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Abstract: The three most common modalities of graft surveillance in pediatric heart transplant (HT)
recipients include echocardiography, coronary angiography, and endomyocardial biopsy (EMB).
The survival outcomes after HT in children have improved considerably in recent years. How-
ever, allograft rejection and cardiac allograft vasculopathy remain the leading cause of death or
re-transplantation. The routine surveillance by EMB and coronary angiography are invasive and
risky. Newer noninvasive echocardiographic techniques, including tissue Doppler imaging (TDI),
2-D speckle tracking echocardiography, CT coronary angiography (CTCA), cardiovascular magnetic
resonance (CMR), single-photon emission computed tomography (SPECT), and positron emission
tomography (PET) and invasive techniques such as intravascular ultrasound (IVUS), functional flow
reserve (CFR) of coronary arteries, optical coherence tomography (OCT), have emerged as powerful
tools which may help early recognition of sub-clinical rejection, response to treatment, early detection,
and progression of CAV. The multimodality imaging approach, including noninvasive and invasive
tests, is the future for the transplanted heart to detect dysfunction, rejections, and early CAV. This
review illustrates noninvasive and invasive imaging techniques currently used or could be considered
for clinical use in detecting heart transplant rejection, dysfunction, and CAV in children.

Keywords: multimodality imaging; heart transplantation; children; adolescent; cardiac allograft
rejection; cardiac allograft vasculopathy

1. Introduction

Heart transplantation (HT) remains an effective but imperfect therapeutic option for
many children with end-stage heart failure. While there has been a significant improvement
in pediatric HT recipients’ outcomes in recent years, graft failure remains the primary source
of morbidity and mortality [1]. Most common causes of cardiac allograft failure in children
include acute rejections and cardiac allograft vasculopathy (CAV) [2]. The International
Society for Heart and Lung Transplantation (ISHLT) recommends echocardiography as the
primary monitoring modality of graft function, followed by coronary angiography and
endomyocardial biopsy (EMB) [3]. Per the 2010 ISHLT guidelines, the standard of care in
children and adults is to perform periodic EMB during the first 6 to 12 months to monitor
for acute rejection (Recommendation Class IIa, Level of evidence C). Selective coronary
angiography is the investigation of choice for diagnosing CAV in pediatric HT recipients.
It should be performed yearly or biannually (Recommendation Class I, Level of evidence
C). At coronary angiography, intravascular ultrasound (IVUS) can be safely carried out
in pediatric HT recipients to assess the early stages of CAV (Recommendation Class IIa,
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Level of evidence C). Functional coronary flow reserve (CFR) in conjunction with coronary
angiography may be helpful in the detection of small-vessel coronary disease, which is
an early manifestation of CAV (Recommendation class IIa, Level of Evidence C). The use
of EMB later than five years after HT is optional (Recommendation Class IIb, Level of
evidence C). The routine clinical use of cardiac magnetic resonance (CMR) imaging for
acute allograft rejection monitoring is not recommended (Recommendation Class III, Level
of evidence C).

Noninvasive imaging techniques such as tissue Doppler imaging (TDI), speckle track-
ing echocardiography (STE), stress echocardiography, CT coronary angiography (CTCA),
Cardiac MRI (CMR), single-photon emission computed tomography (SPECT), and positron
emission tomography (PET) offer new insights into acute rejection, graft dysfunction, and
CAV. Furthermore, intracoronary imaging methods such as IVUS and optical coherence
tomography (OCT) are emerging tools to detect early CAV. We conducted a comprehen-
sive search to determine if the newer imaging techniques for the transplanted heart have
advantages over the conventional methods outlined in updated ISHLT guidelines. We
searched the literature on “PubMed”, “Scopus”, and “Web of Science Core Collection”
using keywords of “Pediatric”, “Children”, Infants”, “Adolescents”, “Heart transplanta-
tion”, “Acute allograft rejection”, “Cardiac allograft vasculopathy”, “Echocardiography”,
“tissue Doppler imaging”, “Speckle tracking echocardiography”, “ CT coronary angiogra-
phy”, “Intravascular ultrasound”, “Fractional flow reserve”, “Cardiac magnetic resonance
imaging”, “Computerized tomography angiography”, “Optical Coherence Tomography”,
“Single-Photon Emission Computed Tomography”, and “Positron Emission Tomography”
Through 30 April 2022. This paper illustrates a comprehensive review of the different
noninvasive and invasive imaging techniques currently used or could be considered for
clinical use in detecting HT rejections, graft dysfunction, and CAV.

2. Echocardiography

The EMB is the gold standard for the diagnosis of rejection. However, catheterization
is an invasive procedure associated with complications inherent in invasive procedures [4].
Echocardiography is the primary testing modality for diagnosing cardiac allograft func-
tion [5]. Echocardiography is used in many ways, and the protocols vary from center
to enter. Significant variation exists across centers in diagnosing rejection in pediatric
HT recipients [6]. In addition, variable echocardiographic strategies may not be indepen-
dently associated with freedom from rejection, rejection with hemodynamic compromise,
or overall graft survival [7].

In the first few days after HT, there is usually an increase in the left ventricular (LV)
thickness due to edema, increased perfusion, and inflammatory cell infiltration (Figure 1).
Left ventricular mass and wall thicknesses generally normalize within three months, and
LV diastolic dysfunction normalizes in 3 to 6 months after HT. Therefore, the presence of LV
hypertrophy immediately after HT is considered a normal remodeling process. In addition,
Z-scores for LV wall thickness and indexed LV mass are helpful in describing characteristic
findings of LV hypertrophy when the heart is from an oversized donor.

Typically, the left ventricular ejection fraction (LVEF) and regional wall motion (except
ventricular septal dyskinesia) are preserved in most pediatric HT patients unless multi-
ple rejections or CAV develops. In contrast to evaluating the systolic function, diastolic
function assessment is challenging. The diastolic dysfunction or restrictive physiology is
expected in the immediate post-transplant period and has no predictive value. However,
the persistence of diastolic dysfunction 6-months after transplant has a negative prognostic
impact and is often related to inflammation, fibrosis, chronic rejection, and CAV [8]. Non-
invasively determined coronary flow reserve (CFR) by echocardiography is an accurate
tool for detecting diastolic function associated with CAV in HT recipients [9]. Few studies
have evaluated left atrial function and contractile reserve to evaluate the atrial function as
a surrogate marker of diastolic function [10]. The newer noninvasive echocardiographic
imaging such as TDI, strain, and strain rate analysis by speckle tracking echocardiography
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(STE) helps detect myocardial dysfunction. Currently, there is a shift in the paradigm of
rejection surveillance from EMB to noninvasive imaging in pediatric HT recipients. A joint
European Association of Cardiovascular imaging/Cardiovascular Imaging Department
of the Brazilian Society of Cardiology writing group committee has prepared recommen-
dations to provide a practical guide to providers involved in the follow-up of adult HT
patients and a framework for standardized and efficient use of cardiovascular imaging [11].
However, there is no comprehensive data for newer echocardiographic imaging modalities
in pediatric HT recipients except for small observational studies discussed below.
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Figure 1. Two-Dimensional echocardiography shows a short axis of LV with increased wall thick-
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ened interventricular sept, and LV posterior wall thickness increased (z score + 2). 

Typically, the left ventricular ejection fraction (LVEF) and regional wall motion (ex-
cept ventricular septal dyskinesia) are preserved in most pediatric HT patients unless 
multiple rejections or CAV develops. In contrast to evaluating the systolic function, dias-
tolic function assessment is challenging. The diastolic dysfunction or restrictive physiol-
ogy is expected in the immediate post-transplant period and has no predictive value. 
However, the persistence of diastolic dysfunction 6-months after transplant has a negative 
prognostic impact and is often related to inflammation, fibrosis, chronic rejection, and 
CAV [8]. Non-invasively determined coronary flow reserve (CFR) by echocardiography 
is an accurate tool for detecting diastolic function associated with CAV in HT recipients 
[9]. Few studies have evaluated left atrial function and contractile reserve to evaluate the 
atrial function as a surrogate marker of diastolic function [10]. The newer noninvasive 
echocardiographic imaging such as TDI, strain, and strain rate analysis by speckle track-
ing echocardiography (STE) helps detect myocardial dysfunction. Currently, there is a 
shift in the paradigm of rejection surveillance from EMB to noninvasive imaging in pedi-
atric HT recipients. A joint European Association of Cardiovascular imaging/Cardiovas-
cular Imaging Department of the Brazilian Society of Cardiology writing group committee 
has prepared recommendations to provide a practical guide to providers involved in the 
follow-up of adult HT patients and a framework for standardized and efficient use of car-
diovascular imaging [11]. However, there is no comprehensive data for newer echocardi-
ographic imaging modalities in pediatric HT recipients except for small observational 
studies discussed below. 

3. Myocardial Deformation Imaging 
Over the last decade, TDI and STE have been introduced in clinical echocardiography 

to quantify myocardial function at the regional level. Notably, LV wall motion and strain 
analysis improve after a few weeks of HT; therefore, myocardial deformation imaging is 
not very useful immediately after HT. Myocardial deformation imaging by TDI and STE 
is independent of cardiac motion and is increasingly being used in adults for serial moni-
toring of the transplanted heart 

3.1. Tissue Doppler Imaging 
TDI-based myocardial deformation imaging can evaluate LV stiffness and diastolic 

dysfunction [8,12–14]. Both LV myocardial stiffness and diastolic dysfunction in HT re-
cipients are likely due to low-grade subclinical rejection or coronary microvascular dis-
eases. TDI can determine the LV diastolic function by evaluating the longitudinal move-
ment at the mitral, tricuspid, and septal annulus levels, calculating early and late diastolic 
velocities (E and e’, respectively), and comparing these with reference values for children 

Figure 1. Two-Dimensional echocardiography shows a short axis of LV with increased wall thickness
due to edema and inflammation immediately after heart transplantation; arrows point to thickened
interventricular sept, and LV posterior wall thickness increased (z score + 2).

3. Myocardial Deformation Imaging

Over the last decade, TDI and STE have been introduced in clinical echocardiography
to quantify myocardial function at the regional level. Notably, LV wall motion and strain
analysis improve after a few weeks of HT; therefore, myocardial deformation imaging
is not very useful immediately after HT. Myocardial deformation imaging by TDI and
STE is independent of cardiac motion and is increasingly being used in adults for serial
monitoring of the transplanted heart.

3.1. Tissue Doppler Imaging

TDI-based myocardial deformation imaging can evaluate LV stiffness and diastolic
dysfunction [8,12–14]. Both LV myocardial stiffness and diastolic dysfunction in HT recipi-
ents are likely due to low-grade subclinical rejection or coronary microvascular diseases.
TDI can determine the LV diastolic function by evaluating the longitudinal movement at
the mitral, tricuspid, and septal annulus levels, calculating early and late diastolic veloci-
ties (E and e’, respectively), and comparing these with reference values for children [15].
Mitral and tricuspid valve e’ < 5.0 m/s had 93% negative predictive value for rejection [16].
Another study showed that TDI at medial mitral annulus E/e’ > 12 is associated with
elevated left ventricular end-diastolic pressure (LVEDP) and high-grade cellular rejection,
and a lateral tricuspid annulus E/e’ > 10 is associated with elevated mean right atrial
pressure [17]. However, the role of TDI is controversial in pediatric HT recipients and has
resulted in mixed results, as one study demonstrated no correlation with LVEDP [18]. Yet
another study showed that EMB-proven rejection is associated with a significant decline in
biventricular TDI velocities from baseline [19]. By using well-defined TDI criteria to predict
non-rejection, a substantial proportion of planned biopsies can be deferred or avoided in
pediatric HT recipients. In addition, many recent studies suggested that TDI parameters
help discriminate rejection from non-rejection and can be used as noninvasive surveillance
alternatives to EMB [16,20,21]. An example of abnormal LV myocardial velocities in pedi-
atric HT recipients with confirmed rejection by EMB (Grade 2R acute cellular rejection) and
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normal TDI in another HT of the same age patient are shown in Figure 2A–D, respectively.
The disadvantages of TDI in children include variable results with different vendors and the
absence of normal reference values established for pediatric HT recipients. The advantage
of TDI includes higher temporal resolution and less image dependence.
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Figure 2. (A) TDI of the medial mitral annulus and (B) lateral annulus of the mitral valve in a
six-year-old female three months post-transplant, showing diastolic dysfunction. E/e’ at medial
mitral annulus 16.1 and at lateral annulus 14.4. (C,D) show the normal TDI at the medial and lateral
annulus of the mitral valve in another 6-yr-old HT recipient who is doing well.

3.2. Speckle Tracking Echocardiography

Left ventricle ejection fraction (LVEF) and fractional shortening (LVFS) are standard
methods of quantifying LV systolic function. However, after HT, altered geometry of ven-
tricles, resting tachycardia, and abnormal septal motion occur, making standard echocar-
diography less sensitive to detect early dysfunction, rejection, or CAV. Strain and strain rate
analysis allows quantifying myocardial function at the regional level. STE is a more precise
method for quantifying LV function in pediatrics, with lower variability than LVEF and
LVFS [22]. Calculating strain and strain rate by 2-D STE in children has also been shown to
correlate with LVEDP [23–25]. Global longitudinal strain (GLS) is the most common strain
analysis used in pediatric HT recipients. Several small studies found that noninvasive
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GLS is sensitive and specific in identifying acute clinical rejection in pediatric HT recipi-
ents [6,26–29]. Speckle tracking strain and strain rate imaging were also helpful in defining
low-grade rejection in children after HT [30]. GLS by speckle tracking echocardiography
imaging correlates better with invasive measurement of LVEDP than traditional echocar-
diographic parameters [31,32]. The STE strain imaging is also valuable for detecting the
early development of CAV in children after HT [33]. An example of 2-D speckle tracking
imagine differentiating no-rejection versus chronic rejection in a pediatric HT recipient
is shown in Figure 3A–C. The advantage of STE is higher spatial resolution and is angle
independent. The disadvantages are similar to TDI, no normal values are established in
pediatric HT recipients, and there is a learning curve for this modality among technicians
and physicians.
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and (C): Average of global longitudinal strain, markedly decreased in a 15-year-old boy after 2 years
of HT.

3.3. Stress Echocardiography

Pediatric HT recipients > 6 years of age can exercise safely; however, their exercise tol-
erance is reduced, and LV contractility is reduced compared to healthy controls [34]. Stress
echocardiography can also be carried out with inotropes such as dobutamine induction of
stress. The goal of stress is to achieve the target heart rate. Echocardiographic abnormalities
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such as regional wall motion abnormalities during dobutamine stress echocardiography
correlated with CAV in pediatric HT recipients [35–37]. However, there are disparate results
in dobutamine stress echocardiography as the sensitivity rates vary between 35% and 71%,
specificity between 80% and 94%, the positive predictive value between 45% and 91%, and
negative predictive value between 81% and 92% [38,39]. Conversely, TDI for LV function
during the supine bicycle exercise test was preserved [40]. Assessment of LV GLS during
exercise stress test is also feasible and strongly associated with the presence and the degree
of CAV [41]. The disadvantages of stress echocardiography are operator dependency, low
quality of images, need to achieve a target heart rate, risk of arrhythmia, low sensitivity,
and may not be positive in early CAV.

4. Computed Tomography Coronary Angiogram

CT coronary angiography (CTCA) has higher sensitivity and specificity for diagnosing
CAV compared to stress echocardiography. It has been used in adults for routine detection
of CVA with good image quality and low radiation dose [42]. With photon-counting CT,
we are entering a new era that decreases radiation dose and less need for a contrast agent
for CTCA to detect CAV early in the disease process [43]. The advantage of CTCA is that
it is accessible in most centers, has a relatively low cost compared to MRI, and has high-
resolution images. In addition, based on CTCA, 2010 ISHLT has decreased the stenosis of
coronary to 50% rather previous 70% for early diagnosis of CAV [3]. The disadvantages are
radiation exposure; contrast cannot be used with renal dysfunction and does not give any
information on coronary microvasculature. CTCA is considered a gatekeeper for coronary
angiography. An example of early detection of CAV in an 18-year-old HT recipient is shown
in Figure 4. However, using CTCA in younger HT recipients has been challenging because
of their high heart rate, small vessel size, and inability to lie still or hold their breath.
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5. CMR Imaging

The CMR produces high-resolution images that allow accurate and reproducible
cardiac chamber size and systolic function measurement. CMR can assess diastolic function,
regional myocardial mechanics, and strain with a range of dedicated acquisitions and post-
processing techniques. A significant strength of CMR with T2 and T1 mapping is in
characterizing myocardial tissue properties: T1 mapping quantify myocyte damage and
fibrosis, and T2 mapping help in determining myocardial edema. Using T2 mapping
and extracellular volume (ECV) quantification in HT recipients provides high diagnostic
accuracy for acute rejection. It could potentially decrease the number of routine EMBs [44].
In addition, native T1 time and ECV correlate with collagen volume in pediatric HT
recipients [45]. In adults, CMR technology has been used since the 1980s and has shown
helpful in detecting acute rejection and CAV [46–48]. Despite significant advancements
related to CMR-based diagnosis of rejection and CAV in adults, there remain challenges
in differentiating normal from abnormal in pediatric HT recipients because of the lack
of pediatric normative data for quantitative parametric tissue mapping and variability
in native T1 values depending upon the static magnetic field intensity (1.5 T vs. 3 T).
Furthermore, age and gender might affect the T1 values, but there is currently no consensus
about their effect.

CMR is superior to traditional visual analyses to detect regional wall motion abnor-
malities in children. In a study, Dedieu et al. showed that CMR effectively detected regional
wall motion abnormalities corresponding to angiographic CAV in three patients that were
not detected on echocardiography [49]. Tissue characterization by CMR allows quantifica-
tion of ECV changes, which have been shown to correlate with diffuse myocardial fibrosis
in 25 pediatric HT recipients aged 7.0 ± 6.3 years at transplant and 10.7 ± 6.5 years post-
transplant and represent biological indicators of cardiac function after pediatric HT [50].
In another study by Hussain et al., 26 pediatric HT recipients underwent CTCA, IVUS,
and stress CMR with tissue characterization, which showed that increasing T2 values
were associated with worsening LV function and increasing T1/ECV and T2 values were
associated with rejection burden and low-grade CAV [51]. However, LGE in adult HT
recipients was not found to correlate with acute cellular rejection [52]. CMR imaging with
quantitative T2 mapping offers a potential noninvasive method for screening pediatric HT
patients for acute allograft rejection [53,54].

Conversely, a small CMR study using T2-weighted signal intensities and native T1
times, extracellular volumes, and LGE did not reliably identify acute cellular rejection
in children [52]. However, the study was likely underpowered to detect the outcome.
Automatic CMR-derived myocardial blood flow quantification is feasible in pediatric
patients, and the technology could be potentially used for objective noninvasive assessment
of CAV in children after HT [53–56]. Future studies are needed to establish the role
of CMR parametric imaging using revised Lake Luis Consensus criteria [57] to identify
acute rejection in pediatric HT recipients. The disadvantage is that younger patients need
sedation or anesthesia to acquire CMR due to their inability to lie still or hold their breath.
Furthermore, in the presence of stents or pacemakers, creating artifacts and images is
challenging for interpretation.

Adenosine Stress Perfusion Cardiac Magnetic Resonance Imaging

Myocardial perfusion reserve measured by CMR is valuable and accurate in diagnos-
ing adult CAV [57]. Myocardial perfusion reserve is the ratio of the myocardial blood flow
during hyperemia to the myocardial blood flow at rest. Few studies showed that adenosine
perfusion CMR imaging could be performed safely even in higher grade CAV in pediatric
HT recipients [58]. Figure 5 illustrates an adenosine perfusion study in a 17-year-old HT
recipient showing inferior ischemia and perfusion defect that correlates to CAV in the
coronary angiogram.
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Figure 5. (A,B) MRI Perfusion images showing inferior ischemia induced by Adenosine (white arrow)
in a patient with known CAV (C) Black arrows showing stenosis on selective coronary angiogram.

6. Intracoronary Imaging

Coronary angiography is the accepted clinical standard for CAV diagnosis (Figure 6A,B).
However, there are pitfalls in current ISHL grading for CAV based on coronary angiography.
The categorical grading from CAV0 to CAV3 is based on discrete rather than continuous
metrics [3]. This classification only detects more significant changes such as >70%, which is
the cutoff for single primary vessel stenosis to be grouped as CAV2. A diagnostic test is
better if it has higher accuracy, more reproducibility, is less invasive, less costly, has better
significance for prognosis, and is useful to guide treatment. Intracoronary imaging with
IVUS and OCT is better for diagnosing early CAV and satisfies many criteria for better
imaging modalities.
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6.1. Intravascular Ultrasound

IVUS has been increasingly utilized over the years as it allows for earlier and more accu-
rate detection of early and progressive changes in the coronary vasculature. IVUS has been
extensively studied in adults and has emerged as an excellent tool for a more precise quanti-
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tative assessment of lumen size and intimal thickening [10]. In adults, the modified Stanford
classification [59], based on intimal thickening, has been used for diagnosis and the severity
of CAV: Class 1 (minimal) intimal thickness < 0.3 mm and extent of plaque < 180 degrees;
Class 2 (mild) intimal thickness < 0.3 and extent of plaque > 180 degrees; Class 3 (moderate)
intimal thickness 0.3–1 mm and plaque extent < 180 degrees; and Class 4 (severe) intimal
thickness ≥ 1 mm and extent of plaque > 180 degrees. In adults, an intimal thickness of
>0.5 mm by IVUS is associated with nonfatal major cardiac events and/or graft loss [60].
Furthermore, more recent data showed prognostic relevance of intimal thickness > 0.35 mm
by IVUS within 1 and 5 years of HT [61]. However, IVUS is technically more challenging
and is associated with increased procedural risk, including coronary artery spasms and
a reported risk of coronary artery dissections in as many as 1.6% of catheterizations [62].
In pediatric HT recipients, IVUS has been limited by patient size and size of available
catheters, and IVUS has not shown any correlation with microvascular disease [63]. How-
ever, a single-center pediatric study by Kuhn et al. described their experience using IVUS
in 30 children seven years or older. The authors concluded that IVUS was more sensitive
than angiography in detecting early CAV [64]. Figure 7 describes IVUS findings of early
and progressive increase in intimal thickness in pediatric patients after HT. The limitations
of IVUS are: optimum imaging protocol is not defined, it is limited to epicardial coronary
arteries with sufficient lumen, and no large-scale randomized trial in children is carried out
to demonstrate IVUS guided strategy improves outcomes.
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6.2. Coronary Flow Reserve

The concept of coronary flow reserve (CFR) is developed to describe the flow increase
available to the heart in response to increased oxygen demand. CFR represents the va-
sodilator capacity of the coronary vascular bed during hyperemia and is measured by
indicator thermodilution. CFR is expressed as the ratio between maximal hyperemic flow
(after intracoronary adenosine injection) and resting flow. A descriptive vie of CFR is
shown in Figure 8. In general, CFR > 2 is considered normal. In the presence of coronary
stenosis, there is already vasodilation of the coronary artery distal to the stenosis, and there
is diminished further dilation of coronary circulation after administration of adenosine,
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and thus CFR is reduced [65]. A decrease in CFR after adenosine administration to achieve
maximum vasodilation without significant epicardial stenosis indicates microvascular
dysfunction. CFR data in children is limited. In a small study including 33 patients, 17 had
epicardial coronary artery stenosis, CFR was reduced and correlated with histopathologic
and angiographic evidence of microvascular disease [66]. CFR can also be measured by
transthoracic Doppler echocardiography, and its feasibility and good correlation with
myocardial perfusion study are shown in children with Kawasaki disease [67].
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6.3. Optical Coherence Tomography

OCT is an intracoronary imaging technique. The technique is similar to IVUS but
relies on the signal derived from the backscatter of light from a near-infrared frequency
beam [11]. Figure 9 demonstrates a cross-sectional and longitudinal view of the coronary
vessel and intimal thickness. The reflection time to the light probe is measured, and the
characteristics of structures are inferred. The short wavelength of light results in images
with a better resolution than IVUS (10 to 20 nm vs. 100 to 150 nm) [68]. The different
properties of tissue, and the subsequent effect on backscatter, mean that it is possible
to develop “virtual histology” of the vessel wall. OCT resolution is higher and has a
good correlation and interobserver variability than IVUS. However, specialized personnel
and availability in most centers are needed. OCT can provide important insights into
coronary vascular changes not detected by angiography on pediatric transplant patients
and correlates well with the intimal thickness measured by IVUS [69]. Pediatric data is
limited; however, a study in 73 children after HT (258 vessel segments) showed a high
prevalence of segmental and eccentric intimal thickening [70]. However, another study
in late survivors after pediatric HT reported that OCT findings of vulnerable plaque and
complicated coronary lesions are rare, in contrast with adult HT recipients [71]. Further
prospective and more extensive studies are needed to study the clinical utility of OCT to
demonstrate its prognostic implications in children.
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7. Single-Photon Emission Computed Tomography

SPECT is a myocardial perfusion imaging technique to detect coronary blood flow
to the myocardium and is commonly used in adults to diagnose atherosclerotic coronary
artery disease [73]. Either exercise or pharmacological stress can be employed to obtain
stress SPECT imaging which is compared with resting images after injecting radioactive
tracers such as the technetium-99 m. SPECT relies on accurately measuring the radiotracer
activity and correlate with the number of radiotracers transported by arterial blood to the
myocardium. SPECT stress perfusion scan detects areas of decreased perfusion, and its
sensitivity and specificity are 73% and 87%, respectively, to diagnose CAV compared to
coronary angiography [74]. In one study among adult HT recipients, quantitative SPECT
analysis as a method for CAV surveillance is found to have modest diagnostic accuracy and
has overall modest prognostic utility for all causes of mortality during the entire follow-up
since transplant [75]. In children with coronary artery lesions due to Kawasaki disease,
Mostafa et al. used Tc-99m tetrofosmin SPECT to identify significant coronary stenosis and
perfusion defect before surgery and the disappearance of these defects following surgery
with a high degree of diagnostic accuracy with sensitivity (94%), specificity (100%), and
accuracy (95%) [76]. In a small study of 20 pediatric patients, the Tc-99m tetrofosmin
SPECT showed myocardial perfusion defect in 6 patients and correlated with CAV by
angiography [77]. The limitations of SPECT include availability in all transplant centers
and expert personnel needed for interpretation.

8. Positron Emission Tomography

Positron emission tomography (PET) myocardial perfusion imaging evaluates absolute
myocardial blood flow in regional and global myocardium. Quantitative myocardial
perfusion imaging with PET relies on accurately measuring radio-tracer activity. Myocardial
uptake and retention of radioactive tracers based on blood flow, cellular integrity, and
metabolism. The myocardial flow reserve is determined by the maximal hyperemic blood
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flow ratio to resting blood flow. It has a higher spatial resolution than SPECT imaging and is
widely adopted for coronary artery disease in adults for diagnosis and risk stratification [78].
FDG [18F] PET in murine model cardiac rejection has been used to monitor the evolution
of rejection, and [N] NH3 imaging was used to monitor perfusion. Both techniques were
highly reproducible and accurate [79]. PET is a noninvasive test, requires minimal radiation,
no need for iodinated contrast, and has excellent diagnostic accuracy in moderate-severe
CAV. The disadvantages of PET are its availability, significant expertise in interpretation
needed, and limited external validation of PET in children.

9. Future Directions

The newer echocardiographic imaging is useful for quantitatively measuring my-
ocardial function at the myocardial segment level. It provides better insight into graft
dysfunction, sub-clinical rejection, response to rejection treatment, and early CAV. Coro-
nary angiography is the gold standard for diagnosis of CAV, but intracoronary imaging
techniques, including IVUS and OCT, can detect early CAV based on intimal thickness.
CTCA and CMR techniques are noninvasive tests to detect CAV and are increasingly used
in clinical practice in children. PET and SPECT imaging helps assess myocardial blood
flow but is rarely used in children due to lack of standardization, availability, and need for
expert personnel for interpretation.

10. Conclusions

In summary, HT involves a complex decision process and includes multi-disciplinary
care to process various cardiac issues, including rejection and CAV. Multimodality imaging
should be adopted to interrogate a failing graft when the etiology is unclear, with additional
techniques used at each stage in the decision pathway individualized for the patient. It
is also vital to align patient care with resource intensity such as cost, expert personnel,
and availability of appropriately validated tests. There is a need for consistency and
reliability in the interpretation of each test used for post-HT care, including EMB and
imaging results. Artificial intelligence is a promising method where machine learning
and creating algorithms may facilitate improvement in our ability to utilize multimodality
imaging to prevent rejection and CAV in the future.
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