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Abstract: Nonhomogeneous material characteristics of masonry lead to complex fracture mechanisms,
which require substantial analysis regarding the influence of masonry constituents. In this context, this
study presents a discontinuum modeling strategy, based on the discrete element method, developed to
investigate the tensile fracture mechanism of masonry wallettes parallel to the bed joints considering
the inherent variation in the material properties. The applied numerical approach utilizes polyhedral
blocks to represent masonry and integrate the equations of motion explicitly to compute nodal
velocities for each block in the system. The mechanical interaction between the adjacent blocks is
computed at the active contact points, where the contact stresses are calculated and updated based
on the implemented contact constitutive models. In this research, different fracture mechanisms of
masonry wallettes under tension are explored developing at the unit–mortar interface and/or within
the units. The contact properties are determined based on certain statistical variations. Emphasis
is given to the influence of the material properties on the fracture mechanism and capacity of the
masonry assemblages. The results of the analysis reveal and quantify the importance of the contact
properties for unit and unit–mortar interfaces (e.g., tensile strength, cohesion, and friction coefficient)
in terms of capacity and corresponding fracture mechanism for masonry wallettes.
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1. Introduction

Masonry is a heterogeneous, nonlinear, and composite construction material consisting of units
and mortar. The components within a masonry assemblage may have a considerable difference
in terms of stiffness and strength, which makes it challenging to predict the deformation behavior
(e.g., stress–displacement curve) of the material at the macro-level. Additionally, the heterogeneous
character of mortar, unit, and unit–mortar interface properties inherently leads to large scattering in the
experimental results, as noted by several researchers [1,2]. From the computational point of view, most
of the numerical models presented in the literature are deterministic and rely on the continuum-based
representation of the masonry, described as an equivalent orthotropic continuum associated with
either plasticity or damage constitutive laws. In the present research, an alternative approach is
employed using the discrete element method (DEM), where the masonry texture is replicated via
discrete polyhedral blocks, as shown in Figure 1. Note that generated blocks are grouped to simulate
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masonry units and unit–mortar interfaces, where each masonry unit in the discrete model is expanded
up to the half-thickness of the mortar joints (see Figure 1). Therefore, with the help of the proposed
discontinuum-based modeling strategy, cracking in the masonry units and sliding/tension failure
modes at the unit–mortar interfaces can be captured. The mechanical interaction among the blocks is
represented using nonlinear spring models at the contact points, defined among the adjacent blocks,
similarly to work published elsewhere [3–5]. Hence, utilizing the discontinuum representation of
masonry, this research aimed to better understand the influence of material properties in masonry
wallettes on the fracture mechanism and stress–displacement behavior, subjected to tension parallel to
bed joints.
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In a preceding study by the authors, Pulatsu et al. [6], a deterministic modeling strategy was used to
explore the tensile behavior of the masonry wallettes using average contact properties. The contribution
of the present study furthers this investigation and explores the effect of statistically varied contact
properties. In other words, the emphasis of this work is on the stochastic analysis of masonry wallettes
within the discrete element method framework. Therefore, the goals of this research are as follows:

• To investigate the effect of nonlinear contact properties on the macro behavior of the masonry
wallettes subjected to tension parallel to bed joints.

• To gain a better understanding of the tensile fracture mechanism in masonry, considering strong
masonry unit–weak mortar joint and weak masonry unit–strong mortar joint systems.

In the following sections, a brief overview of the applied computational method and the statistical
sampling method are presented.

2. Computational Framework

The employed modeling strategy, discrete element method (DEM), is developed by Cundall [7]
in the early 1970s to analyze the progressive collapse mechanism of the jointed rock masses. Since
then, DEM has been applied to various engineering disciplines ranging from micro- to macro-scale.
Fundamentally, DEM was developed to explore the mechanical behavior of the discontinuous systems
by considering them as an assembly of rigid and/or deformable blocks, interacting with each other
through the contact points. Deformability of the blocks is introduced by constant strain tetrahedral
element (CST) discretization of the block, referred to as finite-difference zones, that may be considered
as an internal mesh.

In DEM, the mechanical interaction between the adjacent polyhedral blocks is simulated based
on the point contact hypothesis [8], as shown in Figure 2. The random generation of the polyhedral
blocks is performed using an open-source software package NEPER. The interested readers can access
the mathematical background and applications of this software in related sources [9–13]. The elastic
response of the contact is controlled by the orthogonal springs both in the normal and shear directions,
based on the assigned contact stiffness kn and ks, respectively; whereas the post-peak behavior is
governed by the nonlinear parameters, namely tensile strength ( fT) defined in the normal direction
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and cohesion (c) as well as the friction angle (φ) in the shear direction (see Figure 2). In the present
study, semi-rigid blocks are used considering relatively high stiffness at the finite-difference zones
(i.e., 10 times macro elastic stiffness) to lump the linear and nonlinear displacements at the joints as
performed in relevant studies [3,6,13]. Therefore, deformations develop at the joints (i.e., along the
boundaries of adjacent polyhedral blocks) instead of within the block domain and block deformations
have negligible influence on the macro stress–displacement behavior of the system.
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The computational procedure of DEM relies on the explicit integration scheme of the equations
of motion for the nodal points. The governing equations of motion are solved using the central
difference method and turn into a compact form (see Equation (1)), evaluated at the mid-time intervals
(t+ = t + ∆t/2, t− = t− ∆t/2; ∆t : time step).
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where m,
.
u, and F are the nodal mass, nodal velocity vector, and the resultant nodal force vector,

respectively. The resultant nodal force vector is calculated as the sum of the external forces, contact
forces, gravity forces, and the contribution to the internal stress in the zones adjacent to the nodes.
Furthermore, Fd and λ denote the damping force and dimensionless damping constant (default value
is 0.8). Note that local type of damping is applied during the analyses, which is proportional to the
magnitude of the unbalanced force (

∣∣∣Ft
i

∣∣∣) and applied to the opposite direction of the velocity vector [14].
Thus, the damping force varies from one point to another in the model, depending on the magnitude of
the unbalanced force. Once the nodal velocities are computed, nodal displacements (∆ui =

.
ut+

i ∆t) are
obtained to update the position of the blocks. Accordingly, the contact stresses, developing among the
adjacent blocks, are calculated based on the defined contact stress–displacement laws then multiplied
with the contact area to be utilized in Equation (1). It is worth noting that small displacement theory is
assumed through the computational procedure; thus, only initially established contacts are taken into
consideration and updated during the analyses. At each time step, elastic stress increments (∆σ, ∆τ)
are computed using the relative contact displacements (∆un, ∆us) and added to the previous contact
stresses (σold, τold) to obtain the new ones (σnew, τnew) as expressed in Equation (2).

σnew = σold + ∆σ; ∆σ = kn∆unτ
new = τold + ∆σ; ∆τ = ks∆us (2)

Moreover, the dilatancy is taken into account upon the shear failure at the contact point, considering
the dilation angle (ψ) to modify the normal stress increment as follows; ∆σTotal = ∆σ+ kn∆ustanψ.
The numerical stability of the explicit integration scheme is ensured by utilizing a sufficiently small
time-step during the analysis, calculated as follows.

∆t = 2
√

m/kgp (3)
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where kgp denotes nodal stiffness obtained by adding zone and contact stiffness [15]. Hence,
the computational procedure is executed in a cyclic manner, presented in Figure 3, until the quasi-static
equilibrium is reached at the discontinuum system.
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Throughout this research, a commercial discrete element code 3DEC, developed by Itasca, is used,
where the custom contact constitutive models are adopted into the software (3DEC) via a user-defined
constitutive model option [16].

2.1. Contact Constitutive Models

As mentioned earlier in the article, the linear response (elastic deformation) of the discrete
models is controlled by the contact stiffnesses (normal and shear springs), which can be computed by
Equation (4), given in [17,18].

kn = E/t; ks = G/t (4)

where t indicates the average thickness of the fracture zone, whereas E and G denote the macro elastic
and shear modulus of masonry, respectively. Contact stiffness values have an inverse relationship
with the thickness of the fracture zone (or the number of blocks), which means that the contact
stiffness increases with a higher number of blocks, as discussed in the literature [13]. In the nonlinear
regime, computed contact stresses are updated based on the defined failure criteria. Typically, most
discrete element models consider sudden stress drops at the contact points in the normal direction
(i.e., zero tensile strength is adopted, or the contact is deleted after the contact stress reaches the
ultimate stress) and residual shear strength upon the sliding failure. However, softening behavior
(i.e., a gradual decrease of stress with increasing deformation) is a salient feature of the quasi-brittle
materials (e.g., concrete, mortar, clay brick, and rock) due to a process of progressive internal crack
growth [19,20]. To address this gradual degradation and the corresponding decrease in the load
carrying capacity of the material, nonlinear contact constitutive models are implemented in 3DEC to
be utilized in tension and shear failure criteria considering exponential softening functions (Figure 4).
The mathematical formulations of the exponential functions, given by Lourenço et al. [21], and further
details about the contact models can be found in the related study [6]. It is important to note that the
Coulomb slip joint model is utilized in the shear direction, where the maximum and residual shear
strengths are calculated as written in Equation (5), and the descending branch beyond the peak is
defined via softening of the cohesion [22]. Once the contact stress reaches its capacity, the implemented
contact models are activated and updated (new) contact stresses are calculated. The contact models
(linear and polynomial softening) developed by the authors are available online and free to download
for all 3DEC users [23].

τmax = c0 + tanφ0 σ; τres = cres + tanφres σ (5)
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2.2. Benchmark Study and Testing Setup

The cracking mechanism of masonry depends on the mechanical properties of its constituents and
their interactions. However, most experimental studies are related to the tensile response of masonry
components (i.e., bricks) and tension perpendicular to the unit–mortar interface [24,25]. There are a
limited number of works available in the literature related to the tensile response of masonry parallel
to bed joints [26].

In this research, the well-known test setup and experimental results, presented by Backes [2],
are used as the benchmark study, where different types of masonry units and mortar combinations
were tested. Throughout the testing program, masonry wallettes, composed of four courses of units
with unit dimensions of 240 mm × 115 mm × 113 mm, were subjected to uniaxial tensile forces applied
through steel plates that were glued to both sides of the wallette. In Figure 5, an illustration of the test
setup and boundary conditions are demonstrated on the discontinuum model, in which the lateral
deflections are imposed to the right-hand side of the specimen while the opposite side is restricted.
Specifically, the constant nodal velocities are prescribed for all gridpoints at the right-hand side of the
specimen, whereas gridpoints at the opposite side are restricted in the horizontal direction. To ensure
the numerical stability during the analysis, a relatively low displacement rate (i.e., 1 mm/s) is defined
at the gridpoints, allowing to obtain a smooth response from the numerical solutions as discussed
in [27]. Reaction forces are extracted from gridpoints, in which the constant velocity is applied, via
the implemented subroutine in the software based on FISH functions (an executable programming
language in 3DEC).Modelling 2020, 2, FOR PEER REVIEW 6 
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Figure 5. Boundary conditions; the tensile test of masonry parallel to bed joints.

The experimental findings show that two failure mechanisms develop depending on the type of
masonry constituents: (i) tensile and shear debonding at the unit–mortar interfaces (failure mode I)
and (ii) tensile failure in the mortar joint and cracking at the units (failure mode II). The former was
obtained when the weak mortar joint with strong masonry units was used, whereas the latter was
observed when weaker masonry units and relatively strong mortar joint were utilized. Typical failure
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patterns obtained from the experiment are shown in Figure 6a. Furthermore, these two failures modes
led to different stress–displacement (or stress–strain) curves, where the failure mode I resulted in an
approximately constant residual stress after the peak due to interlocking effect of the units and friction,
and the failure mode II demonstrated a sharp descending branch after the maximum tensile stress was
obtained (see Figure 6b), as typical in quasi-brittle materials such as concrete. For further details about
the testing, readers are referred to [2].
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Figure 6. Failure modes and macro behavior of masonry wallettes, obtained from the experiment [2].
(a) Left: Failure mode I, Right: Failure mode II, (b) Stress–displacement response of masonry wallettes,
corresponding to different failure modes.

3. Statistical Representation of the Material Properties

The elastic modulus of the masonry assembly (E), the tensile strength of the masonry unit ( ft,u),
the bond (unit–mortar interface) tensile strength ( ft,i), bond cohesion (c), the friction angle (φ), and the
dilation angle (ψ) are the random variables considered in the probabilistic analyses. The mean values
of variables are either obtained from the experimental data (if applicable) [2] or adopted from similar
tests, presented in the literature [22,28,29]. Furthermore, the residual friction angle (φres) is taken as
20% less than initial friction angle (φ) for all the joints.

The normal distribution is determined for the contact friction angle and the elastic modulus of
masonry following the examples in literature [30–33], while lognormal distribution is assumed for the
other parameters. The distributions of the random variables and their parameters are presented in
Tables 1 and 2 for the strong unit–weak bond (SU-WB) and weak unit–strong bond (WU-SB) systems,
respectively. Note that the shear contact parameters for the masonry units (i.e., cohesion (cu) and
friction angle (φu)) are kept constant throughout the analyses, where cu = 1.5 ft,u and φu = 45◦,
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respectively. Moreover, mode-I and -II fracture energies are computed based on the tensile strength
and cohesion parameters, as suggested in [34,35].

Table 1. Random variables and their distributions for the strong unit–weak bond (SU-WB).

Random
Variable

Prob.
Distribution Mean (µ) Coeff. of

Variation
Lognormal
Mean (µln)

Lognormal Std
Dev (σln)

E (GPa) Normal 4 0.30 N/A N/A
ft,u (MPa) Lognormal 1.0 0.45 −0.0922 0.4294
ft,i (MPa) Lognormal 0.10 0.45 −2.3948 0.4294
φ (degrees) Normal 35 0.30 N/A N/A

c (MPa) Lognormal 0.15 0.45 −1.9893 0.4294
ψ (degrees) Lognormal 2 0.30 0.6501 0.2936

Table 2. Random variables and their distributions for weak unit–strong bond (WU-SB).

Random
Variable

Prob.
Distribution Mean (µ) Coeff. of

Variation
Lognormal
Mean (µln)

Lognormal Std
Dev (σln)

E (GPa) Normal 4 0.30 N/A N/A
ft,u (MPa) Lognormal 0.25 0.45 −1.4785 0.4294
ft,i (MPa) Lognormal 0.20 0.45 −1.7016 0.4294
φ (degrees) Normal 35 0.30 N/A N/A

c (MPa) Lognormal 0.30 0.45 −1.2962 0.4294
ψ (degrees) Lognormal 2 0.30 0.6501 0.2936

Dependency between the random variables is considered via the correlation coefficient, which is a
linear dependency ratio. A strong relationship among ft,i, c, and φ is assumed and defined by 85%
correlation, whereas a moderate relationship between E and ft,u is represented by a 50% correlation.
With the predefined statistical distributions and the correlation between the random variables, the Latin
Hypercube Sampling (LHS) method is used to derive sample values for the simulations. The LHS
method reduces the variance in the Monte Carlo Simulation and, thus, lowers the number of required
simulations [36,37]. For each case (SU-WB and WU-SB), 200 simulations—400 simulations in total—were
conducted to derive the random parameters. In Figure 7, the graphical illustration of the input variables
for WB-SM, together with the corresponding histograms and probability distributions, is presented.
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The number of simulations is determined by monitoring the relative difference between the mean
values after a number of simulations with the prescribed mean values in Tables 1 and 2. The percentage
of the error is used to express the relative difference. The magnitude of the difference in the mean
and standard deviation values after “j” simulations can be tracked in Figures 8 and 9. As can be seen
from these figures, the final values of the errors/or differences are smaller than 0.1% for most of the
random variables.Modelling 2020, 2, FOR PEER REVIEW 9 
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Figure 9. Differences in the standard deviation (SD) values after j number of simulations.

4. Results of the Computational Models

In this section, the results of the computational models are presented. A range of values for
input parameters (E, ft,u, ft,i, c, and φ) are established for each simulation described in the previous
section, using statistical methods. The results of the analyses clearly show that the macro behavior
of the masonry wallettes reveals two separate stress–displacement trends corresponding to SU-WB
and WU-SB combinations, presented in Figure 10. As mentioned earlier in the article, similar
stress–displacement behaviors were also noted from the experimental observations. Moreover, readers
may find a brief discussion regarding the effect of block size and shape provided in the Appendix A.
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Figure 10. Stress–displacement behavior of SU-WB and WU-SB masonry wallettes under tension parallel to
bed joints with different material properties. (a) SU-WB (failure mode I), (b) WU-SB (failure mode II).

4.1. Failure Mode I: Strong Unit–Weak Bond (SU-WB) Behavior

When the strength of the units is higher than the mortar joints (i.e., strong unit–weak bond
system), experimental work demonstrated that the failure mode is governed by the unit–mortar
interfaces. A typical failure (denoted as mode I) indicates a zig-zag failure pattern, including shear
deformations (sliding) at the bed joints and the cracks at the head joints. A similar failure mechanism
is successfully obtained using the proposed modeling strategy, shown in Figure 11a. Furthermore,
performed stochastic analyses provide a wide range of stress–displacement results depending on the
defined contact properties (see Figure 11b). Regarding the fracture pattern, no significant difference is
observed during the analysis for this particular set of material properties. Results of the analyses show
that there is a 94.8% correlation between the bond strength ( ft,i and c) and the overall capacity, and an
81.4% correlation between unit–mortar interface (bond) friction angle (φ) and the overall capacity
(Figure 12). Since the governing mechanism for mode I is concentrated at the bed and head joints,
the capacity is strongly affected by bond tensile strength, cohesion, and friction angle, as expected.
The strong linear correlation between the tensile capacity and these two modeling parameters even
allows capacity prediction without requiring any simulations.
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Figure 11. Fracture mechanism and stress–displacement behavior of SU-WB masonry wallettes
(experimental result indicated via a thick red dashed line in part b). (a) Typical fracture mechanism of
SU-WB, (b) Macro behavior of SU-WB wallettes (DEM and Experiment).
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4.2. Failure Mode II: Weak Unit–Strong Bond (WU-SB) Behavior

The second failure mode of masonry wallettes includes more complex fracture patterns compared
to mode I. Specifically, when the tensile strength of the masonry units gets close to the bond strength
or even smaller than the bond strength, several distinctive fracture patterns are observed via the
proposed modeling strategy, categorized as two subgroups (fracture mechanisms) of failure mode II.
In the first subgroup, cracks develop through the head joints and units (FM-1 and FM-4 in Figure 13),
which was given as a typical fracture pattern in the benchmark study. On the other hand, in the
second subgroup, only the units fail under tension, corresponding to the condition where the bond
tensile strength is higher than the tensile strength of the masonry units ( ft,i > ft,u), denoted as FM-2
and FM-3 in Figure 13. In addition, a typical sliding mechanism (same as the mode I) is obtained
from the discontinuum models, reflecting the SU-WB combination (Figure 13c). However, this should
be expected depending on the determined data set and statistical distribution, in which there is a
chance to assign contact properties, where the masonry units may have relatively higher tensile
strength than the bond ( ft,i � ft,u). Fracture simulations of FM-1 and FM-2 are shared as video at the
supplementary documents.
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Figure 13. Different fracture mechanisms (FM) of the masonry wallettes subjected to tension parallel to
bed joints (WU-SB). (a) Left: FM-1; Right: FM-2, (b) Left: FM-3; Right: FM-4, (c) FM-5.

In the benchmark study, FM-1 was presented as the typical fracture pattern for strong bond
masonry wallettes, mentioned in Section 2.1. Our results also show that FM-1 has the highest probability
with 43%. In order to compare the stress–displacement curves obtained for FM-1 from the discontinuum
analyses, with the experimental result, they are plotted in the same graph in Figure 14. This comparison
demonstrates that the determined response envelope for the range of input material properties in DEM
is in good agreement with the experimental findings and can be considered representative of possible
dispersion of a larger number of testing series. For instance, in Figure 14, the average trend of the
numerical solutions resembles the experimental one, although an exact match is not possible due to
assumed statistical distributions of the random parameters.Modelling 2020, 2, FOR PEER REVIEW 15 
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Furthermore, the influence of contact parameters on the system’s overall capacity is investigated
considering each failure mode. The results show that there is a 64% correlation between the unit
tensile strength and capacity for WU-SB masonry wallettes, where the dispersion of the relation
regarding each specific failure mechanisms can be found in Figure 15a. FM-2 and FM-3 indicate a
perfect linear correlation (100%) between the tensile strength of the unit and the capacity, while the
scattered distribution of the data is related to the mechanisms involving the bond failure (Figure 15a).
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Figure 15. Effect of contact properties on the capacity for each fracture mechanism. (a) Influence of
unit tensile strength ( ft,u), (b) Influence of bond tensile strength ( ft,i) and cohesion (c), (c) Influence of
unit–mortar interface friction angle (φ).

A similar correlation factor, 65%, is obtained for the bond tensile strength ( ft,i) and the ultimate
load-carrying capacity. Note that, for bond tensile strength, FM-1 and FM-5 present 92% and 99%
correlation, whereas a more scattered data cloud is noted for FM-2 and FM-3 since these failure modes
are directly related to the cracking in masonry units (see Figure 15b). Finally, the lowest correlation
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factor, 54%, is computed for the contact friction angle at the unit–mortar interfaces. Given the fact
that only the FM-5 reveals a sliding mechanism at the bed joints, there should be a low correlation
expected for the other fracture mechanisms (Figure 15c). Partitioning of the modeling parameters
for each fracture mechanism allows deriving further correlation with the load-carrying capacity and
corresponding failure.

5. Conclusions

In this research, a stochastic discontinuum analysis is performed within the discrete element
method framework to analyze the diverse fracture mechanism of masonry wallettes subjected to
tension parallel to the bed joints. According to the results of the analyses, the following conclusions
are derived.

• The proposed modeling strategy allows detailed and realistic (based on comparison with
experimental results) fracture patterns of masonry wallettes. This is accomplished by representing
the masonry components (masonry units and unit–mortar interfaces) using mechanically
interacting discrete polyhedral blocks.

• The inherent uncertainty in the mechanical properties of masonry constituents yields various
possible fracture mechanisms. Through this research, all possible fracture patterns of masonry
wallettes under tension parallel to bed joints are explored. There is a great economy in
performing such a comprehensive study computationally instead of a very broad and costly
experimental campaign.

• Stochastic analyses enable us to attain the dispersion of the load-carrying capacity concerning the
modeling parameters (E, ft,u, ft,i, c, and φ). They highlight both the direct and indirect influence of
these parameters on the fracture patterns and stress–displacement behavior. Direct correlation of
the parameters such as the bond tensile strength, friction angle, or the unit tensile strength with
the capacity reflects the physically expected phenomena. In the future, results of these determined
correlations can be used to estimate the capacity of different arrangements of masonry materials
without using numerical simulations and may lead to the derivation of new empirical formulas to
predict the tensile capacity of masonry parallel to bed joints.

• For the given probability distributions of the material parameters, the fracture mechanisms and
their likelihood have been found. Moreover, the influence of the modeling parameters on the tensile
strength of masonry has been quantified. However, it should be noted that the results presented
within this study may be restricted to the statistical distributions and the parameters used.

Currently, the practical applications of this work are restricted to the capacity prediction
concerning the change in the modeling parameters for specific fracture mechanisms. Future studies
(both experimental testing and stochastic numerical analyses) considering different material properties
and masonry unit sizes will help define reference values and empirical equations for tensile strength
prediction, which can then be used directly by practitioners. A further step ahead would be using
statistical learning methods to predict both the fracture mechanism and the tensile strength in the
multi-dimensional parameter space.

Supplementary Materials: The following are available online at http://www.mdpi.com/2673-3951/1/2/6/s1,
Video S1: SU-WM-failure mode I, Video S2: WU-SB (FM-1), Video S3: WU-SB (FM-2).
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Appendix A

In this section, the influence of block size and shape are presented regarding capacity and
stress–displacement behavior. The former was discussed in a preceding study published by the authors,
where no severe block size dependency was observed from the results of discrete element models
(see [6]). Note that discontinuum models were grouped according to the size of the polyhedral blocks,
denoted as coarse, medium (present study), and fine, that were analyzed using one set of contact
properties, presented in [6]. The results are given in Figure A1.
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Figure A1. Influence of block-size on the capacity and stress–displacement response, Left: failure
mode I; Right: failure mode 2 (taken from [6]).

On the other hand, the latter (i.e., the effect of polygonal structure (or morphology)) requires
more research and only briefly discussed in this section based on the preliminary results for
WU-SB. Here, masonry composition is represented by different morphological features, as shown in
Figure A1. Each morphology is generated via the NEPER software package, mentioned earlier in the
manuscript [9–11]. Again, one set of contact properties are utilized that is taken from a preceding
study [6]. Although preliminary results do not indicate significant differences in terms of capacity and
demonstrate the same fracture mechanism (see Figure A2), more research is needed, especially for
different loading conditions and contact properties.
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