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Abstract: Inspection processes are becoming more and more popular beyond the manufacturing
industry to ensure product quality. Implementing inspection systems in multistage production lines
brings many benefits in productivity, quality, and customer satisfaction. However, quantifying the
changes necessary to adapt the production to these systems is analytically complicated, and the tools
available lack the flexibility to visualize all the inspection strategies available. This paper proposed
a discrete-event simulation model that relies on probabilistic defect propagation to quantify the
impact on productivity, quality, and material supply at the introduction of inspection processes in
a multistage production line. The quantification follows lean manufacturing principles, providing
from quite basic quantity and time elements to more comprehensive key performance indicators.
The flexibility of discrete-event simulation allows for customized manufacturing and inspection
topologies and variability in the tasks and inspection systems used. The model is validated in two
common manufacturing scenarios, and the method to analyze the cost-effectiveness of implementing
inspection processes is discussed.

Keywords: inspection systems; inspection modeling; quality control; manufacturing; Industry 4.0;
discrete-event simulation

1. Introduction

Manufacturing processes are stochastic in nature. The output of any manufacturing
process, namely the state of any produced unit, is considered an uncertain probabilistic
variable. Quality issues exist inherently in any manufacturing process and considering
production output, they add randomness to the result. Quality issues are usually man-
ifested by the number of defects or non-conforming units obtained during production.
As workpieces move through a production line, variations of product quality are intro-
duced and propagated. However, the relationship between most production operations
and their product quality is still unclear [1]. For any manufacturer, accurate estimation of
production output and resource requirements is key to maintain continuous production;
however, the impact of quality uncertainty on production planning is either ignored [2] or
compensated by inflating processing times and resource requirements [3].

As the most common approach to detect defects in manufacturing lines, inspection
systems have become the norm to support the identification and sorting of non-conforming
units. Establishing an effective quality-assurance program by planning and managing re-
sources dedicated to the inspection and testing of produced units is important. These tasks
are usually carried out by human inspectors, automated sensing devices, or a combination
of both. Even then, such systems are not infallible, and inspection errors must be accounted
for, increasing the difficulty of accurately estimating production output and quality of
units processed. This is especially important as the number of defects increases with
the number of units processed; hence additional production to account for quality issues
accumulates non-conforming units [4]. Overall, inspection results can be considered as a
stochastic variable too, where missed defective units and false rejections can be missed
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by the inspection system. This is becoming even more important as artificial intelligence,
notably deep learning models, which are also stochastic, drives the most recent inspection
systems in manufacturing [5].

Introducing inspection systems by deploying sensing devices in production lines,
although constituting an additional cost, is expected to be a profitable course of action as
costs are recovered by the increase in quality and customer satisfaction, as well as waste
reduction. Sound inspection strategies must consider the balance between introducing
inspection systems, rework cycles and operations, and scrapping defective products [6].
With the presented complexity of examining the impact of quality issues in processes and,
by extension, in production lines, manufacturers cannot easily estimate or quantify the
potential improvements on the quality and productivity of their processes by means of in-
spection. Decisions regarding the implementation of inspection systems in production lines
are often performed based on empirical or qualitative studies, for example, the semicon-
ductor industry introduces an inspection step after every ten process steps independently
of the process itself [7], or by assuming worst-case scenarios, in which inspection systems
are placed in every workstation where a process changes the product at the expense of
high costs [8].

Certainly, the outgoing quality from an inspected process is higher, and manufacturers
have picked up the interest in such systems. To help understand the implications of
introducing inspection systems in a production line, this paper proposes an adaptable
stochastic model that quantifies changes related to production, supply, and quality. The
model proposed is simulated using a discrete-event simulation engine, Simphony [9], that
enables manufacturers to test different scenarios and obtain data that drives their decision-
making regarding inspection procedures easily and accurately. This effort is especially
important for small and medium-sized enterprises, where the cost-effectiveness of their
investments is key to their economic survival.

2. Literature Review
2.1. Manufacturing Quality Models

In the past decades, the modeling of multistage manufacturing systems or produc-
tion lines for quality analysis and improvement has received intensive research. Recent
quantitative modeling methods can be roughly divided based on two main approaches:
(1) data-driven models where statistical approaches are based on measurements and (2)
analytical models where engineering knowledge supports the application of physical
approaches.

Analytical models employ offline analysis of production lines based on fundamental
laws. These models use physical propagation laws to understand the random occurrence
of quality issues or defects in production lines. Based on complex physical relationships,
this permits estimating the number of defects in a certain manufacturing process. A few
decades ago, an analytical model based on state spaces was first developed by Jin and Shi for
quality control of assembly processes [10]. This model remains the most popular analytical
approach to quality improvement based on engineering knowledge and measurement data.

Since then, dozens of model extensions have been published to modify the initial
model to include further data or consider additional elements in the quality propagation
laws defined. For example, the modeling of assembly processes was further investigated
to link 3-dimensional design parameters to dimensional quality through simulation [11],
or the propagation laws were modified to include machining operations maintaining
the state-space model [12]. Although these models accurately determine quality issues,
the analysis of long and complex production lines using the state-space model becomes
unapproachable [13]. Therefore, the practicability of the state space model is quite limited to
individual processes or relatively small production lines, independently of their complexity.

Hence, more recently, Markov models have been investigated to reduce complexity
when introducing further manufacturing processes compared to the state-space model.
The initial models already showed increased flexibility in the design of the manufactur-



Modelling 2021, 2

408

ing processes and could accurately evaluate the quality performance of the operations
involved [14]. Similar to the evolution of the state-space model, several authors have
been modifying the general Markov model presented by Li and Huang to increase its
accuracy and resemblance to real industrial operations. Well-known extensions to the
model include operational failures and maintenance-derived quality issues [15], quality
flow [16], batch production and its impact on quality [17], bottleneck analysis based on
quality issues [18,19], production and quality control with random demand [20], or remote
quality information feedback [21].

In spite of the above effort, current analytical models are quite complex, and their
potential industrial implementation requires expert knowledge, which is not easily accessi-
ble. This has limited its application to manufacturing processes in which quality issues are
critical to the expected operation of the produced unit, such as aircraft engines or medical
devices [22]. With the evolution of Industry 4.0 technologies, production lines integrate
sensors, control systems, and communication devices, enabling intelligent manufactur-
ing [23]. The control and management of modern complex production lines, including its
quality, using big industrial data has become a significant topic these past years and has
switched the focus of researchers worldwide towards data-oriented methods to deal with
quality issues.

Compared to analytical models, data-driven models rely on investigating patterns
in quality data to model the relationship between manufacturing systems and product
quality. These approaches do not require comprehensive prior knowledge of the process
and rely on proper data acquisition and processing. Quality data can be described as
multiple highly correlated variables, and, consequently, multivariate statistical approaches
are principally being developed [24].

Researchers have been using quality data with two main purposes: quality predic-
tion and process monitoring. On the one hand, by monitoring data acquired, necessary
information can be extracted to perform, for example, fault detection and diagnosis [25].
The multivariate statistical process monitoring methods, which utilize input and output
information, are quite popular for the purpose of fault diagnosis via principal component
analysis [26,27] or partial least squares [28,29]. Most importantly, they allow tackling a
large number of variables, showcasing these methods’ significant advantage over analytical
methods. Due to their simpler forms and low design efforts, these models are widely used
in numerous industrial applications [30-32].

On the other hand, data analysis is the key to generate adequate models that provide
insight into abnormal manufacturing process situations. Neural-network-based models
have drawn attention for their advantage of exploring complex relationships beneath
big data [33,34] and perform quality prediction in complex manufacturing scenarios [35].
The use of neural networks is consistent with the statistical analytical models previously
mentioned. Additionally, the network training process automatically characterizes the
quality defect propagation laws based on historical data, adhering to current manufacturing
output results, and eliminating the need to systematically account for any potential source
of defect to accurately determining the model.

In summary, analytical models can accurately quantify quality issues based on sta-
tistical propagation, but precision depends on modeling all sources of defects, which is
unpractical in complex or long manufacturing setups; whereas data-driven approaches
allow simplifying the quality propagation by relying on quality data acquired during the
manufacturing process. Overall, data-driven models are gaining attention as they permit a
broader reach of processes, mainly due to the popularization of Industry 4.0 technologies,
and can be adapted more easily to changes in the process.

2.2. Inspection Process Planning

Inspection process planning is an integral part of the design and manufacturing
activities. It preemptively determines what characteristics of a product are to be inspected,
where the inspection systems must be placed, and when those inspections need to occur.
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With modern approaches to manufacturing, part and product inspection are evolving to be
an integrated part of the manufacturing process; hence inspection process planning has
become an important step in the development of manufacturing lines. The planification
of inspection procedures requires better and better decision-support tools as complexity
and variety of products increases, as well as company reliance on quality to reach market
demands [36].

The quality models reported in the previous subsection are mainly used to deter-
mine efficient inspection strategies. These strategies may depend on different process
characteristics, such as the capacity of inspection systems to identify the defects of in-
terest, the appropriate definition and parametrization of the manufacturing process, the
inspection systems’ cost, and the accuracy rate of the inspection system on errors and its
consequences [37]. When dealing with complex manufacturing setups and consequently
with relatively articulated processes, it is particularly important to identify the more critical
and vulnerable processes and to develop appropriate inspection procedures, analyze the
resources required, and define the appropriate and most efficient inspection system [38].

The effectiveness of inspection strategies is closely related to the production rate,
the volume of the product being manufactured, and the topology of the manufacturing
processes. In the case of single-unit or small-sized lot productions, a.k.a. short runs, in-
spection strategies require treatment of manufacturing processes as individual units, for
example, considering the generation of defects in operations as different Bernoulli distribu-
tions [39] and economic optimization can be achieved considering different strategies that
monitor process dispersion, i.e., excessive scrap or rework costs [40]. For the case of mass
manufacturing, statistical process control can be directly applied [41].

In fact, inspection process planning must consider uncertainties in the measurements.
Using statistical approaches, several techniques such as cost-benefit models [42], simula-
tion models [43], mathematical models [44], or multi-objective optimization models [45]
have been proposed to plan inspection processes as a trade-off between cost and quality.
Proposed models that can mitigate uncertainty effects due to the stochastic nature of quality
issues to provide clearer insight on inspection planning rely on Monte Carlo or Taguchi
methods. Therefore, a tool that supports the inspection planning process must have the
capacity to model production tasks, apply production output quality and inspection results
uncertainties, enable analysis of repeatable scenarios, and be flexible on the topology of the
manufacturing setup. All in all, advanced simulation models are the best suited to handle
the modeling of inspection process planning.

Simulation is a well-known methodology in the industry for representing or imitating
real systems over time. Becuase flows of material, resources, information, or people
in multistage manufacturing systems are complex, simulation is often used to validate,
analyze, and optimize those systems. In the context of simulation, two major model
types are available: static or dynamic simulation. While static simulation is strictly time-
dependent, dynamic simulation changes over time. As production units can be represented
as passive entities as they move through a manufacturing system, a widely used method
to represent those entities is discrete event simulation (DES). Due to the characteristics of
inspection procedures and that their actions and application happen at certain points in
time, DES modeling of inspection operations is meaningful. Such an approach has been
successfully used recently to assess inspection strategies when analyzing DES results [46].

3. Probabilistic Model of Inspection Processes
3.1. Assumptions

Let us consider a manufacturing process in controllable setting conditions and decom-
pose it into a number of process steps or tasks, representing specific operations providing
an added value to the product. Each task is scheduled and organized so that the product
is manufactured in its entirety at the end. Before presenting the manufacturing process
model, several assumptions are taken.
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Assumption 1. Each manufacturing operation occurs independently. Operations are stochastically
independent of each other.

Assumption 2. The inspection results are also stochastically independent of each other and of the
manufacturing process itself.

Assumption 3. Non-conformity of produced units can only be detected by inspection systems. All
potential defects that generate non-conforming units must be inspected at some point during the
production line.

Assumption 4. After an inspection, only three different complementary outcomes are possible for
each unit produced: conforming, reworkable, or waste unit.

Assumption 5. If a theoretically reworkable unit does not have a rework process associated, it is
considered scrap and discarded.

Assumption 6. Manufacturing processes have a limited capacity. The number of units produced
per unit of time is a finite number.

Hence, the model allows each workstation to choose a different operation, and the
combination of subsequent operations represents the production line modeled. The inde-
pendence of operations and inspections is considered to simplify the calculations based
on probabilities and is quite reasonable as it represents the reality of most relationships
between inspections and operations or operations performed in different workstations.
The model allows for repetitive or consecutive inspections if required, always considering
them stochastically independent. For all inspection outcomes, a unit can be conforming,
reworkable, or scrap; however, all the options are not required to exist for each manufac-
turing operation (except conforming). For each process step, different kinds of inspection
activities are carried out. For the proposed model, all inspection systems are defined by
their accuracy and capability to detect defects. Therefore, for all inspection systems, errors
type I (false positives) and errors type II (false negatives) are considered.

3.2. Model Overview

The proposed model aims to quantify the changes that the decision of implementing
an inspection process at any manufacturing process has on productivity, quality, and supply
of materials while considering cost-efficiency. For the model to be able to achieve this,
certain information is required to build the model. An overview of the model requirements
is shown in Figure 1.

Assumptions

Input v Output
* Taskdurations Discrete-event Simulation Model * Productivity data
* Manufacturing ¢ Quality data
operations topology * Supply data
» Current quality
rates

Process n

* Duration
- auality Rate | %

* Inspectionsystem e Cost-efficiency Data-driven
accuracy ﬁ analysis decision
User Input =
* Inspection system topology * Budget
* Rework operations * Inspection system
cost

Figure 1. Proposed model overview with necessary inputs and expected outputs.

3.3. Model Input

For the model to achieve its aims, the user must provide some information beforehand.
This information is considered the input of the model, and the model outcomes depend
directly on the validity and accuracy of this information provided. A list of the information
required by the model is given as follows:
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Material
Stock

e ——

Process 1

e Duration
¢ Quality Rate

e  Task durations: the duration of each manufacturing operation must be analyzed
through time studies so that the simulation is as accurate as possible in its repre-
sentation of reality. The task duration must be modeled preferably as a statistical
distribution, although other easier statistical metrics (median or average) can also
be used.

e  Manufacturing operations topology: for each product, a series of operations in a
specific sequence is required. The order of operations needs to be replicated in
the simulation model accurately, ensuring that the flow of material is accurately
represented within the model.

e  Current quality rates: for each manufacturing process, the current output must be
analyzed to measure the rates of conforming, reworkable, and waste products (when
applicable following Assumption 4).

e Inspection system accuracy: for each inspection system that is planned to be intro-
duced, the error rate for each defect identified is required to allow the model to account
for the uncertainty of the system.

3.4. Probabilistic Model

The probabilistic model proposed for inspection processes is based on a discrete-event
simulation. An overview of the proposed model architecture is illustrated in Figure 2.
Discrete-event simulation models are principally defined by two elements: entities and
objects. Objects are elements that represent different products or calculations within the
model and that are linked in a specific order according to the production plan. Entities are
computational elements that proceed through the simulation model following the specified
plan. For each entity that goes through an object, certain operations are executed. These
operations are object-specific and must be declared previously.

Inspection 1 Process 2 Inspection 2

* Duration Conforming l

¢ Quality Rate

e Accuracy * Accuracy

Conforming

Inspection? Inspection?

Reworkable Waste o, Reworkable Waste a

Defect Classification Defect Classification

. . Process n Inspection n
— Minimum entity path S —_— End
—>| * Duration * Accuracy —Eeﬁafeﬁméng-bp duct
I:l Required objects * QualityRate | | oo tion? rod
Optional entity path
P vp Rewolkable re P = Ty
Optional objects ¥ I]]]

Defect Classification

Figure 2. Architecture of the DES model proposed for inspection processes in a multistage manufacturing system.

For this model, entities represent the production units at any stage of the manufac-
turing process, considering that at the end of the simulation, each entity is a finalized
product; and each manufacturing process is represented as an object, stating its duration
and transforming the entity characteristics. In other words, as an entity flows through
an object, simulation time passes, and the entity is transformed to match the operations
performed on it.

The quality inspection processes are also modeled as objects, with the difference that
no transformation to the product occurs. The inspection objects serve as a sorting gate
in which alternative outcomes for the inspection results are stochastically determined.
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Depending on the outcome of the inspection process, the entity would follow different
simulation paths: if conforming, the entity continues towards the next operation if it exists;
if reworkable, the entity goes towards the rework process (another object); if waste, the
entity is destroyed.

As observed, the model takes a certain quantity of material stock and runs it through
as many processes and inspections, as modeled until the end product is obtained. From
an architecture point of view, all blocks of process and associated inspection are identical,
bar the value of the characteristics defining them, i.e., task duration or quality rate. As an
entity leaves any process, it enters an inspection process if it exists, which uses its stochastic
output to decide its next steps. As a minimum, the model must contain all the processes
involved and a final inspection, as the end product must have its quality ensured. Note
that this minimum model is the most common practice in the industry.

In the model, two user-based decisions are required before each simulation run (shown
as a diamond symbol in Figure 2) and stored as global arrays in the model that are accessed
at the initialization of the model execution. The first one asks the user to determine which
inspection processes are active. This allows the user to run different scenarios without
changing the model itself and see different outcomes based on inspection process placement.
The second one asks the user to define the type of defects that a certain inspection system is
able to classify and redirect to its correct rework station if it exists. Remind that all defects
need to be inspected at least once; otherwise the model cannot run.

Now, for each inspection system that wants to be introduced into the production line, the
quality outcome is estimated following probability propagation laws. Let Q; = {C;, Dy, W;}
the set that defines the quality rate (Q) for the process (i), where (C;) is the rate of conforming
units being produced, (Dj) is the set of rates for each (k = {1, ..., K}) individual defect
identified, and (W) is the rate of waste being produced. The quality rate set for each
process is complementary (see Equation (1)).

K
Vi,Q=C+ Y Dy +W=1 1)
k=1

Let (Ag,) the accuracy of the inspection system for the process (i). For each of the
options available at each process, (A) defines the rate at which results obtained by the
inspection system match reality, for example, (Acc) represents the rate in which detected
conforming products are actually conforming or (Acw) represents the rate at which detected
conforming products ended up being waste. The resulting accuracy for each detected output
is complementary (see Equation (2)).

Ac = Z(Acc

Vi,AQ : AD = Z(ADC

K
+ 1;1 Acp, + Acw) =1
K
+ k21 App, + ADW) =1 )
K
Ay = Z(ch + 1;1 Awp, + Aww) =1

To represent the propagation of quality uncertainty following Equations (1) and (2)
in the DES model, the use of probabilistic branches is suggested. It is also possible to
hardcode the nested probabilities within an executable object within the simulation model
that could give some additional room to include some additional complexity to the model;
however, it was deemed unnecessary based on the assumptions taken. An example of the
inspection process of a task within the DES model in Simphony is shown in Figure 3.
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Inspection Accuracy

Conforming
POk [ —
Acl EH”
/—' 5 % — b—\
2 %= ’—\
Conforming Ins. T1
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Q > Ap Reworkable
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- |
3% = P LR
Inspect Task 1 Task 1Resuls Defective Ins. T1 ;
Awl I’ e / Waste
\—D 6 % =~
0% % p—]
Scrapins. T1

Figure 3. Example of modeling of inspection process using DES in Simphony for a single task with
only one detectable defect.

Therefore, for an inspection system that inspects a single task, the probabilities of
obtaining conforming (p(cf)), reworkable (p(rw)), and waste (p(wst)) units can be expressed
directly as a function of the quality rate of the process and the inspection accuracy as shown
in Equation (3).

K
p(cf); = Ci x Accc, + kZ (Dix x Ap,c,) + Wi x A,

1
K
p(rw); = C; X Ac,p, + kzl(Dik X Ap,p,) + Wi X Aw,p, 3)
K
p(wst); = C; x Acw, + kzl(Dik x Ap,w;) + Wi X Aww,

Similarly, as probabilities are propagated from complementary sets, the probabilities of
obtaining conforming, reworkable, and waste units are also complementary (see Equation (4)),
which is consistent with the fact that a produced unit cannot be conforming and waste at the
same time and so forth.

Vi, p(cf); + p(rw); + p(wst); = 1 (4)

In case of a specific task, (N), no inspection system is considered; all units exiting that
task continue to the next one with their defects uninspected (as shown in Figure 2). Then,
those defects generated must be inspected in another station downstream. For that inspec-
tion process, the probabilities of the quality rate are propagated. Then, Equations (5)—(7)
indicate the probability propagation of a non-inspected task for conforming, reworkable, and
waste units.

K
plcf); = (Cn x Ci) X Accy +k21((DNk X (Cj + Djx) + Cn x Di) x Ap,c,)
Tk ®)
+(Wn + (Cn +k21 Dni) x W;) x Awc,
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K
p(rw); = (Cn x C;) x Ac,p, +k21((DNk x (Cij+ Djx) + Cn % Djx) X Ap,p;)

K (6)
+(Wn + (Cn + k21 Dyi) x W;) x Aw,p,
K
p(wst)l- = (Cn x () X ACiWi +kzl((DNk X (C; 4+ Dy) + Cn X Dy) x ADikWi)
- @)

K
+(Wn + (Cn +k21 Dni) x W;) x Aww,

This propagation results in a nested set of probabilistic branches within the DES
model, similar to the previous example but with an additional layer. Figure 4 showcases
the changes made to an inspection process when a previous station had not been inspected.
Note that (Q*) represents a simplified version of the quality rate for a given station when
the entity (produced unit) already comes with reworkable defects. Simply, if a unit comes
with defects, the probability of achieving a conforming unit is zero. Similarly, if a unit comes
as waste from a previous task, the only outcome for that unit after inspection is waste. In
that sense, (Q*) can be defined as follows:

* D
Vi,Q* C Q +» { (Do) st D+ W* =1 8)

e
Ac o Conforming
Q D% P » -7 % P—\
7 %~ P -2 %~ h
35— ] Conforming Ins. T2
Qn 85 % CT1-T2Resuts
— p_» P Ap -2 %~ p—/
N ‘ N | Lo Reworkable
Inspect T1-T2 3% Q 70% p—| =
UT1Resuls i g
0% P Defective Ins. T2
RWT1-T2Resuls
A, 1% p /
\—/g > «[e'.— >_/ Waste
%% P
Scraplns. T2

Figure 4. Example of modification to the DES model of an inspection process when a previous defect
had not been inspected.

Finally, for each reworkable unit, its defect is identified, and a direct path to the
appropriate rework task is followed. The rework task is defined independently from the
main manufacturing operations of the production line, with its different durations and
quality rates. After a unit has reworked its defects, it returns to the inspection process
again to be reinspected.

3.5. Model Output

As the model runs, measurements are taken and collected. In this model, these
measurements are time and quantity-based. Once all results are obtained, considering
management and engineering interests, key performance indicators (KPIs) can be derived
and evaluated for efficiency or quality analysis. Thus, the model directly outputs support-
ing metrics for posterior decision-making. This subsection presents the basic and more
comprehensive KPIs computed in the model.
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To monitor productivity and quality performance, most comprehensive KPIs depend
on time and quantity elements; this last one is referred to as logistical elements in the ISO
22400-2 (2014). From the proposed model, time elements are directly obtained from the
simulation times, and the quantity elements can be all obtained directly from stochastic
inspection outcomes. The used supporting elements for production and quality KPIs are
extracted from Kang et al. work on key performance indicators for operation management
and continuous improvement in production systems [47].

3.5.1. Time Elements

Time elements are data related to time durations in production operations. They are
time measurements that help describe activities related to production. The following time
elements are considered and obtained as snippets of the simulation time from the order
point of view.

e  Actual production time (APT): the actual time in which a production line is running
an order, which only includes value-adding functions.

e  Actual unit time (AUT): the actual time that a unit requires to go over all the required
operations.

e  Actual execution time (AET): the actual time in which a manufacturing process is
producing units.

e  First arrival time (FAT): the actual time in which the first end product is finalized.

3.5.2. Quantity Elements

In addition to time elements, quantity elements provide information on issues related
to product quality through recounting. The quantity elements are obtained as entities pass
certain tasks (objects) in the model and are directly linked to the inspection outcomes. For
a total of (U) units entering a process (i):

e  Good quantity (GQ): the produced quantity that meets quality requirements in the
first time of an operation process.

Vi, GQi = U p(cf); ©)

e  Scrap quantity (5Q): the produced quantity that does not meet quality requirements
and must be scrapped or recycled.

Vi, SQ; = U * p(wst); (10)

e  Rework quantity (RQ): the quantity that fails to meet the quality requirements, but
these requirements can be met by reprocessing.

Vi, RQ; = U * p(rw); (11)

e  Processed quantity (PQ): the quantity that a workstation has processed, which includes
the reworked and scraped ones. In case that some units may need more than one
rework, say parts are reworked (R) times, then:

Vi,PQ; = GQ; + SQ; + (R+1) x RQ; (12)

e  Produced quantity in the first operation process (PQF): the quantity that a workstation
has produced in the first time of an operation process.

Vi, PQF; = GQ; + SQ; + RQ; (13)

3.5.3. Key Performance Indicators

All indicators presented in this subsection reveals an aspect of performance for a work
unit or system derived from the quantity and time elements. These KPIs are grouped
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depending on the manufacturing aspect they tackle, namely aspects from production and
aspects from quality. Although other aspects have been previously investigated, such as
maintenance [47], they fall out of the scope of this study.

Some important KPIs addressing production issues are grouped and defined below:

e  Utilization efficiency (UE): the productivity of a workstation, measured by the rela-
tionship between the productive time and execution time.

AET;

(14)

e  Throughput rate (TR): the process performance in terms of produced units and the
execution time for each workstation.

GQ;
AET,

Vi, TR; = (15)

e Actual interarrival time (AIT): the actual time in between conforming units completely
finalized. Note that (GQy) describes the total number of units finalized by the pro-
duction line.

GQn

AT = (apT - FAT) (16
e  Production ratio (PR): the final performance of the production line in terms of end
product produced.
~ GOnN
PR = APT (17)
e  Work in process (WiP): the number of units currently being processed.
WiP = APQ = PQ; — PQn (18)

Now, other important KPIs that target quality related issues are grouped and de-
fined below:

e  Scrap ratio (SR): reports the ratio of waste units over the total processed units in a
workstation.
5Qi

PQ;

e  Rework ratio (RR): reports the ratio of reworkable units over the total processed units
in a workstation.
RQ;

PQ;

e  Fall off ratio (FR): the fall off quantity for a specific production operation in relation
to the produced quantity in the first operation, measured by the ratio between the
produced quantity on the first production order sequence minus the conforming units
on the current production and the produced quantity in the first operation.

Vi, SR; = (19)

Vi, RR; = (20)

. PQF;
FR;=1- 21
VZ/ 1 P Qz ( )
e  First time quality (FTQ): the ratio of conforming units produced in the first time in a
workstation. co
i, FTQ; = — = 22
Vi, FTQ = 72t @2)

e  Quality buy rate (QBR): the overall ratio of conforming units, even after rework, in a
workstation.
GQi

vi, QBR; = 1.5
1

(23)
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4. Case Study
4.1. Description of the Use Case

The use case within this paper is applied to a synthetic multistage manufacturing
line. This line consists of three process steps, each with its potential inspection system.
The simulation model is designed to be able to skip inspection systems as desired, except
the last one. Inspection systems are parametrized to have varying costs and inspection
accuracies. To ensure that all defects are inspected, the last inspection system is assumed
to be able to carry out such inspection tasks. An overview of the DES model for the case
study is shown in Figure 5.
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Figure 5. Overview of the discrete-event model used as case study (in Simphony).

When parametrizing the inspection systems in the case study, the maximum adapt-
ability of the studied systems is presented. In other words, the inspection systems are
modeled with the maximum number of parameters possible, aiming at creating a model
able to play the maximum of different scenarios. Remind that all inspection processes can
be toggled off, except the last one. With that, the inspection systems are as follows:

Inspection process 1: enables inspection of defects in process 1.
Inspection process 2: enables inspection of defects in process 2 or inspection of defects
in processes 1 and 2.

e Inspection process 3: enables inspection of defects in process 3, or inspection of defects
in processes 1 and 3, or inspection of defects in processes 1 and 2, or inspection of
defects in processes 1, 2, and 3.

For all the following scenarios, the processes characteristics will remain the same to
reduce variability and consider that during the following offline study, no changes have
been introduced. The characteristics of the processes are listed in Table 1. Process 1 has
a task duration modeled by a triangular distribution with a low value of 18 s, a mode of
21's, and a high value of 27 s; and a recorded quality rate of 85% of conforming units, 12%
of reworkable units, and 3% of the waste produced. Then, process 2 has a task duration
modeled by a normal distribution with a mean value of 50 s and a standard deviation of 3 s;
and a recorded quality rate of 90% of conforming units, 7% of reworkable units and 3% of the
waste produced. Finally, process 3 has a task duration modeled by a normal distribution
with a mean value of 39 s and a standard deviation of 4 s; and a recorded quality rate of
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94% of conforming units, 3% of reworkable units, and 3% of the waste produced. Let it know
that all numbers are synthetic for the purpose of validating the model, and there is no
intent to accurately represent a specific manufacturing line.

Table 1. List of the selected process characteristics.

Process Task Duration 1 Quality Rate
1 Triangular (18,21,27) [0.85,0.12,0.03]
2 Normal (50,3) [0.90,0.07,0.03]
3 Normal (39,4) [0.94,0.03,0.03]

4.2. Simulation Scenarios

Within this study, four different scenarios are simulated on the basis of a discrete-event
simulation. For each scenario presented, a hundred runs are repeated to depict stochastic
results and behavior. The different scenarios present different inspection strategies based
on the model presented in Figure 5. Table 2 gives an overview of the selected simulation
scenarios and related information within this case study. An “x” in the column means that
an inspection has been performed at the workstation.

Table 2. List of the selected simulated scenarios.

Scenario Inspection 1 Inspection 2 Inspection 3
1 X
2 X X
3 X X
4 X X X

Scenario 1 can be considered as a baseline scenario, as it represents the most common
inspection strategy and the minimum effort to achieve conforming quality. It will also
serve as a benchmark for all metrics measured during the simulation. The other scenarios
include additional inspection systems until all possible options are studied.

4.3. Validation Results

The scenarios discussed in the previous subsection are established on certain user-
determined conditions to validate the model. These conditions emulate real-world targets
or scenarios in which multistage manufacturing lines can operate. For the first two condi-
tions, inspection accuracy is set fixed to reduce variability but is targeted in the last set of
results presented.

4.3.1. Condition 1: Production Target

For the first set of simulations, a production target of 250 conforming units is set with
an unlimited amount of time and initial materials and resources. The simulation model will
run until the target is reached after process 3. Table 3 lists all the results obtained from the
simulation model, annotating the average for each element or KPI and rounded to the unit
(for quantity-related elements) or to the second (for time-related elements). In the table, it
is highlighted in bold and light green the condition that terminates the simulation model.

It can be observed from the results that introducing inspection systems, in general,
improve productivity and quality. Looking at time elements and productivity KPIs, the
model shows reductions of 7.55%, 10.83%, and 14.26% in the actual production time
(APT) for scenario 2 (S2), scenario 3 (S3), and scenario 4 (54), respectively. Similarly,
reductions of 8.06% (52), 11.29% (S3), and 14.52% (S4) can also be observed for actual inter-
arrival time (AIT). This translates in an increase of productivity (+7.96%—S2; +11.94%—S3;
+16.92%—54) while maintaining utilization efficiency (UE) above 99%. On the other hand,
quantity elements and quality KPIs show an improvement in quality from 81.9% QBR
in Scenario 1 for process 3 to QBRs over 90% when additional inspections are included.
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In scenario 4, where all processes are inspected, QBR stabilizes for all processes around
96%, which shows the importance of continuous inspection in multistage manufacturing
operations. This increase in quality is also noticeable in the reduction of the scrap ratio (SR)
from 20.9% (61 waste units—S1) to 9.1% and 5.5% (29 and 8 waste units—S2), 3.8% and
11.4% (25 and 27 waste units—S3), and 4%, 5.7%, and 3.7% (25, 9, and 8 waste units—S54) by
introducing rework stations where rework rates have increased from 12% (38 reworkable
units—S1) to 24.1% and 7.1% (84 and 13 reworkable units—S2), 16.9% and 9.9% (139 and 23
reworkable units—S3), and 17.1%, 15.2%, and 7.4% (119, 46, and 14 reworkable units—S4).
Thus, quality improvements are achieved through two paths: reduce scrap by quickly
identifying reworkable units and by enabling rework in each station. As less units are
wasted due to quality issues, productivity rises.

Table 3. Simulation results for different inspection strategies with set production target.

Scenario 1 (Baseline) Scenario 2 Scenario 3 Scenario 4

Process1 Process2 Process3 Process1 Process2 Process3 Process1 Process2 Process3 Process1 Process2 Process3

Inspected? NO NO YES NO YES YES YES NO YES YES YES YES
PQ 708 310 338 654 370 271 756 277 295 726 312 272
) GQ - - 250 - 258 250 606 - 250 582 258 250
Quantity gy : : 38 : 84 13 139 : 23 119 46 14
Elements  pQp - - 222 - 200 237 492 - 230 486 220 238
sQ - - 61 - 29 8 25 - 27 25 9 8
APT 15,599 14,422 13,909 13,375
Time AUT 106 109 111 121
Flements AET 15599 15562 15511 14422 14398 14,346 13909 13,887 13,851 13375 13356 13,284
FAT 118 121 114 127
FR - - 0.351 - 0.452 0.130 0.316 - 0.225 0.324 0.279 0.114
) FIQ - - 0.882 - 0767  0.936 0.840 - 0.912 0.835 0.856 0.914
Quality  RR - - 0.120 - 0.241 0.071 0.169 - 0.099 0.171 0.152 0.074
KPIs SR - - 0.209 - 0.091 0.055 0.038 - 0.114 0.040 0.057  0.037
QBR - - 0.819 - 0.922 0.960 0.962 - 0.903 0.965 0.964 0.960
UE 1 0997  0.994 1 0.998 0.994 1 0.998 0.996 1 0.999 0.993
.. TR - - 0.016 - 0.018 0017  0.044 - 0.018 0.044 0.019 0.019
Productivity AT 62 57 55 53
KPIs PR 0.01608 0.01736 0.01800 0.01880
WiP 370 383 461 454

4.3.2. Condition 2: Limited Supply

For the second set of simulations, a limit on the material supply of 250 units is set. The
simulation model will run until all the supply is used. Table 4 lists all the results obtained
from the simulation model, annotating the average for each element or KPI and rounded
to the unit (for quantity-related elements) or to the second (for time-related elements).
In the table, it is highlighted in bold and light green the condition that terminates the
simulation model.

Similar to the previous simulation results, the introduction of inspection systems
increases productivity and quality. It can be observed that productivity rate (PR) increases
(6.875%—S2, 11.875%—S3, and 16.25%—54) but this time it does not relate to a reduction of
actual production times (APT—which remains almost constant) but to an increase of final
conforming units produced (GQ) (6.40%—S2, 5.42%—S3, and 10.34%—54). For the overall
quality of the operations, similar results to the previous runs are obtained: (1) increase in
final quality (QBR) from 82.2% in scenario 1 to over 88% for all processes in the following
scenarios, with a maximum value of over 96% for all processes in scenario 4; (2) reduction
of scrap ratio (SR) from 21.1% (47 waste units—S1) to 10.0% and 4.4% (26 and 8 waste
units—S2), 4.4% and 14.0% (11 and 26 waste units—S3), and 4.8%, 4.6%, and 3.1% (11, 9,
and 6 waste units—54); and, (3) rework rates have increased from 11.9% (30 reworkable
units—S1) to 24.1% and 7.1% (84 and 13 reworkable units—S52), 16.9% and 9.9% (139 and 23
reworkable units—S3), and 17.1%, 15.2%, and 7.4% (119, 46, and 14 reworkable units—5S4).
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Table 4. Simulation results for different inspection strategies with limited material supply.

Scenario 1 (Baseline) Scenario 2 Scenario 3 Scenario 4

Process1 Process2 Process3 Process1 Process2 Process3 Process1 Process2 Process3 Process1 Process2 Process3

Inspected? NO NO YES NO YES YES YES NO YES YES YES YES
PQ 250 250 280 250 316 291 304 239 255 303 279 244
) GO - - 203 - 224 216 240 - 214 240 230 224
Quantity gy - - 30 - 66 14 54 - 17 53 40 13
Elements pQr - - 180 : 177 204 197 . 199 199 197 212
sQ - - 47 - 26 8 11 - 26 11 9 6
APT 12,547 12,555 12,014 12,063
Time AUT 108 124 116 119
Elements AET 3476 12,446 9890 3490 12492 10,220 5358 11,941 9190 5163 11979 9542
FAT 125 128 116 121
FR - - 0.339 - 0.423 0134 0347 - 0224 0333 0282  0.134
) FIQ - . 0.885 . 0.789 0935  0.821 . 0.920 0832  0.848 0932
Quality ~ RR - . 0.119 - 0.219 0.09%  0.188 - 0.101 0182 0159  0.076
KPIs SR - - 0.211 - 0.100 0.044 0.044 - 0.140 0.048 0.046 0.031
QBR - - 0.822 - 0906 0952  0.952 - 0884 0964 0965  0.964
UE 0277 0992 0789 0278 0995 0814 0446 0994 0765 0428 0993  0.791
. TR - - 0.021 - 0.018 0.021 0.045 : 0.023 0046 0019  0.023
Productivity  AyT 62 58 56 53
KPIs PR 0.0160 0.0171 0.0179 0.0186
WiP 0 0 49 59

4.4. Discussion

As observed, the model proposed can quantify based on certain assumptions, user
inputs, and pre-known parameters of the production processes, changes to relevant pro-
ductivity, and quality KPIs based on different inspection strategies. Overall, the model
enables data analysis on different scenarios to perform data-driven decision-making on the
best inspection strategies. The current model considers productivity and quality-related
information; however, additional domains have a known impact on quality: maintenance
operations, logistics, or product design [38]. None of those elements have been included in
the current model; hence the model is limited in the flexibility of options given to users
to improve quality based on the model’s results. Research to include such domains onto
the DES model will be addressed in the near future. In fact, several examples of similar
integration within DES models have been explored before, i.e., maintenance systems and
operations [48]. Note that, as additional information is included in the model, the complex-
ity and stochasticity increases. It may be interesting at that point to explore other solutions
that can support stochastic environments without deterministic models, such as the use of
reinforcement learning to determine defect propagation laws within a production line.

Regarding the inspection strategies, some options have not been discussed, such as
destructive testing or batch sampling. Although these methods represent valid inspection
procedures, the presented model focuses on the integration of continuous inspection
and data acquisition, following Industry 4.0 principles [49]. Nonetheless, the proposed
DES model can be easily modified to allow sampling and destructive testing. Current
software, Simphony, has the capability of destroying entities after inspection or grouping
and ungrouping production units at the user’s convenience. In other words, enterprises that
use those approaches can utilize DES models to analyze any potential changes between
inspection strategies, no matter how different they seem, and obtain data that can be
used to compare and take the best possible decision for their inspection processes and
product quality.

Finally, large, well-capitalized enterprises have access to significant resources and
capital to capture economies of scale and the value of introducing new inspection systems,
transforming the decision process into an optimization problem; however, small and
medium-sized enterprises (SMEs) face the scrutiny of a well-supported business case, cash
flow analysis, net present value, and return on investment (ROI) for any expenditure,
inspection systems or otherwise. This poses the question: Given a certain budget limitation
and expectations, what are the inspection options available, and which is the best inspection strategy?
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In order to get a cost-effective solution, cost models regarding inspection processes
are already available. These models allow examining the minimum increase in quality that
is necessary to break even on an investment-related to inspection and quality control [50].
A simplified model assumes that the equipment cost of the added inspection system
(Crnspection), plus the cost of running the system, (Copuspection), needs to be covered by the
difference on operating costs. The difference in operating costs can be estimated directly
from the variation obtained in certain measured KPIs: the quality buy rate (AQBR), the
rework ratio (ARR), and the scrap ratio (ASR). This model establishes that, for (U) units
manufactured, the breakeven point is achieved when Equation (24) is satisfied:

Clnspection +Ux COpInspection

N
=Ux (AQBRN X CUm't - Z ASRi X CProductioni (24)
i=1

N
— ¥ ARR; x Crw;,)
i=1

where (Cypyit) is the unit cost, (Cpyoguction) 15 the process cost, and (Cryy) is the rework
cost. Indeed, as discussed previously, additional inspection increases rework operations
while reducing waste and increasing overall quality. Hence, the additional rework costs
have to be compensated by the additional units manufactured and the reduction in waste.
The proposed approach allows the user to obtain those quantity variations while keeping
options open on inspection costs to test different strategies.

Let us assume a scenario in which a company has determined that a certain maximum
amount of money is to be invested in improving the quality of their production line (that is
similar to the one modeled before). Currently, their strategy is to inspect the whole process
at the end of the line, where they own an inspection system that has a 96% accuracy. With
their budget, several options are available:

Change 1: Improve their current system in process 3 from 96% accuracy to 99%.

Change 2: Add a 92% accuracy inspection system in process 2.

Change 3: Add an 88% accuracy inspection system in process 1 and an 84% accuracy
inspection system in process 2.

Change 4: Add a 96% accuracy inspection system in process 1.

The model is adapted to test those potential changes while maintaining the durations
and quality rates of the processes untouched. For each scenario presented, a hundred runs
are repeated to depict stochastic results and behavior. Table 5 lists the average variation of
KPIs obtained during the simulation runs. As expected, the simulation model anticipates
a fair reduction of scrap while rework and quality increase. The model provides an
estimate of the variation of scrap, rework, and quality ratios for each workstation, easying
comparative analysis and decision-making. Further, the model predicts the impact of
inspection system changes on production, allowing to guide stakeholders towards desired
goals based on key performance indicators. With different results obtained, an analysis on
the best possible change can be performed based on each company status and operative
conditions. To answer the previous question, cost information on the specific company
is required, and depending on each production line, the outcome of the cost-efficiency
analysis will vary.

Table 5. Simulation results for the different change plans.

Change 1 Change 2
AQBR3 ASR3 ARR3 ASR, ARRy,  AQBRj3 ASR3 ARR3
0.034 —0.051 0.086 —0.121 0.242 0.136 —0.027  —0.031
Change 3 Change 4
ASRq ARRq ASR; ARRy,  AQBRj3 ARR3 ASRy ARRq AQBR3 ASR3 ARR3
—0.045 0.121 —0.091 0.084 0.121 -0.013  —0.017  —0.094 0.084 0.091 —0.027 0.059
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In summary, the model proposed is an interesting tool for companies that have limited
resources and are interested in ensuring their investments regarding inspection planning.
For large enterprises with access to more capital, the inspection strategy that obtains the
best results is to inspect at every stage of the manufacturing line. Nonetheless, this model
allows to estimate the quality outcome of increasing inspection efforts and quantify changes
in production and supply that can support smoother transitions when changing operating
conditions in production lines.

5. Conclusions

Inspection strategies and processes are becoming more and more important for manu-
facturers to ensure product quality. Following this trend, this paper proposes the implemen-
tation of a probabilistic approach to modeling inspection processes within a discrete-event
simulation model. The proposed model builds upon existing analytical models on quality
inspection processes while introducing the flexibility and variability that discrete-event
models and computation provide. A generalistic discrete-event model is proposed where
defect generation is propagated through nested probabilistic laws and stochastic inspec-
tions. The model relies on accurate manufacturing information, as well as user input, to
output quality, productivity, and supply in the form of basic elements and more compre-
hensive key performance indicators. These indicators allow to simplify the quantification
of the impact of introducing changes to the inspection plans of a manufacturing line in
three main areas: productivity, quality, and supply chain. By running different scenarios,
the results can be compared to support data-driven decision-making regarding inspection
planning and investments in inspection systems.

The variability of the model is validated in two different manufacturing scenarios,
limited supply and production target, testing the capacity of the proposed model to reliable
output information in realistic conditions. Finally, the utilization of the model is discussed
around the methods to analyze the cost-effectiveness of introducing inspection processes
when limited resources are available, which is a serious issue for most small and medium
enterprises. Future work will encompass expanding the model to include other relevant
factors that impact quality, such as logistics, design parameters, or maintenance operations.
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