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Abstract: Research indicates that the projection of traffic volumes is a valuable tool for traffic
management. However, few studies have examined the application of a universal automated
framework for car traffic volume prediction. Within this limited literature, studies using broad
data sets and inclusive predictors have been inadequate; such works have not incorporated a
comprehensive set of linear and nonlinear algorithms utilizing a robust cross-validation approach.
The proposed model pipeline introduced in this study automatically identifies the most appropriate
feature-selection method and modeling approach to reduce the mean absolute percentage error.
We utilized hyperparameter optimization to generate a universal automated framework, distinct
from model optimization techniques that rely on a single case study. The resulting model can be
independently customized to any respective project. Automating much of this process minimizes the
work and expertise required for traffic count forecasting. To test the applicability of our models, we
used Florida historical traffic data from between 2001 and 2017. The results confirmed that nonlinear
models outperformed linear models in predicting passenger vehicles’ monthly traffic volumes in this
specific case study. By employing the framework developed in this study, transportation planners
could identify the critical links on US roads that incur overcapacity issues.

Keywords: machine learning; passenger vehicle traffic; traffic volume; predictive modeling; regression
analysis

1. Introduction

Growth in the number of vehicles and degree of urbanization mean that the annual
cost of traffic jams is increasing in cities. This leads to a decreased in the quality of life
among citizens through a considerable waste of time and excessive fuel consumption and
air pollution in congested areas [1]. Early analysis of congestion events and prediction of
traffic volumes is a crucial step to identify traffic bottlenecks, which can be utilized to assist
traffic management centers. Research on predicting the traffic data is thus essential. Such
studies are valuable for planning the allocation of limited resources to highways that are
most at risk for experiencing congestion and for developing an improved intelligent traffic
management service [1]. Forecasting models need historical traffic data and supporting
variables that are related to traffic demand modeling. The selection of a suitable algorithm
to project traffic volumes is also essential.

With the widespread use of traffic sensors and new traffic-sensor technologies, there
is a copious amount of traffic data available, which has led to the age of big data in the
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transportation sector. As a result, transportation management is experiencing a transfor-
mation to employ data-driven methods. However, the accurate prediction of traffic flow
is still challenging because of the existence of many external disturbance factors. Hence,
reliable model-based or data-based traffic flow prediction methods are contentious topics
in transportation research [2]. Even slightly inaccurate capacity predictions can lead to con-
gestion, with vast social costs in terms of travel time, fuel consumption, and environmental
pollution. Hence, accurate forecasting of traffic flow during peak periods is an essential
topic that attracts interest in the literature.

The literature review revealed that most studies only focus on one or two algorithms,
some linear and some nonlinear. In addition, their results showed that in some cases,
linear models and some nonlinear models work best. As a result, based on the literature,
the relationship between the local and global variables for forecasting traffic flow can
be linear or nonlinear depending on the location and the specific issues such as type
of projects or the level of analysis. Therefore, the traffic volume prediction has been
limited to a few algorithms, methodologies, and a selective subset of variables in each
publication. As a result, there is a gap in utilizing a universal automated framework. There
has not been sufficient research regarding a universal automated framework to conduct
volume prediction regarding passenger vehicles. The need for such a framework for the
pipeline of traffic volume forecasting is evident in the inconsistency of existing studies’
results. Such inconsistency is striking when considering elements such as algorithm or
feature-selection methods.

We implemented a universal automated framework by integrating a broad data
set of Florida highways from 2001 to 2017, with 59 predictors. Through a robust cross-
validation method, five linear algorithms and four nonlinear algorithms were utilized
in a hyperparameter optimization framework. A grid search was then implemented to
identify the best modeling approach and feature-selection method for the specific data
set to minimize the mean absolute percentage error (MAPE). Previous modeling attempts
produced variable results when identifying the optimal prediction parameters, as they
depended on the characteristics of the original case study. Instead of developing a model,
we present here our universal automated framework, which generates customizable models
to maximize the performance of forecasting traffic volumes.

The primary goal of this study was to establish and validate a prediction model
that exceeds the limitations of existing modes of traffic estimation. A comprehensive
framework was developed that can be readily generalized to new scenarios by contractors
or additional users. By analyzing a traffic data set from the State of Florida, we demonstrate
the accuracy of our proposed framework and its functionality for traffic volume forecasting.
New users can incorporate their data and local predictors; they can follow our methods to
select parameters for an optimized model of traffic volume prediction that is specific to
their project.

First, the literature review section elaborates on various traffic volume forecasting
methods for long-term predictions. These include econometric regressions, travel-demand
modeling, and non-parametric regression modeling. Second, the pipeline of the study is
presented in the methodology section. The steps consisted of data preprocessing, feature
selection, model creation (including various linear and nonlinear algorithms), parameter
optimization, and evaluation of the model. Finally, in the results and discussion section,
the findings are discussed in depth.

2. Literature Review

Traffic flow prediction is an important issue for transport authorities and drivers. It
helps in developing a robust traffic management system and effective control measures
to minimize traffic congestion and improve the efficiency of the traffic network. The
emergence of connected and automated vehicles could also enhance the number of trips
for passenger vehicles [3–5]. Generally, the traffic flow forecast can be classified into three
types: short-term forecasting, medium-term forecasting, and long-term forecasting. Periods
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of 5–30 min are usually considered short-term; from 30 min to a few hours is a medium-
term forecast, and a day or longer is the long-term prediction. Traffic volume forecasting
is a type of long-term prediction. It employs forecasting methods such as econometric
regressions, travel-demand modeling, and neural network modeling [1].

2.1. Short-and Mid-Term Prediction Models

Since the 1980s, scholars have investigated short- and mid-term traffic flow prediction,
which is useful for real-time traffic control [2]. The Artificial Neural Network (ANN)
algorithm has frequently been applied for traffic flow prediction [6,7], from early studies
to current ones, as it can handle nonlinearity and universal approximability of unknown
functions that exist in traffic behavior. Zheng et al. [8] mixed ANNs and Bayesian inference
to predict future traffic flow.

Apart from the NN methods, there are many other prediction approaches. Examples
are Kalman filter [9], time series models [10,11], support vector regression (SVR) [12], k-
nearest neighbor [13], hybrid models [14,15], and the gradient boosting tree regression [16].
Comprehensive information on existing models appears in [17,18].

2.2. Traffic Volume Prediction Models
2.2.1. Econometric Regressions

Marshment et al. [19] investigated econometric techniques to forecast traffic for a
1–5-year horizon for the Oklahoma Turnpike Authority. They used the autoregressive inte-
grated moving average (ARIMA) and regression modeling approaches to predict changes
in traffic volumes. Bian et al. [20] similarly employed an unobserved component model as
an econometric model to predict monthly traffic volume, with several temporal aspects.

2.2.2. Travel-Demand Modeling

The travel-demand modeling method (TDM) is a typical long-term forecast approach.
It employs travel characteristics and the utilization of transport services based on land-
use types as well as social and economic attributes. This type of modeling is commonly
performed through a four-step process of trip generation, trip distribution, mode choice,
and finally trip assignment. The annual average daily traffic (AADT) can be produced from
the simulation processes. An advanced type of TDM is the activity-based model [21]. Here,
the focus is an individual’s plan and schedule, which replicates actual traveler decisions.
This model usually provides relatively accurate forecasts, especially for a broad range of
strategies and policies [22].

While both TDM methods have demonstrated accurate AADT estimation, they are
time-consuming to generate and require a substantial data-collection resources and mod-
eling skills. Moreover, although TDM results are useful for informing transportation
planning decisions, it is challenging to derive highly detailed information to promote traffic
management, control, and route guidance for highway drivers.

Khatib et al. [23] discovered that census levels of traffic zones and the types of centroids
employed for the zones could significantly impact the quality of TDM results. Mustafa [21]
emphasized that a model with small census units could provide relatively accurate es-
timation of AADT. Zhong and Hanson [24] developed a method based on geographic
information systems (GIS) to forecast the traffic counts. Yang et al. [22] investigated the
uncertainty of variables used in combined TDM procedures and the classic four-step model
in traffic forecasting. Their aim was to determine the level of confidence of the model
outputs; they also identified and treated the uncertainties from inputs and parameters
separately to enhance the accuracy of the models.

Wang et al. [25] presented a tool to estimate AADT for highways through a TDM. The
principal factor of applying the TDM in their study included employing land-use data
at the parcel level. They aimed to discover the estimated number of trips produced for
or associated with each parcel. The trip assignment was carried utilizing free-flow travel
times and the trips were then dispersed within a trip distribution gravity model at the
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parcel level. The results showed that the proposed model generated 52% MAPE. This result
was 159% lower than the MAPE from regression models developed for the same area [25].

2.2.3. Non-Parametric Regression (NPR)

Non-parametric regression approaches are based on data-driven models. They high-
light the underlying structures without requiring an interpretation of the relations between
inputs and outputs. The main purpose of these methods is to identify data clusters that
possess characteristics similar to the current state for a specific interval of prediction; the
same prediction is then defined from these. This procedure avoids the need to consider a
forecasting equation expressed mathematically by a set of parameters, as occurs with the
parametric approach [6,26].

The term “non-parametric” does not imply that these models lack parameters entirely.
Rather, it signifies that the features and number of parameters are not fixed initially and
are adjustable, with the form and number of parameters being determined by studying
the data. Usually, more data are required than is the case for parametric models. The
dynamic, complex, and nonlinear characteristics of traffic flow render NPR suitable for
non-parametric approaches [27].

2.2.4. Artificial Neural Networks (ANNs)

The ANN algorithm is the most widely employed model in traffic prediction due
to its ability to model nonlinear and dynamic processes [6,7]. Even if the underlying
relationships in a data set are not transparent, an ANN model generalizes accurate pre-
dictions because of its non-parametric and nonlinear features. Artificial Neural Networks
are sometimes regarded as a black box: they are not straightforward to interpret because
they have multiple neurons, complex structures, and nonlinear functions. Rapid variations
in traffic patterns are hard to capture by linear algorithms. By contrast, ANN models
can approximate any degree of complexity, without prior knowledge of problem-solving;
hence, they have attracted attention and have been recognized as a suitable choice for
traffic flow forecasting models [26,27].

Yin et al. [28] generated a fuzzy-neural model (FNM) to forecast traffic flow in an
urban network. The FNM model generated more accurate prediction results than the
back-propagation neural network model. Vlahogianni et al. [29] successfully predicted
the traffic flow pattern using an optimization strategy based on genetic algorithm; their
multilayered structural optimization strategy determined the most suitable ANN structure.

Ratrouta and Gazdera [30] employed two types of ANNs and compared the results
with those from the traditional parametric method of linear regression analysis to predict
average daily traffic over a year. The ANN model showed better accuracy than the linear
regression method for predicting daily traffic. Fu and Kelly [1] similarly employed ANN
versus log-linear and ordinary least squares (OLS) approaches to predict traffic volume.
Their comparison results showed that the ANN method achieved a MAPE of 28.58%, which
meant that it outperformed the log-linear model (52.49% MAPE) and OLS (66.6% MAPE).

Duraku and Ramadani [31] developed two combined models: (1) principal component
analysis and multiple linear regression (PCA-MLR) and (2) principal component analysis
and radial basis function (PCA-RBF). They used both models to forecast the traffic volumes.
The results indicated that the neural PCA-RBF model yielded the least errors in traffic
volume forecasting [31].

Although ANN-based forecasting models can approximate any function, especially
nonlinear functions, their limitations include difficulties in interpreting the operations of
the model and determining a suitable network structure. Lanaa et al. [32] introduced an
evolving spiking ANN method to obtain long-term pattern forecasts and adapt them to
real-time circumstances. Maa et al. [33] showed that post-processing the residuals of ANN
by ARIMA analysis could significantly enhance the accuracy of traffic state predictions,
with reductions in the mean squared error of between 8.9% and 13.4%.
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2.2.5. K-Nearest Neighbor (KNN)

The KNN approach is among the well-known NPR methods. The k events of the
historical database that are most similar to the current traffic situation are utilized to forecast
the desired data point. Based on the distance of the nearest events to the current situation,
the results are determined through a simple average or weighted average approach.

Davis and Nihan [34] proposed a KNN approach as a possible alternative to parametric
regression approaches for short-term motorway traffic forecasting. They compared KNN
results to simple univariate linear time-series forecasts to demonstrate the advantage of
the NPR. Smith and Demetsky [35] similarly showed the advantage of KNN regarding
robustness in forecasting the traffic volume. Their study included different data types
and sizes and investigated the differences between NN and ARIMA models. Pompigna
and Rupi [36] compared the accuracy of three parametric and non-parametric prediction
models, namely, a KNN regression model, a Gaussian maximum likelihood model, and a
double seasonality Holt-Winters (DSHW) exponential smoothing model. They analyzed
real-life data from Italian highways. The parametric DSHW model and the KNN model
yielded the best results.

2.2.6. Random Forest, Decision Tree, and Support Vector Regressor

These algorithms are among the NPR models utilized for traffic volume prediction.
Decision tree (DT) allows for the creation of a highly interpretable model regarding traffic
data, which can be employed to determine common patterns among different traffic data
points [37,38]. Liu and Wu [39] suggested using random forest (RF) for traffic flow predic-
tion models because of the model’s robustness and practicality; their work demonstrated
the generalization capabilities of this model. Support vector regressor (SVR) has also been
leveraged to model traffic volume and has known superior performance compared to linear
models [40].

2.3. Independent Variables and Predictors

Many studies have shown that linear regression models that use roadway charac-
teristics and socioeconomic factors can estimate AADT with a reasonable level of error
[25,41–43]. Several researchers have used various independent variables to predict the
traffic volume for high-volume urban highways [41–49]. These independent or predictor
variables have included socioeconomic variables, such as population, employment, per-
sonal income, and vehicle registration, and road characteristics, namely, the number of
lanes and the location type. Tennant [50] produced a model for evaluating traffic volumes
in a rural area, including certain socioeconomic variables, using land and principles of
traffic generation in Kenya, a country in East Africa. Tenant’s model employed multi-
ple regression analysis (MLR). Neveu [51] developed several models involving elasticity
parameters in MLR to anticipate traffic volumes as AADT for various road categories.
The variables included in the model were population, number of households, vehicle
ownership, and employment [51].

Duddu and Pulugurtha [52] generated a model employing statistical methods and
ANN to predict AADT based on characteristics of land-use in the city of Charlottein, North
Carolina. Fu and Kelly [1] used road classes, local residential density, local working density,
average road speed, distance to motorways, region types, average car-ownership ratio,
and population to develop an ANN to predict the traffic count. Raja et al. [46] developed a
model using linear regression; they employed known AADTs and collected socioeconomic
and spatial variables to predict the AADT. This model relied on five independent variables,
including population, number of households, employment, population-to-job ratio, and
access to major highways [53].

Licheng et al. [54] developed a traffic prediction model for one whole day using a deep
neural network based on historical traffic flow data. The aim was to examine correlations
between the traffic flow during a short period and the start and end times points of the
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period; they also examined several other contextual parameters, such as the day of the
week, the weather, and the season [54].

2.4. The Current State of Practice at Florida Department of Transportation

The Florida statewide model (FLSWM) is a comprehensive travel-demand model
that was developed using the traditional four-step modeling approach. The purpose of
the statewide model is to forecast the demand changes between 2020 and 2045. In this
model, the primary data source is the 2010 origin-destination (OD) Survey in Florida,
which was collected at the census block level. Traffic counts collected by onsite detectors
between 2001 and 2015 were employed for validation and calibration purposes. Gravity
models combined with discrete choice models—such as multinomial logistic regression—
were utilized in the trip distribution step to determine the destination choice of travelers.
Similarly, discrete choice methods were used for the modal split in two parts: the first was
a long-distance mode choice, and the second was an auto occupancy or short-distance
mode choice.

For the first part of the modal split, a nested logit model transferred from the Virginia
Department of Transportation (VDOT) TDM was used. In contrast, for the second part,
a hybrid transit abstraction methodology was transferred from the California statewide
TDM. Freight transportation forecasting was performed via a separate module, named
FreightSIM. Finally, in the highway assignment procedure, seven vehicle classes were
assigned in the statewide model via a multi-class user equilibrium methodology.

Model outputs were evaluated by cost-benefit analysis. The overall accuracies of the
model were found to be reasonable. Updates were made to FLSWM in January 2020, and
certain limitations are known; they are as follows: (1) the model calibration and validation
processes rely on annual historical data; monthly or daily changes are not captured; (2)
although many socioeconomic parameters were utilized, some of the essential global
economic factors were not considered; (3) linear or nonlinear machine learning algorithms
are not considered.

Several well-structured traffic volume prediction models exist that can predict the
short-term periods accurately. However, these models perform unsatisfactorily for mid-
and long-term predictions. The successful implementation of the latter analyses is hindered
by a lack of appropriate traffic modeling methodologies, models, and data as well as the
complexity of the transportation networks system. These complex traffic patterns make it
necessary to reconsider traffic count prediction by employing deep structure models with
more traffic data and to consider more independent variables than in previous models.
In practice, due to the various unpredictable or disruptive trends, mid- and long-term
predictions may still not be sufficiently reliable. However, if executed correctly, the models
could yield a level of accuracy that can be utilized for several applications [20].

The need for a universal automated framework is evident in the literature. There is
inconsistency among the previously successful approaches in terms of their algorithms,
feature-selection methods, and other elements of the traffic prediction forecasting pipeline.
In other words, depending on the characteristics of the investigated case in each previous
study, different algorithms and different final parameters have been found to be the optimal
choice. Hence, instead of focusing on optimizing yet another model for a specific case
study, we wanted to develop a universal automated framework that can be used to create
customized models based on a specific case of interest.

We conducted a comprehensive study to develop and compare various nonlinear and
linear models that can accurately forecast the traffic volumes of interstate highways. Our
work thus contributes to the current field of research. Furthermore, a pipeline containing
feature selection was created and optimized to assist the training of the models. To test
the model, we used the Florida Department of Transportation’s (FDOT) average daily
highway traffic count for cars between 2001 and 2017; we chose Florida because of its
population growth, status as an immigrant destination, logistics, critical locations, and
hurricane frequency.
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The results of our model could provide decision support information for transporta-
tion planners and policymakers. It could aid them in choosing where to allocate limited
resources—such as money, material, laborers, and time—to expand the roads most at risk
for experiencing congestion.

3. Methodology and Problem Statement

The main purpose of this research was to improve the prediction of vehicle traffic
volumes by developing a highly accurate forecasting model. To accomplish this, a machine
learning approach was used to analyze a broad data set of historical traffic volumes,
utilizing a comprehensive set of independent variables. The key objectives were as follows:

1. Perform a comparative analysis of different machine learning algorithms for traffic
volume prediction, with consideration given to the linear and nonlinear relationships
among variables.

2. Examine the influence of various financial markets and the US economy on traffic patterns.
3. Consider how road characteristics may contribute to changes in traffic volumes.
4. Determine the significance of spatiotemporal predictors in altering the monthly aver-

age daily traffic (MADT).

The model pipeline in this study automatically identifies the most appropriate feature-
selection method and modeling approach to reduce the MAPE. This task is accomplished
through hyperparameter optimization that generates a universal automated framework.
Our framework thus differs from model optimization techniques that rely on a single
case study.

3.1. Dependent Variables

Data used in this study were derived from the FDOT database of historic vehicle traffic.
The database encompasses traffic volumes and MADT reporting from Florida highways
linked to 259 locations or co-sites.

One of the constraints of this study was that we had to utilize traffic data predictors
on a monthly scale in order to match the temporal level of the independent and dependent
variables (predictors and traffic volumes). Ideally, data at the hourly, daily, or weekly levels
would have been utilized for higher resolution. Ultimately, the monthly predictors for six
Florida interstate highways were analyzed, with a total of 52,836 data points or an average
of every 5.75 miles of road. Table 1 shows a summary of the information regarding this
data set.

For this research, portable traffic monitoring sites (PTMSs) were used to record the
traffic counts from 211 co-sites. Telemetered traffic monitoring sites (TTMSs) were used
to collect data from the remaining 48 co-sites. Data were captured at PTMSs through
loop-and-axel sensors in the road, connected directly to a nearby cabinet. By contrast,
data capture by TTMSs relies on wireless internet or landlines to send information to a
Transportation Statistics (TranStat) office offsite. Figure 1 illustrates the majority coverage
of Florida interstates by the 259 different co-sites.

Table 1. Interstate highways and co-sites under study.

Interstate ID Interstate Type Length (mi)
Number of

Co-Sites/Interstate
Highway

Length of Road Per
Co-Site (miles)

I95 Primary interstate 382.0 82 4.6
I10 Primary interstate 362.2 52 6.9
I75 Primary interstate 470.6 68 6.9
I4 Primary interstate 132.2 47 2.8

I275 Auxiliary interstate 60.6 9 6.7
I 110 Auxiliary interstate 6.3 1 6.3

Total = 1414.3 Total = 259 Mean = 5.7
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3.2. Statistical Analysis

Table 2 summarizes the passenger vehicle (PV) directional monthly traffic volumes
analyzed in this study. The term “directional” refers to the 2 different data sets, one is
for the direction of south to north of the road, and the other one is for the north to south
direction (N/E for North or East Bound direction on the road and S/W for South or West
Bound direction on the road). Determination of the data range by statistical analysis is
also shown.

Table 2. Descriptive statistics for monthly traffic count data.

Item N/E Cars S/W Cars Total Cars

Mean 10,146,551 11,847,260 21,993,811
Standard deviation 665,397 762,102 1,413,177

Minimum value 8,378,788 9,802,174 18,180,962
First quartile 9,755,700 11,364,921 21,101,325
Median value 10,208,572 11,851,693 21,960,358
Third quartile 10,578,486 12,325,489 22,828,754

Maximum value 11,775,017 13,722,702 25,497,719

3.3. Predictor Variables

To accurately predict the PV traffic volumes, we used 59 independent variables, based on
the literature. These variables were separated into seven categories, namely: (1) socioeconomic,
(2) temporal, (3) spatial, or (4) road characteristics, and variables related to the (5) construction
market, (6) energy market, or (7) US economy. Eleven socioeconomic variables were used,
including population and number of employees. Temporal variables included features such
as the time and month, whereas spatial variables were related to location factors such as an
interstate identifier (ID) or county name. Road characteristics were defined using variables
such as the lane number or maximum speed limit. Variables related to the energy market
included crude oil and electricity prices, whereas variables such as construction spending and
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building permits were related to the construction market. Finally, the US economy, which was
the largest category, contained 27 variables. They included groups such as the gross domestic
product (GDP) and Dow Jones Index (DJI). Additional information on the predictor variables
appears in Figure A1 in Appendix A.

Figure 2 shows a comparison of the trends among some of the potential predictors
of traffic volume. A distinct trend was identified in each potential indicator related to
the US macroeconomic, socioeconomic, construction, and energy markets (DJI, NASDAQ
Composite Index: NASDAQ, Electricity Price in FL: ELECFL, Gas Price in FL: GASPFL). It
is also important to mention that the x-axis represents the number of months beginning
from January 2001 to December 2018 (204 months).
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3.4. Model Development

To generate a model for traffic volume prediction, we designed a workflow that con-
sists of (1) data preprocessing, (2) feature selection, (3) model training, (4) hyperparameter
optimization, and (5) machine learning based in python [55]. The machine learning com-
ponent incorporated multiple features of the Scikit-learn library. The standardized data
obtained during the preprocessing steps were further separated into three data sets for
training, testing, and validation. Finally, key predictors of traffic volume were identified
using a feature-selection model based on the training and validation data sets.

A summary of the workflow appears in Figure 3. The main feature of the workflow is
the loop between feature selection, modeling, and hyperparameter optimization modules.
This loop automatically canvassed the variations of features and modeling approaches and
produced the best-performing model with the best subset of features based on the input
data set.
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Figure 3. The pipeline of the study.

As shown in the flowchart in Figure 3, feature selection was applied to the normalized
and partitioned data.

Xselected = ∪n
j=0XjS

(
Xj

)
where S represents the function to decide whether a feature column is selected, in a binary
fashion. The selected data is the model using linear and nonlinear modeling. At inference
time, the outcome for a given datapoint is calculated as follows, where F represents the
trained model:

Yi = F(XiS(Xi))
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3.5. Data Preprocessing and Partitioning

During the first stage of data processing, each independent variable was assigned a
numerical value. These values were then standardized based on a normal (0, 1) distribu-
tion to allow for regularization, before being divided into the groups training, test, and
validation. For the training data set, the sample of data was used to fit the model. For the
validation data set, the sample of data was used to provide an unbiased evaluation of a
model fit on the training data set, while tuning model hyperparameters. The evaluation
becomes increasingly biased as skill on the validation data set is incorporated into the
model configuration. Ultimately, using the test data set, the data sample is used to provide
an unbiased evaluation of a final model fit on the training data set.

In this study, the validation data set was mainly used to describe the evaluation of
models when tuning hyperparameters and data preparation. The test data set was mainly
used to describe the evaluation of a final tuned model, compared with other final models.

A nested cross-validation expanding window method was employed [56], as illus-
trated in Figure 4. This procedure was chosen to consider the integrity and temporal
continuity of the time-series data set being analyzed. The training data set begins with
a training subset, and a validation set is positioned within the inner loop (illustrated by
the yellow and dashed boxes). This study employed a 4-fold cross-validation method
(both inner and outer loop uses a 4-fold cross validation) and Each data set begins with
three years’ worth of serial data, while the training set was escalated three years at every
split. The three years of the data set after the validation data set were then assigned to
the testing data set. As shown in Figure 4, each split of the inner loop was implemented
through a research pipeline. In the outer loop, to ensure that the final model was robust
and avoided the shortcomings of an overfit or randomly acute model, any error after each
split was averaged.
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Table 3 shows the description of the inner and outer loops of the employed cross-
validation in this study.

Table 3. Description of inner and outer loops of the employed cross-validation in this study.

Inner loop Validates the models on the validation set of each split to find
the best performing model and feature selection methods

Outer loop

Measure the performance of the models on test sets that have
not been seen by the models during training and are separated
temporally from the validation sets to obtain an unbiased
performance measurement
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3.6. Performance Measurement Scales

Four different methods were appraised for measuring error in the models and the
ability to gauge the proficiency of feature-selection and modeling approaches. They
were the MAPE, the mean absolute error, the room mean squared error (RMSE), and
R-squared. These methods were selected to include both scale-dependent (RMSE) and
scale-independent (MAPE) procedures. In addition, each method provides insight regard-
ing potential errors in forecasting, with consideration given to the traffic volume data set
used in this study. These choices ensured that any error in the results could be interpreted
as such. MAPE was found to be the most appropriate mean for error evaluation in this
study and was subsequently used for model evaluation.

3.7. Feature Selection

In an effort to improve accuracy, feature selection was employed based on the structure
of the model used in this study. This process involved filtering out any unnecessary
independent variables to select only the most appropriate ones. The potential impact on
precision by each variable was measured and evaluated, and low-scoring or superfluous
variables were removed. If retained, unnecessary features would decrease the model’s
predictive capabilities and precision.

The nested cross-validation method previously outlined was used to reinforce the
training, validation, and testing of the model for each parameter set. To identify key
features of the developed models, we employed the following three methods.

1. Bayesian ridge regression (BR), ridge regression (“ridge”), decision tree (DT), and
random forest regression (RF) were utilized for implicit feature selection. We used the
SelectFromModel function in Scikit-learn library [57]. At this step, values tested for
the importance threshold alternated between 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75 to
consider the parameter selection.

2. To gradually pinpoint and remove superfluous features, we used the recursive feature
elimination (RFE) in Scikit-learn library [57] until only features of high importance
remained. This step utilized the previous models (FRE-RF, ridge, RFE-BR, and REF-
DT). The resulting numbers of selected features included 1, 3, 5, 10, 20, 30, 40, 50,
and 60.

3. Finally, the K most appropriate data set features were identified by a scoring function,
SelectKBest in Scikit-learn library [57]. For the purpose of this study, mutual infor-
mation (MFCLASSIF) and ANOVA F-value (FCLASSIF) were used. At this stage, the
final number of selected features varied as before, namely 1, 3, 5, 10, 20, 30, 40, 50,
and 60.

Each method was used within a grid search. Thereafter, the principle sets of selected
parameters were compared.

3.8. Modeling Approaches

For the purpose of PV traffic volume forecasting, we employed several machine
learning (ML) algorithms. We chose ANN, RF, DT, and KNN as nonlinear regression models
using the SelectFromModel function in Scikit-learn library [57]. For the linear models,
ridge, stochastic gradient descent (SGD) regression, passive-aggressive regression (PA),
linear regression (“linear”), and BR were selected. We again used the SelectionFromModel
function in Scikit-learn [57].

The selected regression models allowed for the manipulation of parametric models
while also ensuring that methods with varying levels of nonlinearity or linearity could
be compared. As mentioned earlier, data were split to train, validate, and test the models
using a nested cross-validation approach. After this step, the ML methods were applied.
For training, an expanding data window was utilized. The data from the three years after
data set training were then used for validation. Finally, this process was tested on data
from three additional years in sequence.
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The model parameter (MP), or the highest value of the binary tree depth, varied among
5, 20, 50, 75, 100, and 200 for all RF and DT algorithms. The MP for the KNN algorithm
varied among 1, 3, 5, 7, 10, and 16. In the case of ANN models, the MP alternated between
16, 64, and 256, and corresponded to the number of neurons (1 hidden layer was employed
in this study). MP selection for the linear algorithm was also performed. With BR, the
MP was used to illustrate the prior gamma distribution (alpha_1 and alpha_2) inverse
scale parameters and shape. For ridge, the MP is indicative of the regularization strength
(alpha); whereas for PA, the MP is the maximum step size (regularization C). For all three
algorithms, the MP varied between 0.1, 1, 10, 100, 10,000, and 1,000,000. Finally, MP values
fluctuated among 0, 0.15, 0.3, 0.5, 0.75, and 1 for SGD regression and can be attributed to
the L1 ratios (L1 and L2 regularization) elastic net mixing parameter. Table 4 presents the
various models and the associated modeling parameters employed in this study.

Table 4. MODELING PARAMETERS OF THE Study.

Non-linear
models

RF maximum depth of the trees 5 20 50 75 100 200
DT maximum depth of the trees 5 20 50 75 100 200

K-Nearest Neighbors Number of neighbors (K) 1 3 5 7 10 16
Neural Network number of neurons 16 64 256

linear
models

Ridge Regression regularization strength (alpha) 0 1 10 100 10,000 1,000,000
Bayesian Ridge Regression alpha_1 and alpha_2 0 1 10 100 10,000 1,000,000
Stochastic Gradient Descent

Regression L1 and L2 regularization 0 0.2 0.3 0.5 0.75 1
Passive Aggressive Regression maximum step size (regularization C) 0 1 10 100 10,000 1,000,000

As established in these two sections, the hyperparameter optimization grid we devel-
oped incorporated an extensive range of reasonably low to high parameter values. This
allowed the model to be applied to multiple data sets containing distinctive features.

4. Results

Figure 5 shows a comparison of accuracy for the different models regarding the total
PVs—that is, the total traffic volume in both directions of the road. The results were
obtained from the validation data set, utilizing the grid search of this study. The RF, KNN,
DT, and ANN models performed the best when trained on the training data set and tested
on the validation data set. The nonlinear models showed better results than linear models.
The error shown in Figure 5 is the average of the error of the four splits of the data set
depicted in Figure 4. The average MAPE is not the mean of MAPE for all splits, but it is
MAPE calculated by concatenating all predictions from different splits on the validation
sets using their temporal order. This would allow a correct MAPE to be calculated even
if the number of instances in each iteration differs. This is analogous to calculating the
performance of one average model predicting the future outcome for multiple splits which
are not overlapped and temporally ordered. (The percentage on the y-axis on the left shows
the R-squared and on the right, presents the MAPE and MAE error).

The results of comparing the accuracy of models on the test data set using a grid search
are displayed in Figure 6. It is evident that nonlinear models outperformed the linear
models. Among the nonlinear models, RF, KNN, and DT performed better than ANN.
The MAPE error on the test data set offered a reliable value at 17.46%. (The percentage
on the y-axis on the left shows the R-squared and on the right, presents the MAPE and
MAE error).
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4.1. Selected Model for Current Term (Without Spatial Variables)

The RF, KNN, and DT models were noted to be the best-performing, as illustrated in
Figures 5 and 6. The KNN model finds the K-nearest instances in relation to a reference
instance and provides a forecasted output by averaging these instances, allowing for
interpretation. However, the KNN model is limited by its dependence on the input data
sets for predictions, which can produce bias. Another disadvantage is that the KNN model
must search the data each time it makes a prediction; it cannot learn—although this does
simplify the updating process.

In the case of the DT model, the branches were divided based on the features to
construct a DT, with the leaves being the regression output. The DT model can be used
to interpret the results and decision-making process; however, because sparse data at the
leaves is handled during decision making, the model has the potential to overfit if too
many features are used.

The RF model was capable of employing many DTs (~500) on the data used in this
study by selecting data groups at random for training. This feature maintains the edges of
DTs and reduces the possibility of overfitting. Hence, it was an appropriate model to use
in this study for near-term and current predictions.
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Figure 7 illustrates the outcome of applying the top 10 feature-selection approaches
to the validation data set. The grid search process successfully selected a set of sufficient
training parameters for every feature-selection method, and the data were appropriately
modeled with each feature-selection method. Of note, the MAPE from the validation data
set for FCLASSIF was 16.98%, the lowest of the feature-selection methods tested. (The
percentage on the y-axis on the left shows the R-squared and on the right, presents the
MAPE and MAE error).
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A comparison of the accuracy of the RF model on the four splits of the performed
cross-validation using the validation data set is illustrated in Figure 8. It is apparent that
split 4, covering the entire data set, achieved a lower MAPE error, with 16.35% on the
validation data set (The percentage on the y-axis on the left shows the R-squared and on
the right, presents the MAPE and MAE error).

Ground truth and the final predictions by the RF model for the validation data set are
presented in Figure 9.

Figure 10 shows the comparison of ground truth and predictions, plotted against each
other. The prediction approximately mirrors the ground truth, and the points are placed
around the 45 degree line.

Figure 11 depicts the model optimization for all cars on split 4 in the validation data
set. The optimum feature selection and modeling approach for this case were found to
be FCLASSIF and RF, respectively. To find the best selection parameter, the number of
features that were selected was changed between 10 and 40. The same approach was
used to optimize the RF model by alternating the maximum depth of the trees from 5 to
200. The RF model, with the depth of 75 trained on 40 selected features, had the lowest
MAPE (17.23%) for the validation data set. (The percentage on the y-axis shows the feature
importance score for the variables).
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Figure 11. Model optimization for the RF model for total PVs.

Figure 12 illustrates the relative importance of the leading categories of features
that were selected as the final set of independent variables from the variable pool. Road
characteristic variables, with 67.09% feature importance, ranked first among the seven
categories. Socioeconomic variables, with 30.33% feature importance, were ranked second.
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Figure 12. Feature importance categories for best-performing models for PVs using RF model
(4th split).

Figure 13 shows the six features that contributed more to the models’ output than did
other parameters, for all cars. Number of lanes, which represents the capacity of roadways,
had the highest impact on the prediction model, with 61.11% importance. Concerning
socioeconomic features, length of paved roads in lane miles had 14.24% importance, and
number of licensed drivers had 10.51%; these were the next most important features for
the PV prediction model. (The percentage on the y-axis shows the feature importance score
for the variables).
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4.2. Selected Model for Long-Term PV Traffic Projections (without Spatial Variables)

One limitation of the RF model is that it provides only an estimation based on the
given data set values. An ANN algorithm, by contrast, has distinct neuronal layers that are
individually capable of nonlinear activation function. This means the RF algorithm is ap-
propriate for near-term and current modeling, but an ANN algorithm may be more reliably
generalized to long-term projections. Using an ANN algorithm, the long-term MADT can
be projected because of the model’s ability to extrapolate and generate prediction values.
During the model training, stochastic gradient descent was used to determine ANN bias
and weights.

Cross-validation of the implementation of the ANN algorithm on the validation data
set from four splits is illustrated in Figure 14. The lowest MAPE error was a prediction
accuracy of 81% for split 4. This value improved when considered with the accuracy from
the additional splits. (The percentage on the y-axis on the left shows the R-squared and on
the right, presents the MAPE and MAE error).
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ANN models have various parameters that need to be optimized. To find the best
selection parameter, the number of features that were ultimately selected was varied
between the importance threshold of 0.25 and 1.75, using a grid search. The same approach
was taken to optimize the ANN model by altering the maximum number of neurons in the
hidden layer from 16 to 256. The model optimization of the total PVs on the fourth split
on the validation data set for the ANN models that are illustrated in Figure 15 showed
that the DT feature-selection approach with importance threshold of 0.25 and the ANN
model algorithm with 256 neurons in the hidden layer has the lowest MAPE of 18.29% on
the validation data set. Moreover, the developed ANN model had an MAPE of 19.49% for
the test data set on the fourth split. (The percentage on the y-axis shows the MAPE Error
for the various MP and SP of the model).
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4.3. Spatial Variables

It is vital to examine the influence of spatial variables related to the location of the input
data of each co-site (or “site”) in the car traffic prediction model. To test the importance
of spatial variables in the model, we added four variables into the prediction model’s
predictors. They are shown in Table 5. These spatial variables studied in this study among
the prior candidate variables used in the developed model in the previous section.

Table 5. Candidate spatial variables.

Spatial Variables Resource

1 County Name
Florida Department of
Transportation (FDOT)

2 Interstate ID
3 Co-Site ID
4 Euclidean Geometry

Comparison of the different models for performance on the test set showed that
nonlinear models outperformed linear models. The MAPE error of the model with can-
didate spatial variables (added to the previous data set) indicated a better performance
than the model without spatial variables. The comparison of the models is shown in
Table 6 and indicates a 4.31% improvement in the accuracy of the MADT by adding the
spatial variables.

Table 6. Comparison of the RF models’ performance for the test data set.

Models Label Name Fold Selection
Approach Model R-Squared MAPE Test

Model without spatial
variables included Total PVs 4 FCLASSIF RF 0.90 16.35%

Model with spatial
variables included Total PVs 4 RFERF RF 0.95 12.01%

A comparison of the accuracy of the RF model with spatial variables for the four splits
of the cross-validation is shown in Figure 16. It is apparent that split 4 outperformed the
other splits of the data. Split 4 had a MAPE error of 12.01% for the test data set.



Modelling 2021, 2 502

Modelling 2021, 2, FOR PEER REVIEW 21 
 

 

Table 6. Comparison of the RF models’ performance for the test data set. 

Models Label Name Fold Selection Approach Model R-Squared MAPE Test 
Model without spatial variables included Total PVs 4 FCLASSIF RF 0.90 16.35% 

Model with spatial variables included Total PVs 4 RFERF RF 0.95 12.01% 

A comparison of the accuracy of the RF model with spatial variables for the four splits 
of the cross-validation is shown in Figure 16. It is apparent that split 4 outperformed the 
other splits of the data. Split 4 had a MAPE error of 12.01% for the test data set. 

 
Figure 16. RF model with spatial variables: performance on the test data set for total PV. 

Figure 17 depicts the optimum feature-selection and modeling approach for this case. 
The best models were the REFRF and RF, respectively. To find the best selection parame-
ter, we changed the number of features that were ultimately selected between 10 and 40. 
The same approach was used to optimize the RF model, by altering the maximum depth 
of the trees from 5 to 200. The RF model with the depth of 75, trained on 40 selected fea-
tures, had the lowest MAPE of 12.06% for the validation data set. (The percentage on the 
y-axis shows the MAPE Error for the various MP and SP of the model). 

Figure 16. RF model with spatial variables: performance on the test data set for total PV.

Figure 17 depicts the optimum feature-selection and modeling approach for this case.
The best models were the REFRF and RF, respectively. To find the best selection parameter,
we changed the number of features that were ultimately selected between 10 and 40. The
same approach was used to optimize the RF model, by altering the maximum depth of the
trees from 5 to 200. The RF model with the depth of 75, trained on 40 selected features,
had the lowest MAPE of 12.06% for the validation data set. (The percentage on the y-axis
shows the MAPE Error for the various MP and SP of the model).
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Figure 17. RF model optimization for total PV (with spatial variables).

Figure 18 shows the categorical feature importance for the best-performing models for
total PVs (with spatial variables). The road characteristic category had the most significant
impact on the PV traffic prediction model, at 54.78%. (The same result was evident for the
previously developed model without spatial variables.) The socioeconomic category, with
a value of 22.12%, was ranked second. The spatial category, with 21.62%, was third.
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Figure 18. Categorical feature importance for the best-performing models (with spatial variables) for
PVs.

Figure 19 shows the six most important features that contributed to the model’s output
for total PVs for the model with spatial variables. The number of lanes (which reflects the
capacity of the road in the studied location) had 51.95%, indicating the most important
influence on the PV prediction model. The Euclidean geometry, related to the spatial
variables, achieved 14.93% and was the second most important feature (The percentage on
the y-axis shows the feature importance score for the variables).
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Figure 19. Feature importance derived from the best-performing models for total PVs (for the model
with spatial variables).

This study also developed separate models for each direction of the traffic flow, namely
north/eastbound and south/westbound. The model optimization of the north/eastbound
traffic of PVs (with spatial variables) on the 4th split on the validation data set for the



Modelling 2021, 2 504

RF models showed that the RFERF feature-selection approach with 30 selected features,
and the RF model algorithm with 75 trees had the lowest MAPE of 12.26%. The model
optimization for the south/westbound traffic of PVs (with spatial variables) on the 4th
split on the validation data set showed that the RFERF feature selection had the lowest
MAPE, at 11.61%. It had 20 selected features and the RF model algorithm had 50 trees.

4.4. Selected Model for Long-Term PV Traffic Projections (with Spatial Variables)

The comparison of the developed ANN models is shown in Table 7. The results
confirmed a 2% improvement in the accuracy of the MADT by adding the spatial variables.

Table 7. Comparison of the ANN models for the test data set.

Models Label Name Fold Selection
Approach Model R-Squared MAPE Test

Model without
spatial variables Total PVs 4 DT ANN 0.92 19.49%

Model with spatial
variables included Total PVs 4 RF ANN 0.93 17.48%

A comparison of the accuracy of the ANN model with spatial variables for the four
splits of the cross-validation is shown in Figure 20. It is apparent that split 4 outperformed
the other splits of the data. Split 4 had a MAPE error of 17.48% on the test data set.
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Figure 20. Performance of ANN model (with spatial variables) on the test data set for total PV.

The model optimization of the total PVs (with spatial variables) on the 4th split on the
validation data set for the ANN models showed that the RF feature-selection approach,
with an importance threshold of 0.25, and the ANN model algorithm with 256 neurons in
the hidden layer, had the lowest MAPE, at 16.79%. Figure 21 illustrates the optimization of
the developed ANN model with spatial variables.
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Figure 21. ANN Model optimization for total PV (with spatial variables).

The 4th split performed on the validation data set in model optimization for north/
eastbound PV traffic was compared for each feature-selection approach used for the ANN
models. The lowest MAPE score, 17.71%, was obtained for MFCLASSIF using 10 selected
features and an ANN algorithm containing 64 neurons in the hidden layer. By comparison,
for south/westbound PV traffic, the lowest MAPE score for ANN model optimization on
the 4th split of the validation data set was 16.19%. This value was obtained by the RF
feature-selection approach using an algorithm with 256 neurons in the hidden layer and
0.25 as the importance threshold. The comparison of the models with and without spatial
variables on the various folds for the test and validation data set is shown in Table 8.

Table 8. Comparison of the models with and without spatial variables on various folds for the test and validation data set.

Model with Spatial-Related Variables Model without Spatial-Related Variables

Model
Error on

Validation
Data Set

Error on Test
Data Set Fold Model

Error on
Validation
Data Set

Error on Test
Data Set

Linear 27.38% 35.79% 1 Linear 25.26% 36.11%
Ridge 26.01% 36.01% 1 Ridge 25.93% 35.69%

Bayesian Ridge 25.93% 36.14% 1 Bayesian Ridge 25.67% 35.90%
SGD 25.58% 27.58% 1 SGD 26.02% 25.74%
PA 30.25% 38.19% 1 PA 28.65% 41.76%
RF 13.53% 13.81% 1 RF 14.91% 15.74%

KNN 13.21% 13.02% 1 KNN 14.56% 16.11%
DT 13.90% 12.97% 1 DT 16.64% 18.54%

ANN 16.85% 17.35% 1 ANN 22.41% 24.69%

Linear 25.67% 29.41% 2 Linear 28.13% 61.11%
Ridge 25.69% 29.40% 2 Ridge 28.11% 60.89%

Bayesian Ridge 25.97% 48.15% 2 Bayesian Ridge 28.10% 60.71%
SGD 25.18% 31.47% 2 SGD 26.87% 40.08%
PA 29.61% 33.09% 2 PA 36.72% 48.55%
RF 11.66% 12.62% 2 RF 15.28% 15.86%

KNN 13.04% 13.61% 2 KNN 17.29% 20.86%
DT 12.95% 14.76% 2 DT 15.99% 18.20%

ANN 15.83% 25.02% 2 ANN 23.17% 24.64%
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Table 8. Cont.

Model with Spatial-Related Variables Model without Spatial-Related Variables

Model
Error on

Validation
Data Set

Error on Test
Data Set Fold Model

Error on
Validation
Data Set

Error on Test
Data Set

Linear 28.81% 28.33% 3 Linear 30.12% 31.60%
Ridge 27.34% 28.76% 3 Ridge 28.36% 28.14%

Bayesian Ridge 28.81% 28.33% 3 Bayesian Ridge 30.12% 33.66%
SGD 27.38% 29.06% 3 SGD 27.76% 29.20%
PA 33.26% 41.59% 3 PA 30.06% 36.83%
RF 12.72% 12.59% 3 RF 16.88% 16.37%

KNN 12.49% 16.11% 3 KNN 15.26% 13.89%
DT 13.74% 14.20% 3 DT 17.00% 17.54%

ANN 18.28% 19.31% 3 ANN 21.17% 22.55%

Linear 29.10% 34.88% 4 Linear 28.18% 29.63%
Ridge 28.27% 31.22% 4 Ridge 28.27% 31.48%

Bayesian Ridge 28.72% 33.87% 4 Bayesian Ridge 28.36% 31.20%
SGD 28.51% 31.62% 4 SGD 30.00% 32.31%
PA 30.01% 53.90% 4 PA 29.79% 79.26%
RF 11.83% 12.01% 4 RF 15.74% 16.35%

KNN 13.76% 14.16% 4 KNN 14.59% 15.53%
DT 13.83% 14.79% 4 DT 16.30% 16.78%

ANN 16.79% 17.48% 4 ANN 18.29% 19.49%

Linear 27.77% 31.68% Average Linear 28.30% 32.02%
Ridge 26.85% 31.31% Average Ridge 27.58% 33.00%

Bayesian Ridge 27.39% 36.88% Average Bayesian Ridge 27.98% 35.04%
SGD 26.69% 29.80% Average SGD 27.57% 30.44%
PA 30.80% 43.51% Average PA 37.13% 39.10%
RF 12.43% 13.24% Average RF 17.23% 17.46%

KNN 13.64% 14.25% Average KNN 17.48% 17.95%
DT 13.61% 13.87% Average DT 17.37% 18.56%

ANN 16.95% 18.85% Average ANN 19.08% 21.31%

5. Case Study

To test the validity of the directional ANN models (with spatial variables included)
developed in this research, we used the framework to forecast directional traffic volumes
between 2018 and 2050. To provide the model with input, the future values for indepen-
dent variables were generated by several univariate modeling techniques. To generate
time-series predictors, we used smoothing and autoregressive moving average (ARMA).
The ARMA is the most commonly used classification method for univariate time-series
prediction; it is represented as an average (p,q), where q corresponds to the MA order and
p is equal to the AR order.

An autocorrelation correlogram function was used in addition to an autocorrelation
correlogram function (PACF) to select the order of the AR and MA parameters. The
smoothing method, by contrast, incorporates four aspects. These include exponential,
double exponential smooth, simple, and Holt-Winters. The Holt-Winters is further defined
as linear, seasonal additive, or multiplicative additive.

We selected multiple categories to classify the 59 independent variables that were
used. To predict future values, ARMA and smooth methods were employed for the
following categories of variables: energy market, US economy, construction market, and
socioeconomic (excluding centerline miles, length of paved road line miles, population, and
licensed drivers). We employed the results reported by Rayer et al. [58] for the variables of
population and licensed drivers. For the last two variables in the socioeconomic category,
namely, length of paved road line miles and centerline miles, we assumed that the length
of paved roads on Florida highways would remain constant over the future and for
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the prediction time frame. We assumed the same for spatial variables and variables for
road characteristics.

To illustrate the results of the 2018–2050 projection using the direction ANN model
outlined with the projected independent variables, two different co-sites were chosen from
interstate highways I4 and I10. The case studies are described below.

Case Study 1: I4, Orange County, Co-site ID: 750668
Figure 22 shows the total historical and projected PV traffic employing the directional

ANN model (with spatial variables) developed by the framework of this study. The
historical traffic data spanned 2001 to 2017, from month 1 to month 204, reflecting the
MADT of PVs. The projected values pertain to the MADT from 2018 (beginning month
205) to 2050 (ending month 600).
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6. Discussion

As demonstrated, the proposed framework showed high accuracy in its predictions.
The framework can be used as a complementary tool for analyzing existing models of
traffic volume prediction. The results of this study showed that nonlinear models had an
advantage over linear models, as evident in the different performance regarding the traffic
data set we used.

A universal framework developed by Mahdavian et al. [59] followed the same pipeline
generation as our study but used a data set that included 20 years of highway construction
costs in Florida, unlike the traffic data structure in our study. Considering our results
as well as those earlier ones, the pipeline performs adequately and the framework has
sufficient generalizability, as it has been successful in both studies.

Previous studies showed that linear regression models utilizing roadway character-
istics and socioeconomic factors could predict AADT with a reasonable level of errors
[25,41–43]. However, this study has demonstrated that even when using a broader category
of predictors, linear models were unable to predict the traffic count with reasonable (with
actual and estimated variables matching closely) accuracy for the data set we used. In
addition, our work confirms the results obtained by Liu and Wu [39], indicating that the
RF algorithm can predict traffic flow with high accuracy due to the fact of its robustness
and practicality, although only for short-term predictions.

Additionally, the RF and ANN models developed by the framework of our study
showed better accuracy than the TDM model developed by Wang et al. [25], who reported
a 52% MAPE. Our ANN model achieved a MAPE of 17.48%, which also indicates higher
accuracy than the ANN model developed by Fu and Kelly (2017), who reported a MAPE of
28.58%. Finally, our results confirm those of Ratrouta and Gazdera [30] and Chen et al. [27]
that ANN models were more accurate than the linear regression method for predicting
daily traffic.

The results of this study showed that the RF algorithm outperformed the other nonlin-
ear algorithms for the test data set to predict the current pattern of PV traffic on highways.
The generalization capacities of RF give it an advantage for current MADT projections.
The developed RF model (with spatial variables) used with the test data set was able to
forecast the MADT with 88% accuracy. The road characteristics category had the most
substantial impact on the PV traffic prediction model, at 54.78%, and was also ranked first
in the previously developed model without spatial variables. The socioeconomic category,
with a value of 22.12%, had the second rank. The spatial category, with 21.62%, had the
third rank.

Regarding the critical features of the RF model (with spatial variables), road character-
istics played a key role, with 54.78% importance. Socioeconomic variables (22.12%) had the
second most important role in PV volume prediction. The spatial category (21.62%) ranked
third. The number of lanes, at 51.95%, had the strongest influence in the PV prediction
model. Euclidean geometry, related to the spatial variables, was the second most important
feature (14.93%). These two variables were the main ones affecting the PV traffic volumes.

The results showed that the ANN model outperformed other linear and nonlinear
algorithms for the long-term prediction, with 81% prediction accuracy. Adding the spatially
related variables to the developed model resulted in an increase in the accuracy to 83%.

7. Conclusions

Passenger vehicle traffic patterns and their complexity justifies the need to employ
deep structure models with more data and predictions than those used in previous studies.
Additionally, unpredictable and disruptive trends—such as urbanization and economic
growth—mean that long-term projections might not be reliable for practical use by trans-
portation planners. However, if executed precisely, such predictions can be accurate enough
to be useful for various applications.

A review of the literature indicated that most studies have relied on only one or two
linear or nonlinear algorithms. Depending on the individual case, the conclusions drawn
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in such studies have varied regarding the comparison of—or contrast between—linear and
nonlinear models. This is to be expected because factors such as the location, project type,
and level of analysis can impact the associations between local and global variables used to
predict traffic volumes. A model based on input data characteristics that are universal and
generalizable would thus provide benefit in optimizing the prediction of traffic volume.

To create such a framework, we utilized a broad data set of values and characteristics
that incorporated all the feature-selection and modeling approaches identified in the
literature. Regardless of project type, location, or the scope of a study, new users can apply
this process to their data to determine the best feature-selection and modeling parameters
to select components that are vital factors in traffic volume forecasting. Compared with
other models, the proposed framework has multiple advantages. It not only includes all
the approaches implemented in the reviewed literature but goes beyond them in terms of
the number and complexity of its algorithms and feature-selection methods.

The framework we developed both eliminates several unnecessary assumptions and
avoids inconsistencies in the steps of sequential methods and multiple factors and adjust-
ments. Furthermore, much of the process has been automated, resulting in a decrease in
the time and expertise needed for forecast analysis. Finally, our model improves the pre-
dictions of future traffic networks by expanding the number of predictors, thus increasing
the complexity.

In conclusion, estimating the current traffic level and forecasting typical fluctuations
in the MADT is necessary for many fields of transportation analysis and practice. We
developed a framework that provides a valuable and viable ready-to-use method for
transportation planners for PV traffic prediction. In our Florida case study, the output
of the framework was an RF model to predict the current and near-term traffic and an
ANN model to forecast the long-term PV traffic count. The framework demonstrated a
sound balance between forecasting accuracy and ease of use. This study also illustrated the
importance of including appropriate spatial variable as predictors, besides the employed
pool of candidate variables.

The model’s output, namely, the predicted traffic flow, can assist planners in estimating
the PV volume and levels of service from the existing traffic capacity values and by
calculating the volume-to-capacity ratio (V/C) ratio for state roadways. These estimates
can help with long-term planning solutions. Transportation planners could plan for the
critical links on US roads that experience overcapacity issues. Furthermore, they could
examine optimized solutions to enhance the traffic network well in advance.

The main shortcomings of this research include the sample size, with 259 co-sites
and 17 years’ worth of historical PV traffic counts. The type of data we used was the
month-level historical traffic data, whereas it might be better to use weekly, daily, or hourly
data. Ultimately, to enhance the accuracy of the proposed model, the next step would be to
include trends regarding the environment, energy, and politics as independent variables
(predictors) in the pool of candidate variables.

For future work, it is essential to investigate the impact of automated and connected
electric and shared vehicles on the traffic flow and capacity of the network. Researchers
could also study the outliers in the input data set to find the underlying reasons for the
remaining error. Finally, managed and express lanes have recently been explored as a
traffic congestion solution, and it would be helpful to analyze their precise influence on the
traffic network.
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