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Abstract: The purpose of this study is to modify all physicochemical properties of glycine–copper
sulphate single crystals, such as crystal habits, molar mass, thermal stability, optical activity, and
electrical properties. The novelty of this study is growth of glycine–copper sulphate single crystals
doped by a low concentration of silver nanoparticles (SNPs) that improved both crystal habits and
physicochemical properties. The originality of this work is that trace amounts of SNPs largely
increased the crystal size. Crystals have molar stoichiometric formula [glycine]0.95, [CuSO4·5H2O]0.05

in the absence and presence of silver nanoparticles (SNPs) in different concentrations: 10 ppm, 20 ppm,
and 30 ppm. The crystals’ names and abbreviations are: glycine–copper sulphate (GCS), glycine–
copper sulphate doped by 10 ppm SNPs (GCSN1), glycine–copper sulphate doped by 20 ppm SNPs
(GCSN2), and glycine–copper sulphate doped by 30 ppm SNPs (GCSN3). Dopant silver nanoparticles
increased: crystallinity reflecting purity, transparency to UV-Vis. electromagnetic radiation, thermal
stability, and melting point of glycine–copper sulphate single crystal. GCSN3 is a super conductor.
High thermal conductivity of crystals ranging from 1.1 W·min−1·K−1 to 1.6 W·min−1·K−1 enabled
attenuation of electromagnetic radiation and rapid heat dissipation due to good dielectric and polar
properties. On rising temperature, AC electrical conductivity and dielectric properties of perfect
crystal GCSN3 increased confirmed attenuation of thermal infrared radiation.

Keywords: glycine; copper sulphate; silver nanoparticle; single crystals; doping; optical activity

1. Introduction

Good optical, dielectric, and thermal properties of semi-organic single crystals enable
application in modern technologies for design components in photonic devices, optical com-
munication systems, optoelectronics, frequency convertors, and nonlinear optical (NLO)
devices [1]. Single crystals of glycine amino acid containing copper sulphate (CuSO4) are
used in optical high-resolution band pass filters for spectral devices [2]. Such crystals
having a good optical quality are rarely reported. At room temperature, glycine amino
acid in zwitterion form is crystalized to α, β, and γ polymorphs [3–5]. Glycine–copper
sulphate single crystals possess NLO activity and thermal stability due to synergism of
both organic and inorganic components [6,7]. Glycine has a chiral center that crystallizes in
non-centrosymmetric space groups [8]. Inorganic copper sulphate enhanced mechanical
and thermal stability of glycine crystals [9]. Crystals’ growth in the presence of doping
impurities modified crystal habit and properties [10,11]. No studies are reported dop-
ing glycine–copper sulphate crystals by silver nanoparticles that is widely used in food,
medical, industrial, catalysis, and pharmaceutical applications [12,13]. This study aims to
grow new single crystals of glycine–copper sulphate in the absence and presence of silver
nanoparticles to add new unique properties for these blue-colored glycine–copper sulphate
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single crystals to improve absorption of weak infra-red photons reaching the earth from
the sun causing global warming.

2. Experimental Procedure
2.1. Materials and Methods

All chemicals in this study are highly pure, of analytical grade, and used as received
without further purification: glycine (C2H5NO2, Oxford Co.) purity 98.5%, CuSO4·5H2O
(Sigma Aldrich Co., St. Louis, MO, USA), purity 98%. SNPs with polyvinylpyrrolidone,
purity 99.9%, was purchased from Sigma Aldrich Co. with these physical characteristics:
spherical shape nanoparticles: average diameter 21.44 ± 4.92 nm and UV: electronic
absorption bands at maximum wavelength (λmax. 430 nm) due to delocalized electronic
surface plasmon.

Slow solvent evaporation method is employed at 25 ◦C for growth of GCS crystals
doped by SNPs. The stoichiometric formula is (glycine)0.95, [CuSO4]0.05. Salts are dissolved
in double distilled water and agitated at 50 rpm using a magnetic stirrer for two h to obtain
a homogeneous saturated solution. For SNP doping, a solution of glycine and CuSO4
are agitated at 50 rpm for two hours. Different concentrations of 10 ppm, 20 ppm, and
30 ppm SNPs are added to the filtrate that is further stirred for half an hour to complete
homogeneity. The solution is covered by porous aluminum foil in a dust-free environment
to allow slow solvent evaporation. High-quality, blue-color, pure crystals are harvested
after one month, Figure 1.

Figure 1. Visual inspection of crystals.

GCS crystals increased in size and intensity of blue color as doping concentration of
SNPs increased.

2.2. Characterization of Single Crystals

The grown crystals are characterized by:
Mass spectra (MS) by electron ionization technique at 70 eV using Thermo GCMS-

ISQLT mass spectrometer; elemental analysis by energy dispersive X-ray analysis (EDX),
and scanning electron microscope (SEM) using JSM-IT200 SEM.

Powder X-ray diffraction pXRD patterns at 25 ◦C and diffraction, reflection angle
(2-theta) ranges from 5◦ to 70◦ at 0.02◦ step and scan rate 1◦ min−1 using Cu-Kα radiation
of wavelength 1.5418 Å and acceleration voltage 40 kV using Bruker D8 advance diffrac-
tometer. Intensity of reflected X-rays in arbitrary units is plotted versus incidence and
reflection angles 2θ◦, FTIR vibrational spectra at the frequency range 400–4000 cm−1 using
IR Prestige-21, Borken, Germany.
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UV-Vis. electronic absorption spectra using Helios alpha Unicom UV-Spectrophotometer
at wavelength range 190–1200 nm; differential scanning calorimetry (DSC), thermal gravi-
metric analysis (TGA), and differential thermal gravimetric (DTG) analysis at temperature
range: 25–800 ◦C using SDT Q600 V20.9 Build 20 instrument, 20 ◦C·min−1 heating rate in
de-aerated alumina cell to avoid sample oxidation by atmospheric oxygen; X-band electron
spin resonance spectra ESR at room temperature, 9.43 GHz using reflection JES-RE1X ESR
spectrometer in cylindrical resonance cavity with 100 kHz modulation, 5 mW power where
applied magnetic field is controlled with LMR Gauss meter; electrical conductivity and
dielectric characteristics of GCSN3 sample is measured using four probes Agilent 4294 A
impedance bridge with sinusoidal voltage signal 10 mV amplitude. The sample is com-
pressed as a pellet: 0.5 cm radius, 0.23× 10−2 m thickness, and 7.854× 10−5 m2 geometrical
area, coated on two opposite surfaces by silver paste for Ohmic contact with copper elec-
trodes and annealed at 120 ◦C; thermal conductivity is measured at room temperature
using hot disk TP 2500 [14].

3. Results and Discussion

MS is in Supplementary Information (SI); Figure S1 showed the relative abundance of
the fragmented molecular ion versus mass(m)

charge(z) ratio peaked at m/z 73.37, 75.2, 73.32, and

70.29, corresponding to molecular weight (M.wt) 75.07 g mol−1 of glycine. The last peaks
correspond to M.w. 614.32, 662.38, 758.57, 834.65 g mol−1 for glycine–copper sulphate
(GCS), glycine–copper sulphate doped 10 ppm SNPs (GCSN1), glycine–copper sulphate
doped 20 ppm SNPs (GCSN2), and glycine–copper sulphate doped 30 ppm SNPs (GCSN3)
crystals, respectively. An increasing concentration of SNPs increased chelation of glycine
organic ligand to Cu(II) ion in CuSO4.

EDX spectra and SEM micrographs: Figure 2a–d show SEM-EDX analysis of GCS,
GCSN1, GCSN2, and GCSN3 crystals, respectively. These spectra were produced as
a focused electron beam on the sample ejected electrons from the inner-most electron
atoms in the crystal leaving holes filled by ejected electrons from higher level emissions of
X-ray [14,15].

EDX spectra confirmed that SNPs improved self-assembly of GCS from Figure 2a–d.
Perfect crystallization is attained in Figure 2d.

The data in Table 1 indicated that oxygen, carbon, and nitrogen have maximum weight
%, confirming that glycine is the base matrix of these single crystals. EDX spectrums of the
doped crystals confirm the entry of both Cu(II) ion and Ag(I) ions into glycine crystal lattice.

The crystals have molar stoichiometric formula [CH2NH2COOH]0.95, [CuSO4·5H2O]0.05
in the absence and presence of SNPs.

The vibrational band in FTIR spectra, as shown in Figure S2, is assigned to the function
groups in the crystals, Table 2.
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Figure 2. (a–d): EDX spectra and SEM micrographs of GCS, GCSN1, GCSN2, and GCSN3, respec-
tively. 

EDX spectra confirmed that SNPs improved self-assembly of GCS from Figure 2a–d. 
Perfect crystallization is attained in Figure 2d. 

The data in Table 1 indicated that oxygen, carbon, and nitrogen have maximum 
weight %, confirming that glycine is the base matrix of these single crystals. EDX spec-
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Table 1. Weight percentage elements in crystals. 

Crystal  
Weight % 

C N O Cu S Ag 
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GCSN1 26.01 22.86 50.37 0.29 0.40 0.08 
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Figure 2. (a–d): EDX spectra and SEM micrographs of GCS, GCSN1, GCSN2, and GCSN3, respectively.

Table 1. Weight percentage elements in crystals.

Crystal
Weight %

C N O Cu S Ag

GCS 25.71 24.00 50.09 0.15 0.5 -

GCSN1 26.01 22.86 50.37 0.29 0.40 0.08

GCSN2 27.59 23.43 48.34 0.54 - 0.10

GCSN3 30.75 24.72 45.95 1.13 - 0.42

IR spectra of the GCS crystal showed a strong vibrational band at 509.21 cm−1 due
to Cu–N stretching [16], NH stretching band at 3811.34 cm−1, And medium peak at
1111.00 cm−1 for CH2 rocking [17]. There is a strong peak at 1334.79 cm−1 due to CH2
wagging. Intense peak C=O asymmetric stretching occurs at 1604.77 cm−1 [18], sym-
metric stretching COO– at 1411.68 cm−1, intense band asymmetric stretching COO– at
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1519.91 cm−1 [19], and medium peak at 1033.85 cm−1 for CCN asymmetric stretching
deformation [20]. There is strong band SO4

− stretching at 894.97 cm−1, an intense band
due to bending COO− at 694.37 cm−1, medium peak wagging COO− at 609.51 cm−1 [13],
and NH2 asymmetric stretching at 2823.79 cm−1 [21]. FTIR spectra of the samples GCSN1,
GCSN2, and GCSN3 have small shift compared to that of GCS observed, which suggests
the incorporation of SNPs into the crystals lattice.

Table 2. Assigned FTIR vibrational bands.

Vibration Mode
Wave Number (cm−1)

Glycine [15] GCS GCSN1 GCNN2 GCSN3

Cu-N stretching - 509.21 509.21 509.21 509.21

COO− wagging 606.30 609.51 609.51 609.51 609.51

COO− bending 696.9 694.37 694.37 694.37 694.37

CCN asymmetric stretching 1031.93 1033.85 1033.85 1033.85 1033.85

CH2 rocking 1112.44 1111.00 1111.00 1126.43 1118.71

SO4
− stretching - 894.97 894.97 894.97 902.51

COO− symmetric stretching 1492.39 1411.68 1411.89 1411.89 1404.18

CH2 wagging 1311.89 1334.79 1334.74 1334.74 1319.31

COO− asymmetric stretching 1554.25 1519.91 1519.91 1504.48 1512.19

C=O asymmetric stretching 1643.53 1604.77 1604.77 1604.77 1604.77

NH2 asymmetric stretching 2924.04 2823.79 2831.50 2831.50 2831.50

NH stretching 3921.39 3811.34 3996.21 3895.48 3903.92

Figure 3a–d showed indexed pXRD profile versus Rietveld refined PXRD patterns
for GCS, GCSN1, GCSN2, and GCSN3 crystals. All pXRD patterns showed a prominent
sharp diffraction peak at 30◦. SNPs increased the peaks’ intensity and modified crystal
structure and lattice planes [22–24]. The crystals’ structure and geometry agreed with
Crystallography Opened Database, COD files. GCS and GCSN1 have monoclinic unit
cell alpha glycine. Triclinic GCSN2 and GCSN3 have gamma glycine. pXRD patterns are
refined using Full prof Suit software using CIF files containing crystal information. Peak
patterns are refined following pseudo-Voigt profile analytical function [25]. Background
and peak shapes are modeled with linear fitting by applying least-squares cycles and six
background (polynomial 6th grade parameters) at the wavelength of Cu-detector and
neglecting instrument contribution [26]. The crystallinity followed the trend:

GCSN3 > GCSN2 > GCSN1 > GCS

Doping GCS with SNPs improved crystallinity, hence purity and crystal engineering.
During refinement, the number and order of crystalline planes and diffraction peaks

increased in the same order. Many iteration cycles and all noise data are neglected; too
long iteration time is consumed for GCSN2 and GCSN3 due to extra high crystallinity,
long cartesian coordinates, and different angles in the triclinic unit cell. Intense peaks
shifted to lower 2-theta, indicating a pillared crystal structure. Small peak absence and no
polycrystallinity regions are observed in the perfect GCSN3 crystal, which confirmed good
surface. There is good fitting of pXRD spectra (calculated intensity of the diffraction peaks
are close to each other, resulting in a very negligible difference between the observed and
calculated intensities (Yobs.-Ycal.)) with less than zero in arbitrary unit.

Both observed and calculated profiles are closely coincided to each other in a nonlinearly fit.
Sharp intense pXRD patterns with a dominating diffraction peak in crystals confirmed

good crystallinity. Intensity changes and a slight shift in peak positions of GCS by SNPs
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reflected modified crystalline planes [23]. Diffraction peaks at 44.4◦ and 64.7◦ in GCSN2
and GCSN3 confirmed doping impurities [24].

Miller indices h k ` of the crystal planes, full width at half maximum (FWHM) of
XRD patterns, peak position, and inter planar distance (dcal.), are collected in Table S1. The
crystallinity and geometry of single crystals are deduced from pXRD by matching these
diffraction patterns to pdf cards of similar crystals in Crystallography Opened Database
using FWHM that characterized different material properties and surface integrity fea-
tures [25,26]. The unit cell parameters are collected in Table 3.
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UV-Vis. absorbance spectrum of crystals at wavelength range 190–1100 nm are shown
in Figure 4. UV-Vis. absorbance curve showed cut-off of wavelength λcut off is lower than
that of glycine [27].
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Table 3. Crystal parameters.

Crystal GCS GCSN1 GCSN2 GCSN3

Identifier ID 1,505,763 1,505,763 4,342,413 4,342,413
Crystal System Monoclinic Triclinic

Polymorph α γ

Space Group P 21 P −1

Lattice Parameter
a = 7.890 Å, b = 15.94 Å, c = 13.063 Å a = 10.8222 Å, b = 11.0221 Å, c = 12.8735 Å,

α = γ = 90◦, β = 94.58◦ α = 88.85◦, β = 77.52◦, γ = 84.55◦

Volume (Å3) 1638.14 1492.54
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Doping by SNPs decreased λcut off, i.e., increased band gas for UV–electronic transition.
SNPs enhanced transparency of crystals to UV radiation-enabled deposition as thin film on
glass for protection against UV radiation [28,29]:

Absorption fraction α =
2.3042× absorbance A

sample thickness t
(1)

Band gap-controlled UV absorption coefficient depends on the energy of the incident
photon and is estimated using Equation (2) [30,31].

αhν = A(hυ− Eg)r (2)

where ν frequency of the incident radiation is inversely proportional to the wavelength
of absorbance (λ), A is constant, and the exponent r depends on the nature of electronic
transition. r = 2 for indirect transition, and r = 1

2 for allowed direct transition, r = 1
2 . Since

all crystals are blue colored, allowed direct transition is considered [15,30]. The optical
gaps, Eg, are calculated from plots (αhν)2 as a function of photon energy (hν), as shown
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in Figure 5, and the observed values Eg are given in Table 4 along with the values of all
reported glycine single crystals.
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GCSN3, respectively, which indicated an increasing band gap. Blue shift of λcutoff to lower 
values indicated SNPs’ improved polarizability of electron density on the single crystals. 
This finding suggested the suitability of GCS-doped SNPs single crystals for applications 
in optoelectronic devices such as frequency multiplier, sum-, difference-, and blue laser 
frequency generators, etc. [34]. Optical band gaps’ eV are 4.58, 4.61, 4.65, and 4.67 for GCS, 
GCSN1, GCSN2, and GCSN3 crystals, respectively. SNPs increased Eg and enhanced op-
tical properties of GCS. High Eg indicated the decrease in the localized energy states on 
doping by SNPs due to extrinsic defects or disorders in GCS caused by interstitial doped 
SNPs [35]. 
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Table 4. Comparison between reported and present study: optical band gap (Eg) and λcut off.

Single Crystal
Band Gap λcut off (nm)

Value Ref. Value Ref.

Glycine 3.13 [15] 346 [15]

GCS 4.58

Present study

287

Present study
GCSN1 4.61 283

GCSN2 4.65 276

GCSN3 4.67 280

GCS 3.8 [23] 250 [23]

GCN 5.77 [15] 231 [15]

GLS 5.428 [32] 330 [32]

GZS 6.2 [33] 200 [33]

λcut off 287 nm for GCS decreased to 283, 276, and 280 nm for GCSN1, GCSN2, and
GCSN3, respectively, which indicated an increasing band gap. Blue shift of λcut off to lower
values indicated SNPs’ improved polarizability of electron density on the single crystals.
This finding suggested the suitability of GCS-doped SNPs single crystals for applications
in optoelectronic devices such as frequency multiplier, sum-, difference-, and blue laser
frequency generators, etc. [34]. Optical band gaps’ eV are 4.58, 4.61, 4.65, and 4.67 for
GCS, GCSN1, GCSN2, and GCSN3 crystals, respectively. SNPs increased Eg and enhanced
optical properties of GCS. High Eg indicated the decrease in the localized energy states on
doping by SNPs due to extrinsic defects or disorders in GCS caused by interstitial doped
SNPs [35].
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Good optical properties of the GCS crystals doped by SNPs are confirmed by extinction
coefficient K calculated using Equation (3); α and refractive index (n) reflect dissipated
incident radiation by absorption and scattering [36,37].

K =
λα

4π
(3)

Reflectance R and K depend on photon energy, Figure S3: The reflectance is calculated
using Equation (4): [36]

R = 1±
√

1− exp(−αt) + exp(αt)
1 + exp(−αt)

(4)

where t is the sample thickness.
Refractive index (n) depends on wavelength, and photon energy is calculated using

mathematical Equation (5): [36–38], Figure 6.

n = − (R + 1)±
√

3R2 + 10R− 3
2(R− 1)

(5)

Positive refractive index (n) 1.6–1.8 indicated dispersion of incident radiation on the
crystals is inversely proportional to the photon energy. Refractive index (n) is decreased
by increasing photon energy and concentration of SNPs. High photon energy enables
passing through the crystal lattice with low dispersion. SNPs decreased dispersion of
incident radiation by improving transparency to UV radiation. High transmission and low
absorbance of UV radiation and low refractive index suggest the single crystals are suitable
for antireflection coating in solar thermal devices and NLO applications [38].
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Figure 6. Refractive index with wavelength and photon energy.

Figure 7 shows the nonlinear variation of the electrical susceptibility (χ) with the
photon energy.

GSC crystals showed large noise scattering in electrical susceptibility. This scattering
disappeared on doping by SNPs that elevated electrical susceptibility (χ) at high photon
energy following the order:

GCSN2 > GCSN3 > GCSN1>>> GCS

GCSN3 showed lower χ than GCSN2 due to extra high crystallinity; GCSN3 decreased
the mean free path for electron charge transfer.
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The calculated electric susceptibility is plotted with photon energy; Figure 7 shows
electric susceptibility (χ) is about 0.25 for all crystals at low photon energy.

Melting point, crystallization, phase transition, enthalpy, and entropy changes are
clarified using DSC thermograms [39], Figure 8a–d. A sharp endothermic peak at decompo-
sition temperature reflects good crystallinity. A weak broad peak at 195.80 and 206.29 ◦C in
GCSN2 and GCSN3 characterized phase change from γ-glycine to α-glycine [40]. Melting
point (m.p.) is 253.83, 262.37, 265.64, 268.25 ◦C for GCS, GCSN1, GCSN2, and GCSN3,
respectively. Increased m.p. on doping by SNPs is attributed to high thermal stability.

Heat capacity “Cp” is the ratio between heat flow to heating rate and depends on
temperature: [41–44].

Cp = a T + b,
Cp

T
= α T2 + γ (6)

where parameters a and b are calculated from intercept (a) and slope b of straight-line
Cp-T plot. Cp of all prepared single crystals showed nonlinear variation with the absolute
temperature, Figures S4–S7.

Thermal lattice coefficient α and electronic heat capacities γ are obtained from linear
Cp
T versus T2 plot, (coefficient, R2 above 0.99) Figures S4a,b and S7a,b. Table 5 shows linear

fits parameters of DCS.
Heat capacity at constant pressure, Cp, is the heat required to raise the temperature

of the crystal sample by 1 ◦C and represents the variation of the heat content of the
crystal sample on heating. The variation of α, γ coefficients approved Cp variation with
temperature. This finding indicated that the Cp amount of thermal heat absorbed by the
crystals increases on heating, enabling the application of a heat shielding coating on thin
film glasses.

Thermograms are shown in Figure 8a–d. DTG showed one peak confirmed one ther-
mal decomposition step. GCS showed weight loss (wt. loss) 74.3 wt. % at temperature range
200.65–787.67 ◦C, DTG peak at 249.7 ◦C. Glycine decomposed into CO2, NH3 [45] leaving
25.7% residue, 72.31%. GCSN1 decomposed at 208.27–788.29 ◦C and 27.69% residue. DTG
peak was at 257.88 ◦C. In addition, 72.93 wt. % of GCSN2 decomposed at 217.41–788.84 ◦C,
27.07 wt. % residue, DTG peaked at 262.28 ◦C. Additionally, 72.86 wt. % of GCSN3 de-
composed at 221.54–787.96 ◦C, gave 27.14 wt. % residue, and peak at 264.07 ◦C. SNPs
decreased wt. loss on thermal decomposition of the crystals. Higher residue left after
thermal decomposition confirmed improved crystallinity on doping GCS by SNPs.
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Figure 8. (a–d): Thermograms: a. TGA, b. DTG, and c. DSC of GCS, GCSN1, GCSN2, and GCSN3.
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Table 5. Linear fits parameters of DSC curves.

Crystal
Temperature
Range (◦C)

Cp = a T + b Cp/T = α T2 + γ

a b α× 10−6 γ

GCS

22–206 0.003 −0.441 0.00707 0.001
206–254 −0.379 185.6 −0.7 0.181

253.8–321 0.231 −134.9 0.5 −0.166
321–788 −0.031 21.91 −0.02 0.007

GCSN1

23.8–86 0.0429 −10.95 −0.15 0.006
86–223 0.007 1.851 −0.01 0.139

223–262 −1.266 657.3 −2.10 0.575
262–325 0.410 −233.6 0.89 −0.284
325–788 −0.031 29.75 −0.023 0.0212

GCSN2

28.8–227 −0.002 2.029 −0.016 0.005
226.8–265 −0.986 510.2 −1.4 0.378
265–331 0.393 −231.7 0.62 −0.213
331–788 −0.021 14.65 −0.014 0.006

GCSN3

30–87 0.045 −15.04 0.2 −0.024
87–228 −1.29 × 10−5 1.34 −0.0077 0.004

228–268 −0.981 509.01 −1.9 0.535
268–334 0.349 −206.01 0.59 −0.208
334–787 −0.011 10.78 −0.009 0.008

Crystals contain no water of crystallization as wt. loss at 100 ◦C is absent [46]. TGA
thermograms confirmed thermal stability up to 200.65, 208.27, 217.41, and 221.54 ◦C for
GCS, GCSN1, GCSN2, and GCSN3, which enabled laser applications [47]. Peak temperature
Tm increased from 249.71 to 257.88, 262.28, 264.07 ◦C on increasing SNPs’ concentration.

ESR spectra of powder sample crystals are shown in Figure 9. Anisotropy g-factor for
crystals confirmed low symmetry. Spin Hamiltonian parameters g and A tensors revealed
rhombic symmetry crystal field around Cu(II) ion split ground state. Degeneracy of ground
state energy level is lifted giving static Jahn–Teller distortion [48,49].

Value g⊥ and unpaired electronic state R are given by Equations (7) and (8): [50,51].

g⊥ = gx + gy/2 (7)

R = (gx − gy)/(gz − gx) (8)

Table 6 includes g factor, hyper fine constants A, and R for the crystals.
Values A and g factor have no axial symmetry in the crystal lattice (no dynamic

Jahn–Teller) [52]. R = 0.1805, 0.1224, 0.1673, 0.1418 for GCS, GCSN1, GCSN2, and GCSN3,
respectively; less than unity indicated dx

2−y
2 ground state for unpaired electron [53].

Ax, Ay equals A‖ are lower than Az; g-parallel is greater than perpendicular g⊥ and
confirmed dx

2−y
2 ground state [52]. g‖ value is less than 2.3, indicating strong covalent

copper–glycine bond [54].
σ bond coefficient or covalence parameter α2 for unpaired electron density on Cu(II)

ion is estimated using Equation (9) [54,55], Table 7.

α2 = A‖/0.036 +
(

g‖ − 2.0023
)
+ 3/7(g⊥ − 2.0023) + 0.04 (9)

where
A‖ =AZ, A⊥ =

(
Ax + Ay

)
/2 (10)

The parameter α2 is less than unity, indicating covalent bonding between Cu(II)
and glycine ligand [56]. SNPs decreased covalence parameter (α2) of glycine-Cu(II)
bond, except that GCSN2 showed abnormally high α2, which confirmed its highest
electrical susceptibility.
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Figure 9. Powder ESR spectra of Cu(II) ions in crystals.

Table 6. g values and A (mT) matrices for Cu(II) ion in crystals.

Crystal gx gy gz Ax Ay Az g‖ g⊥ R

GCS 2.0859 2.0531 2.2676 13.309 10.872 18.183 2.2676 2.0691 0.1805

GCSN1 2.0921 2.0705 2.2685 12.548 13.949 14.229 2.2685 2.0813 0.1224

GCSN2 2.0883 2.0551 2.2868 11.154 16.183 17.871 2.2868 2.0717 0.1673

GCSN3 2.0887 2.0637 2.265 13.27 12.465 15.965 2.265 2.0762 0.1418

Table 7. EPR parameters.

Crystals A⊥ (G) A‖ (G) α2 Crystals A⊥ (G) A‖ (G) α2

GCS 120.908 181.831 0.8392 GCSN2 136.685 178.707 0.8507

GCSN1 132.491 142.299 0.7353 GCSN3 128.719 159.649 0.7778

Figure 10 showed UV of thin film coating of GCSN3 on the aluminum (Al) foil sample.
An aqueous solution of GCSN3 was evaporated under ultra-high vacuum conditions
onto the Al foil where carboxylate COOH of glycine zwitterion amino acid is chemically
adsorbed on the aluminum surface. Absorption at long λ 900–1100 nm for this crystal near
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IR region indicates absorption of thermal energy of IR radiation. Phonon bands at 900 nm
originate from vibrational modes of harmonic and unharmonic oscillators in the crystal
lattice. Absorbed IR radiation causes thermal vibrations of atoms or molecules and creates
thermal phonon waves that propagate in the crystal lattice, dissipating thermal IR energy.

Appl. Nano 2023, 4, FOR PEER REVIEW 18 
 

 

σ bond coefficient or covalence parameter α2 for unpaired electron density on Cu(II) 
ion is estimated using Equation (9) [54,55], Table7. 

α2 = A∥/0.036 + (g∥−2.0023) +3/7(g⊥−2.0023) + 0.04  (9) 

where 

A∥ = AZ, A⊥ = (Ax + Ay)/2  (10) 

Table 7. EPR parameters. 

Crystals  A⊥(G) A∥ (G) α2 Crystals  A⊥(G) A∥ (G) α2 
GCS 120.908 181.831 0.8392 GCSN2 136.685 178.707 0.8507 

GCSN1 132.491 142.299 0.7353 GCSN3 128.719 159.649 0.7778 

The parameter α2 is less than unity, indicating covalent bonding between Cu(II) and 
glycine ligand [56]. SNPs decreased covalence parameter (α2) of glycine-Cu(II) bond, ex-
cept that GCSN2 showed abnormally high α2, which confirmed its highest electrical sus-
ceptibility. 

Figure 10 showed UV of thin film coating of GCSN3 on the aluminum (Al) foil sam-
ple. An aqueous solution of GCSN3 was evaporated under ultra-high vacuum conditions 
onto the Al foil where carboxylate COOH of glycine zwitterion amino acid is chemically 
adsorbed on the aluminum surface. Absorption at long λ 900–1100 nm for this crystal near 
IR region indicates absorption of thermal energy of IR radiation. Phonon bands at 900 nm 
originate from vibrational modes of harmonic and unharmonic oscillators in the crystal 
lattice. Absorbed IR radiation causes thermal vibrations of atoms or molecules and creates 
thermal phonon waves that propagate in the crystal lattice, dissipating thermal IR energy. 

 
Figure 10. UV-Vis. absorbance spectra of GCSN3 thin film coated on Al foil. 

Absorptivity of GCSN3 near the IR region of electromagnetic radiation indicated that 
crystals can shield thermal heat of IR radiation on the coating as dispersed thin film on 
alumetal. 

The sun provides thousands W.m−2 energy on the earth’s surface daily. Total solar 
energy in the upper atmosphere contains 50% IR radiation, 40% Vis. Light, and 10% UV 
radiation. IR radiation causes vibrations that heats earth’s surface [57]. Attenuation of 
thermal energy can be achieved by painting glass windows with these blue color crystals 
transparent to UV radiation, filtering, and that dissipates IR radiation. 

Figure 10. UV-Vis. absorbance spectra of GCSN3 thin film coated on Al foil.

Absorptivity of GCSN3 near the IR region of electromagnetic radiation indicated
that crystals can shield thermal heat of IR radiation on the coating as dispersed thin film
on alumetal.

The sun provides thousands W·m−2 energy on the earth’s surface daily. Total solar
energy in the upper atmosphere contains 50% IR radiation, 40% Vis. Light, and 10% UV
radiation. IR radiation causes vibrations that heats earth’s surface [57]. Attenuation of
thermal energy can be achieved by painting glass windows with these blue color crystals
transparent to UV radiation, filtering, and that dissipates IR radiation.

High thermal conductivity of crystals equals: 1.10, 1.21, 1.54, and 1.6 W·m−1K−1 for
GCS, GCSN1, GCSN2, and GCSN3 confirmed rapid attenuation of many incident EM
waves by dielectric components and rapidly dissipated as heat.

Figure 11 showed electrical conductivity of GCSN3 increased on heating as a typical
semiconductor behavior due to thermally activated charge carriers’ mobility [58].

Impedance plots confirmed super conductivity. A plateau region at low 0.1Hz fre-
quency region represents total conductivity of grain boundary. A high-frequency region at
100 kHz represents the contribution of grains to total conductivity. An intermediate fre-
quency region at 1 kHz is due to charges trapped between grain boundaries and grains [15].
AC conductivity confirmed the dielectric nature of a single crystal can dissipate heat rapidly.
The high-frequency dielectric constant is 4.49.

Dielectric study of GCSN3 crystal response of charges to applied electric field showed
dielectric constants at 100 Hz, 1 kHz, 10 kHz, and 100 kHz and a temperature range of
200–550 K. Dielectric constant was calculated using equation [59]:

ε =
Cd
εo A

(11)

where εo is free space permittivity, C and d are capacitance and thickness of pellet, and A is
electrode area.
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Figure 12. Charge transfer resistance of GCSN3 as a function of applied frequency and absolute
temperature (K): (a) 200, (b) 300, (c) 350, (d) 400, (e) 450, (f) 500, (g) 550.

Real ε′ and imaginary ε” components of ε represented equals [60]:

ε′=|ε|cosθ, ε”=|ε|sinθ (12)

Figure 13 showed ε′ varied with temperature at a different frequency and decreased
with increasing frequency, indicating an ability to dissipate incident IR radiation. ε′ de-
creased until it reached glass transition Tg at 380 K, then became limited up to 470 K. Peak
at Curie TC represented phase transition from ferroelectric to paraelectric behavior.
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4. Conclusions

SNPs dopant increased thermal stability of gamma and alpha glycine single crystals.
Optical absorption studies revealed that cut-off wavelengths are 287, 283, 276, and 280 nm
and optical band gap energy 4.58, 4.61, 4.65, and 4.67 eV for GCS, GCSN1, GCSN2, and
GCSN3 single crystals, respectively. SNPs increased band gaps of crystals, hence trans-
parency to UV radiation. AC electrical conductivity of the thin film sample of perfect
crystal increased to 0.03 Siemens/cm. High thermal conductivity, W·m−1K−1 in range
1.10–1.6, confirmed efficient radiation attenuation by rapid heat dissipation due to dielectric
properties of single crystals. Single crystals could be used to shield and dissipate thermal
heat of IR radiation. AC confirmed the dielectric component and increased on heating due
to thermal activation of charge carriers.
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