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Abstract: In this work, the performance of reliability methods for the probabilistic analysis of local
scour at a bridge pier is investigated. The reliability of bridge pier scour is one of the important
issues for the risk assessment and safety evaluation of bridges. Typically, the depth prediction of
bridge pier scour is estimated using deterministic equations, which do not consider the uncertainties
related to scour parameters. To consider these uncertainties, a reliability analysis of bridge pier scour
is required. In the recent years, a number of efficient reliability methods have been proposed for
the reliability-based assessment of engineering problems based on simulation, such as Monte Carlo
simulation (MCS), subset simulation (SS), importance sampling (IS), directional simulation (DS), and
line sampling (LS). However, no general guideline recommending the most appropriate reliability
method for the safety assessment of bridge pier scour has yet been proposed. For this purpose, we
carried out a comparative study of the five efficient reliability methods so as to originate general
guidelines for the probabilistic assessment of bridge pier scour. In addition, a sensitivity analysis was
also carried out to find the effect of individual random variables on the reliability of bridge pier scour.

Keywords: bridge pier; scour; reliability analysis; failure probability; simulation; subset simulation (SS)

1. Introduction

Pier foundations are crucial for the reliable bed support of bridge structures [1,2].
However, flowing water can lead to erosive action that subsequently transports materials
from around the abutments and piers of these structures [3,4]. This phenomenon is called
scour, which can cause the failure of bridges. Besides, more severe conditions such as
flood events make bridges more vulnerable to failure by scour hydraulic deficiencies [5].
Therefore, maintaining the safety levels of bridge piers under natural scour conditions
is an important task to be carried out with precise estimations and predictions [6,7]. To
prevent such unwanted events, usually the scour depth must not reach the pier foundation
depth [8]. Thus, an accurate prediction of the maximum allowable scour depth for specific
bridge piers can highly improve the level of bridge safety and ensure reliable design of
pier foundations for bridges.

Over the past decades, several researchers have investigated the natural phenomenon
called scour and its effects on the pier foundation of bridges. Here, some of the most
important findings in this field are presented. For a given value of a pier width and the
size of sediment after the scour peak, the maximum depth of the scour slightly decreases
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with velocity, as found by Chabert and Engeldinger [9] and confirmed using Laursen’s [10]
data. The latter study reports that there are no dependencies between the local scour depth
and the contraction ratio before the overlap of scour holes to neighboring piers. The higher
velocities increase the scour depth to more than the threshold condition, as reported by Jain
and Fischer [11]. A lower depth of scour can be observed using shorter and higher forms
of bed, as concluded by Chee [12]. Based on Melville’s [13] studies, a strong dependency is
found on bed formation, scour, and velocity depth, whereas the maximum scour depth
occurs under transition flat-bed conditions for non-ripple-forming sands and at a threshold
pick for ripple-forming sands. The scour depth equation is formulated using sediment
parameters and flow intensity, as reported by Raudkivi [14].

All the above findings led to various experimental programs and numerical studies
that resulted in several equations for modeling the maximum scour depth for a bridge pier.
Among the various well-known formulations for modeling the maximum scour pier depth,
we cite Kothyari et al. [15], Sheppard and Miller [16], Zhao et al. [17], Dixen et al. [18],
Ettmer et al. [19], Hong et al. [20], and Radice and Lauva [21]. The developed models
appear to have limited specific ranges of utilization based on different parameters such as
flow intensity (V/Vc) [16]. Moreover, the deterministic form of these models cannot involve
the related uncertainties that surround the scour depth prediction and the bridge pier [4].
Thus, a more efficient framework based on probabilistic analysis should be proposed to
overcome these drawbacks.

As the modeling of the maximum depth of local scour is based on experimental and
fitting techniques, the reliability of bridge piers under scour conditions, taking into account
the surrounded uncertainties, presents a highly nonlinear form, in which accurate estima-
tions of the failure probability need the utilization of robust and stable approaches [22]. In
structural reliability analysis, conventional approaches utilized for probabilistic analysis
are no longer efficient for a limit state function with highly nonlinear, complex, or high-
dimensional problems [23,24]. Usually, structural reliability approaches can be categorized
into two families: analytical-based approaches and simulation-based approaches. The
first include the first-/second-order reliability method (FORM/SORM), in which the main
challenge is to find the most probable point (MPP) for failure on the surface of the limit
state function [25,26]. However, FORM has been proven by several studies to have lower
accuracy and imprecise failure probability results whenever dealing with highly nonlinear
problems with non-normal random variables, as the presented case of a bridge pier under
scour conditions. Among simulation approaches, Monte Carlo simulation (MCS) is widely
used to solve several reliability analysis problems in civil engineering. Despite the simplic-
ity and straightforwardness of the method for all distribution types, the approximation
in reliability using the MCS is considered computationally expensive, especially for a
limit state function (LSF) with low probability or finite element method calls. To improve
the MCS performance, several methods have been developed, such as subset simulation
(SS), importance sampling (IS), directional simulation (DS), and line sampling (LS). These
methods exhibit less computational costs compared to the original MCS in several fields.
Although there are several structural reliability approaches used for probabilistic analysis,
no studies have been conducted to investigate the abilities of simulation techniques for
solving the complex problem of bridge priers under scour conditions. Consequently, pro-
viding a consistent investigation of the most suitable simulation techniques with stable and
accurate reliability results for applicable complex reliability analysis of bridge priers under
scour conditions can highly improve the safety of such structures and predict undesired
failure events with more accuracy and robustness.

Considering the above discussion and arguments, the present paper attempts mainly
to investigate the performance of several structural reliability methods for accurate and
precise estimation of the failure probability for bridge piers under scour conditions. To
achieve the goals, different simulation approaches are investigated, including Monte Carlo
simulation (MCS), subset simulation (SS), importance sampling (IS), directional simulation
(DS), and line sampling (LS). Moreover, the selected case study is local scour of a bridge pier
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in clay-sand-mixed sediments, whereas the scour depth estimation was modeled using the
Muzzammil et al. [27] formula. Besides, the proposed limit state function includes several
random variables to take into consideration the relevant uncertainties. In addition, the
influence of various input variables on structural safety is investigated through a sensitivity
analysis. The paper structure is as follows: Section 2 describes the current problem and
formulates the limit state function of the local scour for bridge piers. Besides, Section 2
introduces various simulation techniques; the case study is reported in detail in Section 3.
In addition, the application, results, and investigations are discussed as well in Section 3,
and finally, findings and conclusions are presented in Section 4.

2. Materials and Methods
2.1. Scour Depth Prediction Models

In recent years, artificial-intelligence-based methods have been widely employed
in many civil engineering fields for modeling different kinds of complex phenomena
and problems [28–30]. The artificial intelligence (AI) approaches are considered a viable
alternative to replace the excited models, in which these models are developed using
classical methods [31,32]. Thus, using laboratory and experimental tests, AI methods
are utilized for the prediction of scour depth. Sharafati et al. [33], Sreedhara et al. [34],
Khan et al. [35], Odeyemi et al. [36], Danish et al. [37], and Muzzammil et al. [27] have
carried out various studies on the scour depth around bridge piers under different bed
conditions and developed several deterministic prediction models. In this study, the most
recent correlation is employed for modeling the limit state function, as described in the
following sections.

2.1.1. Deterministic Scour Depth Prediction Model

Debnath and Chaudhuri [2] investigated the effect of water content, clay content, and
sand size on the local scour of cylindrical bridge piers. They used a substrate composed of
sticky clay and sand with d50 = 180 mm in all their experiments. The tests were conducted
in a flume that is 0.9 m wide, 0.9 m deep, and 18.5 m long, with a constant slope of 0.001.
They also proposed a regression equation as a function of clay content, water content,
pier Froude number, and bed shear strength to predict the maximum depth of scour
(Equation (1)).

ds

D
= 8.2C−0.28W0.15

C F0.79
r τ̂−0.38

s (1)

where ds denotes the maximum scour depth (m), D is the pier diameter (m), C is the clay
content, Wc is the water content, Fr represents the pier Froude number, while τ̂s represents
a dimensionless factor of the bed shear strength. Muzzammil et al. [27], based on Debnath
and Chaudhuri’s [2] laboratory data, presented a more powerful model using the genetic
expression programming (GEP) method to predict the depth of scour, which is given
as follows:

ds

D
= 0.656 + 2Fr − 3C + Ws +

1
τ̂s

(2)

This model is used for further investigations of the failure probability of bridge piers
under scour conditions in this work.

2.1.2. Probabilistic Scour Depth Prediction Model

The probabilistic assessment of each system is based on a limit state function (LSF).
Therefore, if in a system, where X = [x1, x2, . . . , xn ]T is a vector of random variables af-
fecting its resistance (R) and load (L), the LSF can be expressed using the following equation:

g(X) = R− L (3)
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If the load of the system exceeds its resistance, the system will fail, which is expressed
mathematically as formulated in Equation (4):

Pf = P[g(X) ≤ 0] =
∫

g(X)≤0
f (X) dX (4)

where f (X) is the probability density function (PDF) of vector X of the random variables
and g(X) ≤ 0 represents the failure set. In this study, for the bridge scour problem, the LSF
can be written in the form of Equation (5):

g(X) = dr − ds (5)

where dr and ds are the depth of the foundation and the maximum scour depth, respec-
tively. The expression for ds with a model correction factor (λ) in the LSF can be extracted
as follows:

g(X) = dr − λD
(

0.656 + 2Fr − 3C + WS +
1
τ̂s

)
(6)

where λ is the model correction factor expressed as the ratio of the observed-to-predicted
scour depth [38].

2.2. Review of the Simulation Methods for the Reliability Analysis

This section briefly reviews the five examined simulation-based methods for solving
the presented structural reliability problem in Section 2. These approaches include Monte
Carlo simulation (MCS), importance sampling (IS), subset simulation (SS), line sampling
(LS), and directional simulation (DS).

2.2.1. Monte Carlo Simulation (MCS)

Generally, the basis of simulation methods for accurate estimation of the probability
of failure is the production of random samples in accordance with the distribution of the
random variables for the problem at hand, where the response of the system is calculated
for each set of random variables generated [39,40]. Monte Carlo simulation (MCS) is
considered the most widely used reliability approach for solving problems in several
fields. The method was proposed by Metropolis and Ulam [41] based on the coverage
of all possible space by the produced samples [42]. In this method, random samples are
produced based on the statistical distribution functions of various random variables, and
then the LSF is assessed based on each set of samples, and the probability of system failure
is calculated by dividing the number of states g(X) ≤ 0 by the total number of sample sets
(Equations (7) and (8)) [43].

Pf = P[g(X1, X2, . . . , Xn) ≤ 0] =
1
N

N

∑
i=1

I(X1, X2, . . . , Xn) (7)

where N is the total number of simulations and I(X1, X2, . . . , Xn) is a function defined by:

I(X1, X2, . . . , Xn) =

{
1 i f g(X1, X2, . . . , Xn) ≤ 0
0 i f g(X1, X2, . . . , Xn) ≤ 0

(8)

2.2.2. Importance Sampling (IS)

Importance sampling (IS) is a method based on the reduction of variance that has
a significant effect on reducing the computational cost while using the MCS, in which
the SS utilizes an alternative function h(v) instead of the original distribution function of
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the random variables. In this method, selecting a suitable alternative function is of great
importance. The probability of failure in the IS is calculated by the following equation [44]:

Pf =
∫

g(V)≤0

I(V1, V2, . . . , Vn) f (v)
h(v)

h(v)dv =
1
N

N

∑
i=1

I[g(V1, V2, . . . , Vn)]
fX(Vi)

hV(Vi)
(9)

where V is the vector of a variable with the probability density function h(v).

2.2.3. Subset Simulation (SS)

Subset simulation (SS) is one of the most efficient methods for calculating the prob-
ability of failure for engineering problems that have a small probability of failure [45].
In this method, the probability of failure is expressed by multiplying large amounts of
conditional probabilities. Thus, the failure probability of the problem becomes a sequence
of conditional events. In the simulation process, conditional samples are generated using
the Markov chain and the Metropolis algorithm to cover the failure area [46]. Accord-
ing to Figure 1, if b1 > b2 > . . . > bm = 0 and the intermediate events are defined as
Fk = {X : g(X) < bk}; (k = 1, 2, . . . , m) [47,48]:

F1 ⊃ F2 ⊃ . . . ⊃ Fm (10)

F1
k
∩

i=1
Fi (11)
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Consequently, the probability of event Fk can be computed by the product of the
conditional probabilities as follows:

Pf = P(F) = P(Fm|Fm−1) = . . . = P(F1)
m−1

∏
i=1

P(Fi+1|Fi) (12)

Pf = P(F) = P(Fm|Fm−1) = . . . = P(F1)
m−1

∏
i=1

P(Fi+1|Fi) (13)

2.2.4. Line Sampling (LS)

The basis of the line sampling method is transferring the variables to the normal stan-
dard space, finding the direction of the most probable point (MPP) and producing samples
in the importance direction [50]. This method combines the reliability and simulation
algorithms. If a is an important vector (Figure 2), the failure area is expressed as follows:
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F =
{

X ∈ Rn : xa ∈ Fa

(
X⊥1 , . . . , X⊥n−1

)}
(14)

where xa is a realization of the random variable Xa, which is defined along a; x⊥ ∈ Rn−1

is a realization of a vector of random variables orthogonal to a, denoted as X⊥; and Fa
is a function representing the failure domain along a, defined on Rn−1. Then, Pf can be
expressed as follows:

Pf =
∫
Rn

IF(X)φZ(X)dX = Ex⊥

[
Φ
(

Fa

(
X⊥
))]

(15)
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In the case that Fa

(
X⊥
)

lies within the half open interval [β
(

X⊥
)

, ∞), the one-dimensional

conditional failure probability can be evaluated as Φ(Fa

(
X⊥
)
= Φ

(
−β
(

X⊥
))

, where β
(

X⊥
)

is a reliability index, as indicated in Figure 2. An unbiased estimate of Pf is calculated on a

set of samples
{

X⊥1 ∼ φX⊥

(
X⊥
)

: i = 1, . . . , N
}

as:

P̂f =
1
N

N

∑
i=1

Φ(Fa

(
X⊥i
)
=

1
N

N

∑
i=1

Φ(−β
(

X⊥i
)
=

1
N

N

∑
i=1

PFi (16)

where PFi = Φ
(
−β
(

X⊥i
))

.

2.2.5. Directional Sampling (DS)

In the DS method, the variables are transferred to a Cartesian coordinate system. The
idea of the DS approach is to use directions instead of samples. If U is an n-dimensional
vector with Gaussian distribution as U = RA (R > 0), where A is a random unit vector
uniformly distributed on the unit sphere, R2 is a chi-square-distributed random variable
with n degrees of freedom. Conditioning on A = a, the probability of failure can be
written as [50]:

Pf =
∫

a ∈ Ωn
P{g(RA) ≤ 0|A = a} fA(a)da =

∫
a ∈ Ωn

P{g(Ra) ≤ 0} fA(a)da (17)
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where fA(a) is the probability function density of A on the unit sphere. The failure
probability (Pf) is now calculated by performing N simulations of the unit vector A, and
then, with the sample values pi = P{g(Ra) ≤ 0}, Pf is obtained by the unbiased estimator:

Pf ≈ E[PF] =
1
N

N

∑
i=1

pi (18)

3. Implementation, Results, and Discussions
3.1. Case Study

To evaluate the previous described reliability methods mentioned above, the database
of Debnath and Chaudhuri [2] was utilized in this study. The statistical characteristics
of the random variables are reported in Table 1. Given that the reliability of a system is
expressed in the form of the reliability index (β) in various studies, here the reliability index
based on the studied reliability methods is examined for different safety factor values. The
relationship between the reliability index (β) and the probability of failure (Pf) for a given
vector of random variables, X, is expressed as follows:

Pf = Φ(−β) (19)

Table 1. Distribution properties of the utilized input random variables [3,4].

Variables Symbol Unit Xmean COV Distribution

Model correction factor λ - 1.00 0.06 Normal
Pier diameter D m 0.09 0.05 Lognormal

Pier Froude number Fr - 0.29 0.003 Normal
Clay fraction C - 0.19 0.010 Lognormal
Water content Wc - 0.22 0.002 Normal

Bed shear strength τs

(
N
m2

)
5271.42 0.06 Lognormal

CoV = Coefficient of variation.

The safety factor is also a traditional parameter for expressing the safety of the system
against design uncertainties. Thus, the safety factor of scour is defined as the ratio of the
maximum scour depth to the depth of the foundation.

SF =
d f

ds
(20)

3.2. Reliability Methods Performance

In assessing the reliability analysis of a complex problem, the first step after defining
the limit state function and determining the distribution functions of the input random
variables is to select the appropriate setting parameters or the number of samples required
for the simulation process for each reliability method. The selected values of simulation in
each method (i.e., MCS, SS, IS, LS, and DS) in this study are presented in Table 2. Besides,
the diagram of convergence for the MCS is shown in Figure 3. According to the reported
values in Table 2 and Figure 3, the MCS needs more than one million simulations to
achieve accurate results of the failure probability of the presented problem of a bridge
pier under local scour conditions. In contrast, a suggested number of 1000, 6000, 100,
and 150 simulations were attributed to the IS, SS, LS, and DS, respectively, in order to
reduce the computational cost burden compared to the one provided by the MCS. It is
worth mentioning that these selected values in Table 2 are obtained by the same process as
that illustrated in Figure 3 for all reliability methods, where the number of simulations is
increased until the probability of failure value stabilizes. Thus, this procedure indicates the
highly delicate nature and sensitivity of the reliability analysis process to the selection of a
simulation number for accurate failure probability results.
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Table 2. The required simulation number for reliability analysis.

Methods Number of Simulations

Monte Carlo simulation (MCS) 1,000,000
Importance sampling (IS) 1000

Subset simulation (SS) 6000
Line sampling (LS) 100

Directional simulation (DS) 150
Modelling 2021, 3, FOR PEER REVIEW 8 
 

 

 
Figure 3. The coverage curve of the MCS. 

 
Figure 4. Variation of the probability of failure versus the safety factor using the MCS. 

In the second step, based on the results obtained by using the MCS, the other relia-
bility methods (i.e., SS, IS, DS, and LS) were evaluated for different safety factor values, 
and their performance results compared to the ones by the MCS are reported in Table 3 
and shown in Figures 5–8. According to the estimated results by the proposed simulation 
methods, it is clear that both the DS (Figure 5) and the LS (Figure 6) failed to estimate the 
probability of failure values of the studied problem due to the complexity and nonlinear-
ity of the LSF (Equation (6)). Note that in these two methods, it is very important to find 
the optimum values of the direction vector a, and generally, as the complexity of the prob-
lem increases, it becomes very difficult to obtain an optimum value of the direction vector 
a for these methods, which is considered one of their major weaknesses. Moreover, the IS 

0 0.5 1 1.5 2 2.5
Number of simulations 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fa
ilu

re
 p

ro
ba

bi
lit

y

10-5 Safety factor = 1

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Figure 3. The coverage curve of the MCS.

After the optimum selection of a suitable number of simulation samples for each
reliability method, the reliability analysis of a local scour at a bridge pier formulated using
the LSF in Equation (6) was performed using MCS, where the safety factor takes values
in the range between 1 and 1.5 with a separated distance of 0.1. The obtained reliability
analysis results are presented in Figure 4. It is obvious that the results clearly show a
decrease in Pf values with an increase in safety factor values. Moreover, it can be indicated
that the value of the reliability index (β) increased from 4.15 with a safety factor value equal
to 1 to 4.52 with a safety factor equal to 1.5.

In the second step, based on the results obtained by using the MCS, the other reliability
methods (i.e., SS, IS, DS, and LS) were evaluated for different safety factor values, and their
performance results compared to the ones by the MCS are reported in Table 3 and shown
in Figures 5–8. According to the estimated results by the proposed simulation methods, it
is clear that both the DS (Figure 5) and the LS (Figure 6) failed to estimate the probability
of failure values of the studied problem due to the complexity and nonlinearity of the LSF
(Equation (6)). Note that in these two methods, it is very important to find the optimum
values of the direction vector a, and generally, as the complexity of the problem increases, it
becomes very difficult to obtain an optimum value of the direction vector a for these methods,
which is considered one of their major weaknesses. Moreover, the IS (Figure 7) has proven
in some cases to be unable to make a good estimation of the probability of failure, as in
the case of a safety factor value equal to 1.1, in which the obtained probability of failure
by the IS is equal to 1.84 × 10−5, while using the MCS it is 1.20 × 10−5. However, the
IS shows poor estimations compared to almost all the other cases compared to the MCS.
Among the proposed simulation methods for the reliability analysis of a bridge pier under
local scour conditions, the SS (Figure 8) is the only one that has been able to produce a
good approximation of the failure probability for almost all the safety factor values. As an
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example of the reported results in Table 3 and Figure 8, the Pf using the SS for SF = 1.4 is
Pf = 2.90 × 10−6, while using the MCS, Pf = 5.00 × 10−6, which is relatively very close.
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Table 3. Reliability index and failure probability values for different safety factor values using all proposed simulation methods.

Safety
Factor 1 1.1 1.2 1.3 1.4 1.5

Pf β Pf β Pf β Pf β Pf β Pf β

MCS 1.60 × 10−5 4.1587 1.20 × 10−5 4.224 8.00 × 10−6 4.3145 6.00 × 10−6 4.3776 5.00 × 10−6 4.4172 3.00 × 10−6 4.5264
DS 0.076985 1.43 9.02 × 10−2 1.3394 1.02 × 10−1 1.2711 6.42 × 10−2 1.5203 7.13 × 10−2 1.466 0.043372 1.7128
LS 1.05 × 10−5 4.2546 1.05 × 10−5 4.2546 1.05 × 10−5 4.2546 1.05 × 10−5 4.2546 1.05 × 10−5 4.2546 1.05 × 10−5 4.2546
IS 3.25 × 10−5 3.994 1.84 × 10−5 4.1268 9.51 × 10−5 3.7318 6.52 × 10−5 3.8257 1.46 × 10−5 4.1802 1.69 × 10−5 4.1464
SS 1.85 × 10−5 4.126 6.36 × 10−6 4.1643 7.67 × 10−6 4.2749 7.56 × 10−6 4.3269 2.90 × 10−6 4.3954 2.85 × 10−6 4.4727
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In addition, the calculated relative error (%) based on the reliability index between the
proposed simulation and MCS methods was also investigated and is presented in Table 4. It
can be seen from the tabulated results that the DS yielded the highest relative errors, which
is mostly higher than 60% of all safety factor values, while the LS failed to estimate the
reliability index (β) that yielded the same value for all safety factor cases (i.e., β = 4.2546).
The IS revealed an average relative error between 2.3% and 13.51%, which is considered
moderate performance. Finally, it can be seen that the SS method was the most efficient
simulation method compared to the others, where the highest yielded relative error was
equal to 1.41%. Thus, it can be concluded that the SS manages to solve the complexities for
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the problem of the local scour of a bridge pier with high accuracy as the MCS, with only
6000 simulations instead of one million using the MCS.
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Table 4. Comparative percentage relative error of the proposed simulation methods and the MCS for
different safety factor values.

Method DS LS IS SS

Safety
Factor β

Error
(%) β

Error
(%) β

Error
(%) β

Error
(%)

1 1.43 65.61 4.2546 −2.31 3.994 3.96 4.126 0.79
1.1 1.3394 68.29 4.2546 −0.72 4.1268 2.30 4.1643 1.41
1.2 1.2711 70.54 4.2546 1.39 3.7318 13.51 4.2749 0.92
1.3 1.5203 65.27 4.2546 2.81 3.8257 12.61 4.3269 1.16
1.4 1.466 66.81 4.2546 3.68 4.1802 5.37 4.3954 0.49
1.5 1.7128 62.16 4.2546 6.00 4.1464 8.40 4.4727 1.19

3.3. Uncertainty Effect of Scouring Parameters

After the evaluation of the proposed simulation methods for solving the problem
of the local scour of a bridge pier, the influence of the different parameters included in
the LSF (Equation (6)) formulation on the reliability index was carried out. The influence
of the scouring parameters on the reliability index was investigated for variations in a
range from 0.5 to 1.5 (i.e., 50–150%). These parameters include the model’s correction
factor (λ), pier diameter (D), Froude number (Fr), clay fraction (C), water content (Wc),
and bed shear strength (τs). The results of the sensitivity analysis against uncertainties
are plotted in Figure 9. From the results, it should be clear that the reliability index value
decreases with an increase in the uncertainties from 0.5 to 1.5 for the Froude number, bed
shear strength, and water content. Based on the reported analysis results, it can be seen
that the Froude number has the greatest impact on the reliability index compared to the
other input variables. In this way, with increasing uncertainty of Fr from 0.5 to 1.5, the
reliability index decreased from 4.26 to 4.14. In other words, the scour depth increases with
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an increase in the Froude number. Thereafter, the bed shear strength, clay fraction, and
water content affect the bridge pier, causing failure. The bed shear strength and the pier
diameter have a similar behavior to the Froude number with regard to their uncertainty in
scouring. In contrast, with uncertainty increasing in the clay fraction, the reliability index
slightly increases, so at first, with an uncertainty of 0.5, the reliability is 4.2, and in the end,
with an uncertainty of 1.5, it is equal to 4.3.
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4. Conclusions

Maintaining the safety levels of bridge piers under local scour conditions is an im-
portant task, especially in clay-sand-mixed sediments. Thus, the present work mainly
focused on the appropriate selection of structural reliability approaches for accurate and
precise estimation of the failure probability of these structures. A probabilistic analysis of
local scour at a bridge pier in clay-sand-mixed sediments using five simulation methods
was conducted. These approaches included Monte Carlo simulation as a reference, subset
simulation (SS), directional sampling (DS), importance sampling (IS), and line sampling
(LS). Moreover, a large database of real experimental data that comprised 250 real samples
was employed. Several findings and remarks are as follows:

• The reliability index increases with an increase in the safety factor, whereas an increase
in the safety factor causes a decrease in failure probability.

• The results showed that subset simulation (SS) has excellent performance for the
accurate and precise estimation of failure probability compared to the IS, LS, and DS.
The SS yielded the lowest relative error, relative to MCS, in which the highest error
was 1.41% for a safety factor between 1 and 1.5.

• The DS showed the lowest performance for solving this engineering problem, with
the highest relative error of 70.54% (SF = 1.2) compared to other simulation meth-
ods. In addition, the LS failed to deal with this current problem and was unable to
approximate the reliability index for different safety factor values.

• The sensitivity analysis revealed that the model correction factor and water content are
resisting factors related to reliability. The Froude number was found to be a dominant
parameter related to the bridge pier failure.
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Abbreviations

ds: Maximum scour depth (m)
D: Pier diameter (m)
C: Clay content
WC: Water content
Fr: Pier Froude number
τs: Bed shear strength
τ̂s: Dimensionless factor of the bed shear strength ( τs

ρV2 )

ρ: Mass density of water
V: Depth averaged velocity
LSF: Limit state function
Pf: Failure probability
dr : Depth of foundation
MCS: Monte Carlo simulation
DS: Directional simulation
LS: Line sampling
SS: Subset simulation
IS: Importance sampling
SF: Safety factor
f (X) : Probability density function
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