71 × 10−01 1.20 × 10−01 1.16 × 10−02 1.48 × 10−01 1.35 × 10−02 5.43 × 10−02

Radiatio
n

Temperature

Wind Speed

Pressu
re

Precip
ita

tio
n

Depletio
n

0

0.2

0.4

0.6

St
ra

w
be

rr
ie

s

Wet Years

Radiatio
n

Temperature

Wind Speed

Pressu
re

Precip
ita

tio
n

Depletio
n

Dry Years

Main Effects
Total Effects

Figure 11. Comparison of global sensitivities for strawberries under wet and dry conditions. In dry years, the net radiation
contributes more to uncertainty in yield predictions than it does in wet years. As shown in the total effects, the temperature
has a smaller relative impact on the yield in dry years. Sensitivities for other crops can be found in Tables 3 and 4.

In both wet and dry conditions, uncertainty in net radiation caused a large fraction of
the variance in yield: from Table 4, we see that the total effects in wet years were about 0.3
for all crops and about 0.6 for all crops in dry years. The total effects estimator also shows
that uncertainty in air temperature had a large impact on yields during wet years (≈0.4);
the impact of temperature was less dramatic in dry years (0.12–0.23). It is also informative
that in wet years the main effect of temperature was small (≈0.04), though the total effect
was relatively large (≈0.4). This is an indication that the impact of temperature variability
is predominantly through interactions with other environmental conditions.
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From Tables 3 and 4, it is also interesting to note that the initial root zone depletion
had a large impact on predictions of yield for Alfafa (total effect of ≈0.1), but less of an
impact on the yields of lettuce and strawberries (total effect of <0.06). This is an indication
that the yield of Alfafa is more sensitive to initial root zone conditions than the other crops.

6. Conclusions and Future Directions

Our coupled statistical–physical framework outlines a strategy for incorporating
meteorological uncertainty into physics-based agricultural yield models. Our approach
avoids computationally expensive, high-fidelity simulations that require high levels of
user expertise or purely data-driven approaches that do not incorporate known physical
relationships. We combined historical data with well-established physical models of soil
hydrology and crop growth to create an inexpensive computational engine for predicting
yields which requires limited user input and expertise. While our physics-based model is
less complex than state-of-the-art simulators such as MODFLOW-OWHM [27], the model
is efficient and requires minimal preprocessing.

This approach also allows for uncertainty quantification and quantitative risk assess-
ment. Numerous samples can be computed quickly, making it feasible to characterize
predictive distributions and evaluation metrics for multiple parameters of interest. The
computational efficiency is also critical for enabling global sensitivity analysis, which re-
quires tens-of-thousands of model evaluations to obtain estimates of sensitivity indices. The
global sensitivities reported in Section 5.2 provide context to the predictive distributions
shown in Section 4.2; the sensitivity of strawberry yield to solar radiation indicates that,
despite being more stressed, strawberries will tend to have larger yields in dry conditions
because wet conditions are accompanied by less solar radiation.

The data needed for our framework can be obtained from a wide variety of weather
stations throughout the country. Additional crop-specific parameters could also be obtained
with local expertise available through many agricultural extensions and county farm agents.
It could therefore be possible for our framework to be developed into a forecasting system
for small farmers that, unlike large corporations, do not have the resources for extensive in-
house data collection and analysis. Rigorously quantifying predictive uncertainties can also
facilitate more formal risk analyses in the future. Various risk metrics, e.g., value at risk or
conditional value at risk, require probabilistic predictions similar to those provided by our
framework. Moreover, the flexibility to choose historical data representing different climatic
scenarios (such as the wet and dry conditions discussed above), enables individualized
exploration of worst- and best-case scenarios.

These ideas are not limited to the parameters studied here and can be extended
to considering other distributions and other variables affecting farm management and
harvests. Our future plans are to incorporate decision tools to help farmers use these
analytics to estimate risk and manage other aspects of farming while weather patterns due
to climate change continue to evolve.
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