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Abstract: Numerical models are useful tools for studying complex wave–wave and wave–current
interactions in coastal areas. They are also very useful for assessing the potential risks of flooding,
hydrodynamic actions on coastal protection structures, bathymetric changes along the coast, and
scour phenomena on structures’ foundations. In the coastal zone, there are shallow-water conditions
where several nonlinear processes occur. These processes change the flow patterns and interact with
the moving bottom. Only fully nonlinear models with the addition of dispersive terms have the
potential to reproduce all phenomena with sufficient accuracy. The Boussinesq and Serre models
have such characteristics. However, both standard versions of these models are weakly dispersive,
being restricted to shallow-water conditions. The need to extend them to deeper waters has given
rise to several works that, essentially, add more or fewer terms of dispersive origin. This approach is
followed here, giving rise to a set of extended Serre equations up to kh ≈ π. Based on the wavemaker
theory, it is also shown that for kh > π/10, the input boundary condition obtained for shallow-
waters within the Airy wave theory for 2D waves is not valid. A better estimate for the input wave
that satisfies a desired value of kh can be obtained considering a geometrical modification of the
conventional shape of the classic piston wavemaker by a limited depth θh, with θ ≤ 1.0.

Keywords: shallow-waters; intermediate-waters; extended Serre model; boundary conditions

1. Introduction

Typically, the structures commonly found in the coastal environment, such as groynes
and breakwaters, are implanted in intermediate- and shallow-waters. The design of such
structures requires knowledge of the flow characteristics associated with currents and
surface waves. Knowing the flow characteristics is also essential to predict changes in
the bottom, as they lead to the accretion and erosion of sediments that are often harmful,
especially around coastal protections.

By the end of the 1970s, due to the limited knowledge that existed at the time and the
low capacity of computational tools, linear wave theory was often used to simulate the
processes of the refraction and diffraction of waves. In the 1980s, more advanced models
for the purpose of simulating both refraction and diffraction phenomena were commonly
used. Examples of such models are those of Berkhoff et al. [1], Kirby and Dalrymple [2],
Booij [3], Kirby [4], and Dalrymple [5]. However, such models are based on linear theory,
so they should not be used in shallow-water conditions.

As noted in [6], at that time, the numerical simulation of coastal processes was carried
out using models that solved Saint-Venant-type equations [7]. However, such models are
unable to simulate phenomena of dispersive origin, which are typical of shallow-waters
and for certain types of waves. Indeed, as shown in [8], Saint-Venant type models, due to
their mathematical and conceptual limitations, are unable to produce satisfactory numerical
results during long periods of analysis. In addition to the common processes of refraction
and diffraction, the phenomena of the swelling, reflection, and breaking of waves are also
typical of shallow-waters. Such phenomena overlap, so it is the combined action of all of
them that produces the flow patterns typical of coastal areas.
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Additionally, according to [6], a variety of factors allow the development and use of
less limited and more robust mathematical models. In the last three decades, the use of
better equipment, more efficient experimental methods, and a deeper theoretical knowledge
of physical phenomena have been decisive for the increasing refinement of numerical
methods. Major developments in information technology, mainly from the 1980s onwards,
have allowed us to improve data processing and made the storage of large amounts of
information possible. On the other hand, they have allowed the use of more complete and
comprehensive mathematical models. In fact, only models of order σ2 (σ = h0/λ, where h0
and λ represent, respectively, depth and wavelength characteristics) or greater and of the
Boussinesq [9], Serre [10], or Green and Naghdi [11] types are appropriate for describing
the dispersive and nonlinear interaction processes of the generation, propagation, and
run-up of waves resulting from wave–wave and wave–current interactions [12–14].

It is also worth pointing out that for the simulation of more complex problems, such
as wave generation by seafloor movement [15], the propagation of waves over uneven
bottoms [16,17], the propagation of high-frequency waves resulting from nonlinear interac-
tions and wave-breaking effects [18–20], extended forms of Boussinesq and Serre equations
have been developed in recent years with improved linear characteristics [21–26].

The great technological revolution and sophistication of control systems realized in
recent years and the possibility of using more powerful computational resources have
allowed motivating in-depth theoretical and experimental research with the aim of improv-
ing the knowledge of coastal hydrodynamic processes. Numerical methods have also been
developed for applications in more sophisticated and more complex engineering fields
([17,27–31]).

In Section 2, the general theory of shallow-water waves is used to obtain the different
mathematical models commonly used in the simulation of hydrodynamic processes. An
extension of Serre’s equations for applications in intermediate-waters and a discussion
based on the wavemaker theory to efficiently generate a wave with the desired kh at
the input boundary for more general conditions than shallow-waters are presented in
Section 3. Appropriate application examples are presented and discussed in Section 4.
These examples demonstrate the good performance of the improved Serre equations for
wave propagation under especially demanding conditions. The Section 5 highlights the
article’s core content and suggests future developments in this area.

2. Mathematical Formulation

The hydrodynamic formulation is based on the fundamental equations of fluid me-
chanics, written in Euler’s variables, considering a three-dimensional and quasi-irrotational
flow of a perfect fluid (Euler equations, or Navier–Stokes equations with the assumptions of
non-compressibility (dρ/dt = div

→
v = 0), irrotationality (rot

→
v = 0, i.e., uz = wx; vz = wy;

vx = uy), and perfect fluid (dynamic viscosity, µ = 0)). We start with the dimensionless
quantities ε = a/h0 and σ = h0/λ, in which a is a characteristic wave amplitude, h0 is
the mean water depth, and λ is a characteristic wavelength. Then, the appropriate the
dimensionless variables of the fundamental equations, and the boundary conditions are
considered.

The resulting dimensionless equations are written [32–34]:
A: Fundamental equations

(a) ux + vy + wz = 0
(b) εut + ε2uux + ε2vuy + ε2wuz = −px
(c) εvt + ε2uvx + ε2vvy + ε2wvz = −py
(d) εσ2wt + ε2σ2uwx + ε2σ2vwy + ε2σ2wwz = −pz − 1
(e) uz = σ2wx; vz = σ2wy; vx = uy

(1)
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B: Boundary conditions

(a) w = (1/ε)ξt + uξx + vξy , z = −1 + ξ
(b) w = ηt + εuηx + εvηy , z = εη
(c) p = 0, z = εη

(2)

where η is the free surface elevation; ξ represents bathymetry; u, v, and w are velocity
components; and p is the pressure.

After some mathematical developments, the following dimensionless equations of
motion are obtained in the second approach (order 2 in σ, σ2) [33,34]:

[η − (1/ε)ξ]t + [(1− ξ + εη)u]x + [(1− ξ + εη)v]y = 0
ut + εu ux + εv uy + ηx
+σ2{[(2/3)(εη − ξ)x + (1/2) ξx] P + (1/3)(1 + εη − ξ)Px}
+σ2[εηxQ + (1/2)(1 + εη − ξ)Qx] + σ4 = 0

vt + εu vx + εv vy + ηy

+σ2
{[

(2/3)(εη − ξ)y + (1/2) ξy

]
P + (1/3)(1 + εη − ξ)Py

}
+σ2[εηyQ + (1/2)(1 + εη − ξ)Qy

]
+ σ4 = 0

P = (1 + εη − ξ)
(

εA2 − εuAx − εvAy − At

)
Q = wt + εuwx + εvwy
w = (1/ε)ξt + uξx + vξy
A = ux + vy

(3)

Here, the bar over the variables represents the average value vertically. With dimen-
sional variables and a fixed bottom (ξt = 0), the system of Equation (3) is written in the
second approximation (Equation (4)):

ht + (hu)x + (hv)y = 0
ut + u ux + v uy + gηx
+[(2/3)hx + (1/2)ξx]P + (1/3)hPx + hxQ + (1/2)hQx = 0

vt + u vx + v vy + gηy
+
[
(2/3)hy + (1/2)ξy

]
P + (1/3)hPy + hyQ + (1/2)hQy = 0

P = h
(

A2 − uAx − vAy − At

)
Q = wt + uwx + vwy
w = uξx + vξy
A = ux + vy

(4)

where h(x, t) = ζ0 − ξ(x) + η(x, t) = h0(x) + η(x, t) is flow depth, with ζ0 being the
water-surface level at rest, and g is gravitational acceleration. The one-dimensional system
of equations (1HD) is written, also considering a fixed bottom:

ht + (uh)x = 0
hut + hu ux + ghηx +

[
h2(P/3 + Q/2)

]
x + ξxh(P/2 + Q) = 0

P = −h
(
uxt + u uxx − u2

x
)

Q = ξx(ut + u ux) + ξxxu2

(5)

In addition, let us consider that the small parameter ε = a/h0 has a value close to the
square of the shallow-water parameter σ = h0/λ—that is, O(ε)=O

(
σ2). In these conditions,

starting from the system of Equation (3) and at the same order of approximation, the
following system of Equation (6) is obtained in dimensional variables:

ht + (hu)x + (hv)y = 0
ut + u ux + v uy + gηx − [(1/6)ξx]P + (1/3)h0Px + (1/2)h0Qx = 0
vt + u vx + v vy + gηy −

[
(1/6)ξy

]
P + (1/3)h0Py + (1/2)h0Qy = 0

(6)
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where P and Q are given by P = −h0
(
ux + vy

)
t and Q =

(
uξx + vξy

)
t.

Substituting P and Q, the momentum Equations (7) and (8) are written:

ut + u ux + v uy + gηx + (1/6)h0ξx
(
ux + vy

)
t − (1/3)h2

0
(
ux + vy

)
xt

+(1/3)h0ξx
(
ux + vy

)
t + (1/2)h0

(
uξx + vξy

)
xt = 0

(7)

vt + u vx + v vy + gηy + (1/6)h0ξy
(
ux + vy

)
t − (1/3)h2

0
(
ux + vy

)
yt

+(1/3)h0ξy
(
ux + vy

)
t + (1/2)h0

(
uξx + vξy

)
yt = 0

(8)

With ξt = 0, we obtain the following system of Equation (9):

ht + (hu)x + (hv)y = 0
ut + u ux + v uy + gηx − (1/3)h2

0
(
uxxt + vxyt

)
+ h0ξxuxt

+(1/2)h0
(
ξxxut + ξyvxt + ξxvyt + ξxyvt

)
= 0

vt + u vx + v vy + gηy − (1/3)h2
0
(
uxyt + vyyt

)
+ h0ξyvyt

+(1/2)h0
(
ξyyvt + ξyuxt + ξxuyt + ξxyut

)
= 0

(9)

Simplifying the system of Equation (3) even more and retaining only the terms up to
order 1 in σ—that is, neglecting all terms of dispersive origin (of order σ2)—the resulting
system of Equation (10) is written in dimensional variables:

ht + (hu)x + (hv)y = 0
ut + u ux + v uy + gηx = 0
vt + u vx + v vy + gηy = 0

(10)

Approaches (4), (9) and (10) are known as the 2HD versions of Serre’s equations [10],
or Green and Naghdi [11], Boussinesq’s equations [9], and Saint-Venant’s equations [7],
respectively. The standard Serre Equations (4) are fully nonlinear and weakly dispersive.
The standard Boussinesq Equation (9) incorporates only weak dispersion and weak non-
linearity and is valid only for long waves in shallow-waters of relatively small amplitude
(a/h0 of the order of 0.4). The Saint-Venant Equation (10) is non-dispersive and weakly
nonlinear and is especially suitable to model tides and tsunami waves, i.e., long waves
even in a very deep ocean, as long as σ < 0.05. Both Boussinesq’s and Serre’s standard
equations are only valid for shallow-water conditions.

3. Serre Model Extension to Intermediate-Depths
3.1. Model Parameters

As the standard models of Boussinesq and Serre are restricted to shallow-waters, to
allow these models to be applied in less restrictive conditions, the addition of other terms
of dispersive origin has been considered since the 1990s. Some recent works have extended
the Boussinesq equations to deep-waters (h0/λ > 0.5) by adding more or fewer terms of
dispersive origin, as in [18–23], among others.

Based on Boussinesq’s standard equations and adopting the methodology suggested
by [35], Beji and Nadaoka [36] presented a new approach that allows applications up to
values of h0/λ in the order of 0.25, and still with acceptable errors of amplitude and phase
velocity up to h0/λ values close to 0.50. A higher order of approximation, valid for values
of h0/λ of the order of 0.48, is proposed in [37].

Less common are extensions of the Serre equations. Starting from Equation (5), [20], [23],
and [33] use an identical formulation to extend these equations for applications in intermediate-
depth waters to values of the frequency dispersion h0/λ up to 0.50. The procedure developed
in [20,23,33] considers that the coefficients introduced are constant. This procedure is
shown below assuming an identical approach. Linearizing Equation system (5), System
(11) is obtained:

ht +∇ · (hu) = 0
ut + g∇η = 0

(11)
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This is applicable to the propagation of monochromatic waves in deep-waters (off-
shore), where the nonlinear terms and the terms of the dispersive origin of System (4) are
unimportant but negatively affect the solution. System (11) is also a rough approach in
intermediate-waters.

To enable the use of the system of Equation (4) under intermediate-waters, it is
essential to obtain an equivalent approach, whose solution, in terms of group velocity,
behaves according to the linear dispersion relation given by ω2 = gktanh(kh), where
ω is angular frequency (ω = 2π/T) and k is wave number (k = 2π/λ). Consequently,
according to Equation (11), variations in the time of the velocity in Equation (4) are com-
bined with the system approach ut = −g∇η through parameters or scalar quantities, such
that, under intermediate-waters, the dispersion relation of the linearized system tends to
ω2 = gktanh(kh).

The resulting system of Equation (12) is written as follows [23,33,34]:

ht + (uh)x = 0
ut + uux + g(h + ξ)x
+(1 + α)(Ωut − hhxuxt)− (1 + β) h2

3 uxxt + αgΩ(h + ξ)x
−αghhx(h + ξ)xx − βg h2

3 (h + ξ)xxx − hhxuuxx +
h2

3 (uxuxx − uuxxx)

+h(ux)
2(h + ξ)x + ξxxu2(h + ξ)x + (Ω + hξxx)uux +

h
2 ξxxxu2

−(1/ρ)(ps)x + τb/(ρh) = 0
Ω = ξxhx +

1
2 h ξxx + (ξx)

2

(12)

where α and β are constant parameters that are used to improve the dispersion properties
of the model, ρ is the fluid density, ps is the pressure on the water surface, and τb represents
friction stresses at bottom.

The parameters involved are then obtained in order to approximate, as much as
possible, the dispersion relation of the linearized system with the relation ω2 = gktanh(kh) .
Neglecting higher-order terms and the nonlinear terms in Equation (4) gives Dispersion
Relation (13), also obtained by [37], to the linearized form of System (9):

ω2

gk
=

kh
[
1 + (α/2− γ/6 ) k2h2]

1 + (1 + α) k2h2/2− (1 + γ) k2h2/6
(13)

where ω = 2π/T is the wave frequency, T is the period, and k2 = k2
x + k2

y, with kx and ky
being the wave number components in x and y directions, for a 2HD approach.

Equation (13) can be written in terms of the phase velocity and compared with the
second-order of the Padé expansion of the exact linear solution for Airy waves given by
Equation (14):

C2
Airy =

ω2

k2 = (gh)tanh(kh) = gh

[
1 + (kh)2/15

1 + 2(kh)2/5

]
+ O

[
(kh)6

]
(14)

where CAiry is Airy wave celerity.
From this, the following values are obtained for the parameters α and γ: α = 0.1308

and γ = −0.0076, with β = 1.5 α− 0.5 γ = 0.20.

3.2. Boundary Conditions

The conventional piston wavemaker profile is a valid approximation in the shallow-
water wave conditions h0/λ < 0.05 regime. However, assuming a uniform velocity profile
over the water depth leads to restricted performance in deeper water conditions. In
what follows, the classical wavemaker theory is revisited to show that a wavemaker
with reduced displacement to the bottom performs better in intermediate-waters than a
conventional piston.
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This is conducted by the geometrical modification of the conventional shape of the
classic piston wavemaker by a limited depth θ h to better match the kinematic velocity
profile of the wave to be generated, resulting in the proposed wavemaker shown in Figure 1.
Such depth is correlated to the wave conditions to be generated, providing an optimization
framework for the proper piston dimensions.

Figure 1. Schematic diagram of the piston wavemaker reduced to a limited depth θh. H is the wave
height, λ is the wavelength, h is the water depth, S is the wavemaker stroke, and 0 < θ ≤ 1.0 is a
parameter.

Assuming that the displaced water by a single stroke of a wavemaker is equal to the
accumulated water in the resulted wave crest, the relation between the wavemaker stroke
and the resulted wave height (H/S) may be expressed by equating the displaced water by
a full stroke to the volume under the wave crest, as shown in Figure 1, as follows:

Sθh =
∫ λ/2

0

(
H
2

)
sin(kx)dx = H/k (15)

H
S |piston

= θkh (16)

which is a valid approximation for relative depths of the shallow-water conditions, i.e., in
the range h0/λ < 0.05. Of course, when θ = 1, the step wavemaker reduces to the simplified
conventional piston wavemaker equation.

Complete Theory for Plane Wavemakers—Intermediate-Waters

Assuming that waves are of small-amplitude, long-crested, propagating in a potential
and incompressible continuum, the governing equation for the velocity potential, in the
geometry depicted in Figure 1, is given by:

ϕxx + ϕzz = 0 (17)

The dynamic and kinematic free surface boundary conditions are:

η =
1
g

ϕt, at z = 0, (18)

− ϕz = ηt, at z = 0 (19)

and the impermeable bottom boundary condition is

− ϕz = 0, at z = −h (20)

In the positive x-direction, the horizontal displacement of the stroke wavemaker
profile S(z) is described as follows:

x =
S(z)

2
sin(ωt) (21)
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The function that describes the surface of the wavemaker is [38]:

F(x, z, t) = x− S(z)
2

sin(ωt) = 0 (22)

As the surface of the wavemaker varies with time, then the total derivative of the
surface with respect to time will be zero, i.e.,

dF(x, z, t)
dt

=
∂F
dt

+ u
∂F
dx

+ w
∂F
dz

= 0 (23)

− ∂F
dt

= u.∇F = u.n|∇F| (24)

The general boundary condition is then:

u.n = −∂F/∂t
|∇F| , on F(x, z, t) = 0 (25)

where u = ui + wk, n = ∇F/|∇F|, and |∇F| =
√
(Fx)

2 + (Fz)
2.

Substituting F(x,z,t) yields:

u(0, z, t)− w
2

dS(z)
dz

sin(ωt) =
S(z)

2
ω cos(ωt), on F(x, z, t) = 0 (26)

Then, if the wavemaker displacement is considered to be relatively small, the kinematic
boundary condition at the wavemaker can be linearized by neglecting the second term on
the left hand; hence:

u(0, z, t) =
S(z)

2
ω cos(ωt) (27)

The final form of the Laplace equation satisfying the upper and lower boundary
conditions is written as follows [38]:

ϕ = Apcosh
[
kp(h + z)

]
sin
(
kpx−ωt

)
+

∞

∑
n=1

Cne−ks(n)xcos[ks(n)(h + z)]cos(ωt) (28)

where Ap and Cn are the coefficients to be determined, and the subscripts p and s mean
progressive and standing waves generated by the wavemaker, respectively. The standing
wave decay exponentially in the x-direction and are negligible two or three water depths
away from the wavemaker. Taking into account the kinematic boundary condition at the
wavemaker,

u(0, z, t) =
S(z)

2
ω cos(ωt) = −ϕx(0, z, t) (29)

Deriving Equation (28) with respect to x_space and substituting in Equation (29), we
obtain Equation (30):

S(z)
2

ω = −Apkpcosh
[
kp(h + z)

]
+

∞

∑
n=1

Cnks(n)cos[ks(n)(h + z)] (30)

Knowing that, due to the orthogonality property, there is no contribution from the
series terms, multiplying Equation (30) by cosh

[
kp(h + z)

]
and taking into account that the

stroke of the wavemaker S(z) is limited by the water depth, that is θh, and assuming the
functional form of S(z) = S (piston motion) to better match the kinematic velocity profile of
the wave in shallow- and intermediate-water conditions, the solution for Ap is obtained by
integration of:

Ap = −
∫ 0
−θh

S(z)
2 ω cosh

[
kp(h + z)

]
dz

kp
∫ 0
−θh cosh2

[
kp(h + z)

]
dz

(31)
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with ∫ S(z)
2

ω cosh
[
kp(h + z)

]
dz =

Sω

2kp
sinh

[
kp(h + z)

]
+ C (32)

kp

∫
cosh2[kp(h + z)

]
dz =

1
4

sinh
[
2kp(h + z)

]
+

1
2

kp(h + z) + C (33)

By integrating between −θh and 0, the following expression for Ap is obtained:

Ap = −
Sω

{
sinh

(
kph
)
− sinh

[
kph(1− θ)

]}
/
(
2kp
)

1
4 sinh

(
2kph

)
− 1

4 sinh
[
2kph(1− θ)

]
+ 1

2 kpθh
(34)

On the other hand, according to the boundary condition at z = 0 [Equation (18)], the
progressive wave height can be linked to the wavemaker as follows:

η =
1
g

φt =
H
2

cos
(
kpx−ωt

)
(35)

that is,

H = −
2Ap

g
ω cosh

(
kph
)

(36)

The wave-height-to-stroke ratio is finally obtained by substitution of Ap into Equa-
tion (36). Taking into account the dispersion relation ω2 = gkptanh

(
kph
)
, the following

Equation (37) is obtained:

H
S |piston

=
4 sinh

(
kph
){

sinh
(
kph
)
− sinh

[
kph(1− θ)

]}
sinh

(
2kph

)
− sinh

[
2kph(1− θ)

]
+ 2kpθh

(37)

A graphical representation of Equations (16) and (37) for different values of θ is
depicted in Figure 2 (hereafter kp = k). A great difference between both solutions is
clear, especially in intermediate and deeper water conditions. Indeed, Equation (16) is not
suitable in that range of wave conditions. Even for θ = 1, the differences start to increase
from kh = 1.0. Therefore, our goal is to obtain a correct value for H/S in intermediate-
depths. The mean profile of the active velocity in a θ h portion of the wave generator is
expected to better match the orbital velocity profile of a progressive kinematic wave in
intermediate-waters compared to the uniform kinematics profile in shallow-waters.

Figure 2 also shows that the maximum value of the relation between the wavemaker
stroke and the resulted wave height (H/S) is two, which is obtained in deep-waters (kh > π)
and for any value of θ.

Assuming shallow-water conditions within the Airy wave theory for 2D waves, the
horizontal water particle velocities are constant along the vertical axis, and the input
boundary condition is implemented as follows:

u(0, t) =
√

g
h

η(0, t) (38)

where η(0, t) = h(0, t)− [ζ0 − ξ(x)] = h(0, t)− h0 is the free surface elevation along the
inlet boundary. However, this approach is not valid beyond the conventional shallow-
water limit.
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Figure 2. Wave height to wavemaker stroke relationship (H/S) in the function of kh. Comparison of
Solutions (16) and (37) for different values of θ.

A better estimate for the input wave that satisfies the desired value of kh can be
obtained considering an optimal value of θ, according to Condition (36). Once obtained θ,
the mean wave velocity at the input is given by:

u(0, t) =
C
θh

η(0, t) =
C
θh

H
2

cos(ωt) =
g

θhω
tangh(kh)

H
2

cos(ωt) (39)

On the other hand, given that,

g
θhω

tangh(kh)
H
2

cos(ωt) =
S(z)

2
ω cos(ωt) (40)

the precedent Equation (16) is retrieved:

H
S |piston

= θh
ω2

g tangh(kh)
= θkh (41)

At the outgoing wave boundary, the Sommerfeld radiation condition in Equation (42)
is used to allow the passage and output of wave energy, i.e.,

ηt + Cηx = 0 (42)

where the partial derivative in space of the surface elevation is computed using a second-
order backward difference approximation:

ηx |i=N,t =
3ηt

N − 4ηt
N−1 + ηt

N−2
2∆x

(43)

3.3. Wave Breaking Strategy

Taking advantage of a solving methodology, which encompasses the Serre and Saint-
Venant systems of equations, the wave-breaking strategy detailed in [26] is used, which
consists of switching locally from the system of Serre equations to the Saint-Venant equa-
tions when the wave is about to break. Breaking is easily incorporated simply by ignoring
the contribution of the dispersive terms included in the parameter σ2 of Equation (3)
(see [26] for details).

4. Results and Discussion

In order to test the robustness of Model (12), several numerical tests were performed.
Its good performance is proven through very demanding applications, namely: A1: a
solitary wave propagating in a channel 1.0 m depth and 250 m long, with a/h0 = 0.60;
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A2: a periodic wave propagating over a submerged bar in shallow-depth (h0/λ ≈ 0.03)
and intermediate-depth waters (h0/λ ≈ 0.11); and A3: periodic wave propagating in
quasi-deep-water conditions (h0/λ = 0.50).

4.1. Solitary Wave

To validate System (12) and check the accuracy of the numerical method used with
α = β = 0 and ξt = ξx = ξxx = ξxxx = 0, a comparison with a closed-form solitary wave
solution of the Serre equations was made, which is expressed as:

h (x, t) = h0 + a sech2[K(x− Ct− x0)] (44)

u = C(1− h0/h) (45)

with
K =

√
3a/

[
4h2

0(h0 + a)
]
; C = C0

√
1 + a/h0, and C0 =

√
gh0

where h0 is the water depth at rest, x0 is the initial position of the crest, and a is the wave
amplitude. Constant depth h0 = 1.0 m and x0 = 25 m were used. The computational
domain was uniformly discretized with a spatial step of ∆x = 0.05 m. A time step of
∆t = 0.0025 s was used. A comparison of the numerical results with the analytical solution
in Equations (44) and (45) for the propagation of a solitary wave, where a/h0 = 0.60, is
plotted in Figure 3 at times t = 25 s and t = 50 s. It is possible to observe a perfect agreement,
which confirms the accuracy of the numerical model implemented.

Figure 3. Propagation of a solitary wave with a/h0 = 0.60. Comparison of the analytic solutions in
Equations (32) and (33) (_____) with the numerical results (· · · · · · ) of the Serre model in Equation (12)
with α = β = 0.

4.2. Periodic Wave Propagating over a Sybmerged Bar

Experimental data are available in the literature and can be used for comparisons.
Beji and Battjes [39] carried out experiments in a 0.80 m wide channel with a submerged
trapezoidal bar and 1:20 slopes (upstream) and 1:10 (downstream). As shown in Figure 4,
the water depth in front of and behind the bar was 0.40 m and only 0.10 m above the bar.

Figure 4. Bathymetry for the periodic wave propagating over the submerged bar (not in scale).
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The propagation of a regular wave with a height of 0.02 m, period T = 2.02 s, and
wavelength of 3.73 m was simulated. Three wave gauges were placed at the points where
the wave nonlinearity and dispersity effects were mostly manifested. The numerical results
obtained in a fourth gauge installed at x = 3.0 m were compared with Stokes 2nd order
analytical solution.

At the inlet section and during the first 6 m (Figure 4), the relation h0/λ ≈ 0.107
was verified, thus satisfying the Stokes solution of the second order in this stretch, while
the reflection effects were not felt. According to the theory of second-order Stokes, the
elevation of the free surface is given by Equation (46) [40]:

η =
H
2

cos(kx−ωt) +
πH2

8 λ

{
cosh(kh0) [2 + cosh(2kh0)]

sinh3(kh0)

}
cos[2(kx−ωt)] (46)

The (u,w) velocity components are:

u =
πH
T

cosh[k(h0 + z)]
cosh(kh0)

cos(kx−ωt)

+
3
4

πH
T

πH
λ

cosh[2k(h0 + z)]
sinh4(kh0)

cos[2(kx−ωt)]
(47)

w =
πH
T

sinh[k(h0 + z)]
cosh(kh0)

sin(kx−ωt)

+
3
4

πH
T

πH
λ

sinh[2k(h0 + z)]
sinh4(kh0)

sin[2(kx−ωt)]
(48)

where H is the wave height, k = 2π/λ is the wave number, and ω = 2π/T is the wave
frequency. Using z = 0, the velocity at the surface is obtained. The computational domain
was discretized with a uniform grid spacing of ∆x = 0.025 m. A time step of ∆t = 0.0010 s
was used. A comparison of the analytical solution in Equation (46) with the numerical
results of the Serre model in Equation (12) is shown in Figure 5.

Figure 5. Periodic wave with 0.02 m height, 2.02 s period, and 3.73 m wavelength propagating in a
channel of 0.40 m depth. Comparison of the analytical Stokes 2nd order solution in Equation (46)
with numerical results in a gauge installed at x = 3.0 m (α = 0.1308 and β = 0.20).

Additionally, the numerical results are compared with the data recorded in probes
installed at x = 10.5 m, x = 13.5 m, and x = 17.3 m (Figure 4); these comparisons are shown
in Figure 6a–c.
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Figure 6. Periodic wave propagating over a bar (as shown in Figure 4). Free surface evolution at
three gauges installed at (a) x = 10.5 m, (b) x = 13.5 m, and (c) x = 17.3 m.

Despite some discrepancies, the numerical results of the Serre model with improved
dispersive characteristics agree satisfactorily with the measured data. It should be noted
that Serre’s standard equations are unable to reproduce the input and propagation of
a wave under these conditions, given that h0/λ is greater than 0.09. In this case, with
h0/λ ≈ 0.11 (kh0 ≈ 0.67), the error could be significant.

4.3. Periodic Wave Propagating in Quasi-Deep-Water Conditions (h0/λ = 0.50)

In order to evaluate the performance of the improved Serre model [System of Equa-
tion (12)] in quasi-deep-water conditions the input and propagation of a periodic wave
in an initially undisturbed region of constant depth h0 = 0.56 m is tested. The wave
characteristics are amplitude a = 0.025 m, period T = 0.85 s, and wavelength λ = 1.12 m;
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therefore, h0/λ = 0.5 (kh0 = π). At the input boundary, Relation (39) is implemented, which
is equivalent to Equation (49), as addressed earlier in the theoretical analysis section:

u(0, t) =
g
ω

tanh(kh)
θh

η(0, t) (49)

where θ = 0.960, h = h0 and η(0, t) = acos(ωt).
The computational domain was discretized using a constant space step ∆x = 0.05 m.

A time step of ∆t = 0.010 s meets the stability condition. Figure 7 shows a comparison of
the analytical Stokes solution of the second-order Equation (46) with the numerical results
of the free surface profile at x = 10 m. A steady periodic flow was established, confirming
the good performance of the numerical model in quasi-deep-water conditions. It should be
noted that Serre’s Equation (5) is not capable of reproducing these conditions.

Figure 7. Sinusoidal wave with 0.05 m height, 0.85 s period, and 1.12 m wavelength, propagating in
a channel of 0.56 m depth. Comparison of the analytical Stokes 2nd-order solution in Equation (46)
(red dotted) with the numerical results obtained in a probe installed at x = 10.0 m (blue line).

5. Conclusions

Serre’s standard equations are only valid for shallow-water conditions; therefore, it be-
comes necessary to develop an extension of these equations for applications at intermediate-
depths and quasi-deep-waters. In fact, these are the conditions that a wave experiences
when propagating from offshore to very shallow-water conditions. Accordingly, a new
computational structure is proposed in this work, composed of a set of Serre equations
enhanced with additional terms of dispersive origin. The applications carried out clearly
demonstrate the capacity of this computational structure to simulate the phenomena
experienced by waves as they propagate from offshore to very shallow-waters.

The robustness of the computational structure is tested through applications in
intermediate-water depths and on bathymetry with considerable slopes. It is shown
that Serre’s equations extended with additional terms of dispersive origin are capable of
propagating waves from quasi-deep-waters, as long as σ ≤ 0.05, such as tidal waves and
tsunamis, to very shallow-waters.

Regarding boundary conditions, it is shown that the solution commonly used in
shallow-water conditions within the Airy wave theory is not valid in deeper waters. Based
on the wavemaker theory, a solution is proposed for the inlet boundary considering a
limited depth θh for the piston wavemaker.

Further studies should allow obtaining the optimal θ values to be considered in the
input boundary condition for applications of the model in the entire range of intermediate-
waters. This same condition must be analyzed for the output boundary with free wave
output or to fix possible reflection percentage values (Dirichlet condition). An extended
version of Serre’s two-dimensional equation system shown in System (4) with improved
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linear dispersion characteristics, using a finite volume method, is currently being developed
and will be published soon.
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