Zeolites as Carriers of Nano-Fertilizers: From Structures and Principles to Prospects and Challenges
Abstract
:1. Introduction
2. Smart Nutrient Delivery: Nano-Fertilizers and Their Mode of Action
- i.
- Nanoscale fertilizers (nanoparticles of silica, iron, etc., which contain nutrients);
- ii.
- Nanoscale additives (established fertilizers with nanoscale additives);
- iii.
- Nanoscale coatings (fertilizers coated with nanoscale materials).
3. Zeolites: Potential Candidates for Modern Agricultural Practices
- Zeolite with a low Si-Al ratio (1–1.5): zeolite 4A, X, UZM-4 and UZM-5, etc.
- Zeolite with intermediate Si-Al ratio (2–5): mordenite, LTA type, etc.
- Zeolite with a high Si-Al ratio (10–several thousand): ZSM-5, ZSM-12, etc.
4. Synthetic Preparation of Porous Nano-Zeolites
4.1. Microporous Zeolites
4.2. Hierarchical Zeolites
5. Application of Nano-Zeolites as Fertilizer Carrier
6. Toxicity of Zeolites
6.1. Phytotoxicity
6.2. Cytotoxicity
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2012 Revision. Population Division of the Department of Economic and Social Affairs. 2013. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:World+Population+Prospects+The+2012+Revision#1 (accessed on 1 July 2022).
- Connor, D.J.; Loomis, R.S.; Cassman, K.G. Connor, Crop Ecology: Productivity and Management in Agricultural Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Prashar, P.; Shah, S. Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2016; pp. 331–361. [Google Scholar] [CrossRef]
- Rai, M.; Ribeiro, C.; Mattoso, L.; Duran, N. (Eds.) Nanotechnologies in Food and Agriculture; Springer: Berlin, Germany, 2015; 347p. [Google Scholar] [CrossRef]
- Chugh, G.; Siddique, K.; Solaiman, Z. Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. Sustainability 2021, 13, 1781. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Tzia, C.; Zorpas, A.A. Zeolites in Food Processing Industries. In Handbook of Natural Zeolites; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 601–651. [Google Scholar] [CrossRef]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Bernardi, A.C.D.C.; Polidoro, J.C.; Monte, M.B.D.M.; Pereira, E.I.; de Oliveira, C.R.; Ramesh, K. Enhancing Nutrient Use Efficiency Using Zeolites Minerals—A Review. Adv. Chem. Eng. Sci. 2016, 06, 295–304. [Google Scholar] [CrossRef]
- Williams, K.A.; Nelson, P.V. Using Precharged Zeolite as a Source of Potassium and Phosphate in a Soilless Container Medium during Potted Chrysanthemum Production. J. Am. Soc. Hortic. Sci. 1997, 122, 703–708. [Google Scholar] [CrossRef]
- Aghaalikhani, M.; Gholamhoseini, M.; Dolatabadian, A.; Khodaei-Joghan, A.; Asilan, K.S. Zeolite influences on nitrate leaching, nitrogen-use efficiency, yield and yield components of canola in sandy soil. Arch. Agron. Soil Sci. 2012, 58, 1149–1169. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y. Use of surfactant-modified zeolite to carry and slowly release sulfate. Desalin. Water Treat. 2010, 21, 73–78. [Google Scholar] [CrossRef]
- Polat, E.; Karaca, M.; Demir, H.; Onus, A.N. Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. Plant Res. 2004, 12, 183–189. [Google Scholar]
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers—A review. Catena 2022, 213, 106125. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Soltys, L.; Mironyuk, I.; Tatarchuk, T.; Tsinurchyn, V. Zeolite-based Composites as Slow Release Fertilizers (Review). Phys. Chem. Solid State 2020, 21, 89–104. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.; Mattii, G. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Yuvaraj, M.; Subramanian, K.S. Novel Slow Release Nanocomposite Fertilizers. In Nanotechnology and the Environment; IntechOpen: Vienna, Austria, 2020. [Google Scholar] [CrossRef]
- Elizabath, A.; Rme, S.I. Application of Nanotechnology in Agriculture. Int. J. Pure Appl. Biosci. 2019, 7, 131–139. [Google Scholar] [CrossRef]
- Sheta, A.; Falatah, A.; Al-Sewailem, M.; Khaled, E.; Sallam, A. Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Mater. 2003, 61, 127–136. [Google Scholar] [CrossRef]
- Shaviv, A.; Raban, S.; Zaidel, E. Modeling Controlled Nutrient Release from Polymer Coated Fertilizers: Diffusion Release from Single Granules. Environ. Sci. Technol. 2003, 37, 2251–2256. [Google Scholar] [CrossRef]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous Overview on the Controlled Release Fertilizers. Adv. Chem. 2014, 2014, 363071. [Google Scholar] [CrossRef][Green Version]
- Irfan, S.A.; Razali, R.; KuShaari, K.; Mansor, N.; Azeem, B.; Versypt, A.N.F. A review of mathematical modeling and simulation of controlled-release fertilizers. J. Control. Release 2018, 271, 45–54. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture; IFA (International Fertilizer Industry Association): Paris, France, 2010. [Google Scholar]
- Iskander, A.; Khald, E.; Sheta, A.E.-A. Zinc and manganese sorption behavior by natural zeolite and bentonite. Ann. Agric. Sci. 2011, 56, 43–48. [Google Scholar] [CrossRef]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Mintova, S. Nanosized Molecular Sieves. Collect. Czechoslov. Chem. Commun. 2003, 68, 2032–2054. [Google Scholar] [CrossRef]
- Kalló, D. Applications of Natural Zeolites in Water and Wastewater Treatment. Rev. Miner. Geochem. 2001, 45, 519–550. [Google Scholar] [CrossRef]
- Jiménez-Reyes, M.; Almazán-Sánchez, P.; Solache-Ríos, M. Radioactive waste treatments by using zeolites. A short review. J. Environ. Radioact. 2021, 233, 106610. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, C.; Baskar, P. Zeolite and its potential uses in agriculture: A critical review. Agric. Rev. 2016, 37. [Google Scholar] [CrossRef]
- Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chandran, P.; Ray, S.K.; Pal, D.K.; Mandal, C.; Mandal, D.K. Distribution of Zeolitic Soils in India. Curr. Sci. 2015, 109, 1305. [Google Scholar] [CrossRef]
- Sekhon, B.S.; Sangha, M.K. Detergents—Zeolites and enzymes excel cleaning power. Resonance 2004, 9, 35–45. [Google Scholar] [CrossRef]
- Li, R.; Chong, S.; Altaf, N.; Gao, Y.; Louis, B.; Wang, Q. Synthesis of ZSM-5/Siliceous Zeolite Composites for Improvement of Hydrophobic Adsorption of Volatile Organic Compounds. Front. Chem. 2019, 7, 505. [Google Scholar] [CrossRef]
- Ming, D.W.; Allen, E.R. Use of Natural Zeolites in Agronomy, Horticulture and Environmental Soil Remediation. Rev. Miner. Geochem. 2001, 45, 619–654. [Google Scholar] [CrossRef]
- Ramesh, K.; Reddy, D.D. Zeolites and Their Potential Uses in Agriculture. Adv. Agron. 2011, 113, 219–241. [Google Scholar] [CrossRef]
- Leggo, P.J. An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil 2000, 219, 135–146. [Google Scholar] [CrossRef]
- Valente, S.; Burriesci, N.; Cavallaro, S.; Galvagno, S.; Zipelli, C. Utilization of zeolites as soil conditioner in tomato-growing. Zeolites 1982, 2, 271–274. [Google Scholar] [CrossRef]
- Campbell, L.S.; Davies, B.E. Experimental Investigation of Plant Uptake of Caesium from Soils Amended with Clinoptilolite and Calcium Carbonate; Springer: Berlin, Germany, 2021; Volume 189, pp. 65–74. Available online: https://www.jstor.org/stable/42947951 (accessed on 1 July 2022).
- Al Dwairi, R.A.; Aiman, A. Recent Patents of Natural Zeolites Applications in Environment, Agriculture and Pharmaceutical Industry. Recent Patents Chem. Eng. 2012, 5, 20–27. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41, 6906–6909. [Google Scholar] [CrossRef]
- Mahmodi, G.; Zarintaj, P.; Taghizadeh, A.; Taghizadeh, M.; Manouchehri, S.; Dangwal, S.; Ronte, A.; Ganjali, M.R.; Ramsey, J.D.; Kim, S.-J.; et al. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydr. Res. 2020, 489, 107930. [Google Scholar] [CrossRef]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical applications of zeolite-based materials: A review. Mater. Sci. Eng. C 2020, 116, 111225. [Google Scholar] [CrossRef]
- Rahmani, S.; Azizi, S.N.; Asemi, N. Application of Synthetic Nanozeolite Sodalite in Drug Delivery. Int. Curr. Pharm. J. 2016, 5, 55–58. Available online: http://www.icpjonline.com/documents/Vol5Issue6/02.pdf (accessed on 1 July 2022).
- Sotoudeh, S.; Barati, A.; Davarnejad, R.; Farahani, M.A. Antibiotic release process from hydrogel nano zeolite composites. Middle East J. Sci. Res. 2012, 12, 392–396. [Google Scholar] [CrossRef]
- Qotob, M.A.; Nasef, M.A.; Elhakim, H.K.; Shaker, O.G.; Abdelhamid, I.A. Revisiting of chemical fertilizers by using suitable plant growth regulators and nano fertilizer. GSJ 2020, 8, 1896–1907. [Google Scholar]
- Khaleque, A.; Alam, M.; Hoque, M.; Mondal, S.; Bin Haider, J.; Xu, B.; Johir, M.; Karmakar, A.K.; Zhou, J.; Ahmed, M.B.; et al. Zeolite synthesis from low-cost materials and environmental applications: A review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M.; Ding, T.; Xu, L.; Lee, S.S. Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J. Hazard. Mater. 2020, 393, 122481. [Google Scholar] [CrossRef]
- Cieśla, J.; Franus, W.; Franus, M.; Kedziora, K.; Gluszczyk, J.; Szerement, J.; Jozefaciuk, G. Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials 2019, 12, 3213. [Google Scholar] [CrossRef]
- Ren, H.; Jiang, J.; Wu, D.; Gao, Z.; Sun, Y.; Luo, C. Selective Adsorption of Pb(II) and Cr(VI) by Surfactant-Modified and Unmodified Natural Zeolites: A Comparative Study on Kinetics, Equilibrium, and Mechanism. Water Air Soil Pollut. 2016, 227, 101. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.; Dwivedi, S. Nano-fertilizers: A Novel Way for Enhancing Nutrient Use Efficiency and Crop Productivity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3325–3335. [Google Scholar] [CrossRef]
- Mahabadi, A.A.; Hajabbasi, M.; Khademi, H.; Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 2007, 137, 388–393. [Google Scholar] [CrossRef]
- Bernardi, A.C.D.C.; Oliviera, P.P.A.; Monte, M.B.D.M.; Souza-Barros, F. Brazilian sedimentary zeolite use in agriculture. Microporous Mesoporous Mater. 2013, 167, 16–21. [Google Scholar] [CrossRef]
- Groen, J.C.; Jansen, J.C.; Moulijn, A.J.A.; Pérez-Ramírez, J. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. J. Phys. Chem. B 2004, 108, 13062–13065. [Google Scholar] [CrossRef]
- Moritani, S.; Yamamoto, T.; Andry, H.; Inoue, M.; Yuya, A.; Kaneuchi, T. Effectiveness of artificial zeolite amendment in improving the physicochemical properties of saline-sodic soils characterised by different clay mineralogies. Soil Res. 2010, 48, 470–479. [Google Scholar] [CrossRef]
- Gholizadeh-Sarabi, S.; Sepaskhah, A.R. Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Arch. Agron. Soil Sci. 2013, 59, 753–764. [Google Scholar] [CrossRef]
- Mintova, S.; Gilson, J.-P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693–6703. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wu, Z.; Yip, A.C.K. Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts 2019, 9, 274. [Google Scholar] [CrossRef]
- Valtchev, V.P.; Tosheva, L.; Bozhilov, K.N. Synthesis of Zeolite Nanocrystals at Room Temperature. Langmuir 2005, 21, 10724–10729. [Google Scholar] [CrossRef] [PubMed]
- Morales-Pacheco, P.; Alvarez, F.; Bucio, L.; Domínguez, J.M. Synthesis and Structural Properties of Zeolitic Nanocrystals II: FAU-Type Zeolites. J. Phys. Chem. C 2009, 113, 2247–2255. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.; Dong, D.; Li, D.; Hill, M.R.; Hill, A.J.; Wang, H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous Mesoporous Mater. 2010, 127, 167–175. [Google Scholar] [CrossRef]
- Majeed, N.S.; Majeed, J.T. Synthesis of Nanozeolite NaA from Pure Source Material Using Sol Gel Method. J. Eng. 2017, 23, 52–62. [Google Scholar]
- Valtchev, V.P.; Bozhilov, K.N. Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature. J. Phys. Chem. B 2004, 108, 15587–15598. [Google Scholar] [CrossRef]
- Kecht, J.; Mintova, S.; Bein, T. Nanosized EDI-type molecular sieve. Microporous Mesoporous Mater. 2008, 116, 258–266. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Yin, C.; Shan, Z.; Xiao, F.-S. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater. 2010, 131, 58–67. [Google Scholar] [CrossRef]
- Zampieri, A.; Colombo, P.; Mabande, G.T.P.; Selvam, T.; Schwieger, W.; Scheffler, F. Zeolite Coatings on Microcellular Ceramic Foams: A Novel Route to Microreactor and Microseparator Devices. Adv. Mater. 2004, 16, 819–823. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.P.; Escola, J.M.; Pizarro, P. Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 2013, 42, 4004–4035. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, J.; Abelló, S.; Villaescusa, L.A.; Bonilla, A. Toward Functional Clathrasils: Size- and Composition-Controlled Octadecasil Nanocrystals by Desilication. Angew. Chem. 2008, 120, 8031–8035. [Google Scholar] [CrossRef]
- Al-Ani, A.; Haslam, J.J.C.; Mordvinova, N.E.; Lebedev, O.I.; Vicente, A.; Fernandez, C.; Zholobenko, V. Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites. Nanoscale Adv. 2019, 1, 2029–2039. [Google Scholar] [CrossRef]
- Engineering, P. Functionalized Zeolites with Hierarchical and Core-Shell Architectures. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2018. [Google Scholar]
- Jia, X.; Khan, W.; Wu, Z.; Choi, J.; Yip, A.C. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Adv. Powder Technol. 2019, 30, 467–484. [Google Scholar] [CrossRef]
- Groen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 2006, 16, 2121–2131. [Google Scholar] [CrossRef]
- Wei, X.; Smirniotis, P.G. Development and characterization of mesoporosity in ZSM-12 by desilication. Microporous Mesoporous Mater. 2006, 97, 97–106. [Google Scholar] [CrossRef]
- Groen, J.C.; Sano, T.; Moulijn, J.A.; Pérez-Ramírez, J. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal. 2007, 251, 21–27. [Google Scholar] [CrossRef]
- Pour, Z.A.; Sebakhy, K.O. A Review on the Effects of Organic Structure-Directing Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites. Chemistry 2022, 4, 431–446. [Google Scholar] [CrossRef]
- Takata, T.; Tsunoji, N.; Takamitsu, Y.; Sadakane, M.; Sano, T. Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous Mesoporous Mater. 2016, 225, 524–533. [Google Scholar] [CrossRef]
- Tosheva, L.; Valtchev, V.P. Nanozeolites: Synthesis, Crystallization Mechanism, and Applications. Chem. Mater. 2005, 17, 2494–2513. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Li, W.; Pan, H.; Liu, Y.; Li, M.; Kong, L.; He, M. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size. Microporous Mesoporous Mater. 2013, 167, 102–108. [Google Scholar] [CrossRef]
- Rownaghi, A.A.; Hedlund, J. Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5. Ind. Eng. Chem. Res. 2011, 50, 11872–11878. [Google Scholar] [CrossRef]
- Jacobsen, C.J.H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Mesoporous Zeolite Single Crystals. J. Am. Chem. Soc. 2000, 122, 7116–7117. [Google Scholar] [CrossRef]
- Chen, H.; Wydra, J.; Zhang, X.; Lee, P.-S.; Wang, Z.; Fan, W.; Tsapatsis, M. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 2011, 133, 12390–12393. [Google Scholar] [CrossRef]
- Janssen, A.; Schmidt, I.; Jacobsen, C.; Koster, A.; de Jong, K. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater. 2003, 65, 59–75. [Google Scholar] [CrossRef]
- Kustova, M.; Rasmussen, S.; Kustov, A.; Christensen, C. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: Improved performance with hierarchical zeolites. Appl. Catal. B Environ. 2006, 67, 60–67. [Google Scholar] [CrossRef]
- Koo, J.-B.; Jiang, N.; Saravanamurugan, S.; Bejblová, M.; Musilová, Z.; Čejka, J.; Park, S.-E. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J. Catal. 2010, 276, 327–334. [Google Scholar] [CrossRef]
- Martínez, A.; Arribas, M.; Derewinski, M.; Burkat-Dulak, A. Enhanced sulfur resistance of bifunctional Pd/HZSM-5 catalyst comprising hierarchical carbon-templated zeolite. Appl. Catal. A Gen. 2010, 379, 188–197. [Google Scholar] [CrossRef]
- Zampieri, A.; Mabande, G.T.; Selvam, T.; Schwieger, W.; Rudolph, A.; Hermann, R.; Sieber, H.; Greil, P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Mater. Sci. Eng. C 2006, 26, 130–135. [Google Scholar] [CrossRef]
- Dong, A.; Wang, Y.; Tang, Y.; Ren, N.; Zhang, Y.; Yue, Y.; Gao, Z. Zeolitic tissue through wood cell templating. Adv. Mater. 2002, 14, 926–929. [Google Scholar] [CrossRef]
- Valtchev, V.; Smaihi, M.; Faust, A.-C.; Vidal, L. Biomineral-Silica-Induced Zeolitization of Equisetum Arvense. Angew. Chem. Int. Ed. 2003, 42, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, D.; Li, Z.; Furukawa, H.; Chen, Z. Precision Replication of Hierarchical Biological Structures by Metal Oxides Using a Sonochemical Method. Langmuir 2008, 24, 6292–6299. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, Y.; Tanahashi, S.; Itabashi, K.; Sugawara, A.; Wakihara, T.; Shimojima, A.; Okubo, T. Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. J. Phys. Chem. C 2011, 115, 744–750. [Google Scholar] [CrossRef]
- Grose, R.W.; Flanigen, E.M. Novel zeolte Compositions and Processes for Preparing and Usng Same. U.S. Patent 4257885A, 24 March 1981. [Google Scholar]
- Ng, E.-P.; Goupil, J.-M.; Vicente, A.; Fernandez, C.; Retoux, R.; Valtchev, V.; Mintova, S. Nucleation and Crystal Growth Features of EMT-Type Zeolite Synthesized from an Organic-Template-Free System. Chem. Mater. 2012, 24, 4758–4765. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; et al. Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. J. Am. Chem. Soc. 2014, 136, 4019–4025. [Google Scholar] [CrossRef]
- Möller, K.; Yilmaz, B.; Jacubinas, R.M.; Müller, U.; Bein, T. One-Step Synthesis of Hierarchical Zeolite Beta via Network Formation of Uniform Nanocrystals. J. Am. Chem. Soc. 2011, 133, 5284–5295. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Shi, B.; Ren, J.; Liu, X.; Wang, Y.; Guo, Y.; Guo, Y.; Lu, G. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater. 2009, 117, 104–110. [Google Scholar] [CrossRef]
- Zhang, H.; Song, K.; Wang, L.; Zhang, H.; Zhang, Y.; Tang, Y. Organic Structure Directing Agent-Free and Seed-Induced Synthesis of Enriched Intracrystal Mesoporous ZSM-5 Zeolite for Shape-Selective Reaction. ChemCatChem 2013, 5, 2874–2878. [Google Scholar] [CrossRef]
- Gu, F.; Wei, F.; Yang, J.Y.; Lin, N.; Lin, W.G.; Wang, Y.; Zhu, J.H. New Strategy to Synthesis of Hierarchical Mesoporous Zeolites. Chem. Mater. 2010, 22, 2442–2450. [Google Scholar] [CrossRef]
- Xi, D.; Sun, Q.; Xu, J.; Cho, M.; Cho, H.S.; Asahina, S.; Li, Y.; Deng, F.; Terasaki, O.; Yu, J. In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J. Mater. Chem. A 2014, 2, 17994–18004. [Google Scholar] [CrossRef]
- Weissenberger, T.; Machoke, A.G.; Bauer, J.; Dotzel, R.; Casci, J.L.; Hartmann, M.; Schwieger, W. Hierarchical ZSM-5 Catalysts: The Effect of Different Intracrystalline Pore Dimensions on Catalyst Deactivation Behaviour in the MTO Reaction. ChemCatChem 2020, 12, 2461–2468. [Google Scholar] [CrossRef]
- Smeets, V.; Gaigneaux, E.M.; Debecker, D.P. Hierarchical micro-/macroporous TS-1 zeolite epoxidation catalyst prepared by steam assisted crystallization. Microporous Mesoporous Mater. 2020, 293, 109801. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Xu, D.; Sun, C.; Ni, L.; Fu, W.; Zeng, S.; Jiang, S.; Zhang, Z.; Qiu, S. Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New J. Chem. 2016, 40, 4398–4405. [Google Scholar] [CrossRef]
- Wojciechowska, K. The influence of desilication/dealumination processes on the physicochemical properties of clinoptilolite. Clay Miner. 2019, 54, 111–119. [Google Scholar] [CrossRef]
- Jovic, T.H.; Kungwengwe, G.; Mills, A.C.; Whitaker, I.S. Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications. Front. Mech. Eng. 2019, 5, 19. [Google Scholar] [CrossRef]
- Chmielewská, E. Zeolitic adsorption in course of pollutants mitigation and environmental control. J. Radioanal. Nucl. Chem. Artic. 2014, 299, 255–260. [Google Scholar] [CrossRef]
- Jakkula, V.S.; Wani, S.P. Zeolites: Potential Soil Amendments for Improving Nutrient and Water Use Efficiency and Agriculture Productivity. Sci. Revs. Chem. Commun. 2018, 8, 1–15. Available online: www.tsijournals.com (accessed on 1 July 2022).
- Inglezakis, V.J.; Zorpas, A.A. (Eds.) Handbook of Natural Zeolites; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012. [Google Scholar]
- Li, Z. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mater. 2003, 61, 181–188. [Google Scholar] [CrossRef]
- Mihok, F.; Macko, J.; Oriňak, A.; Oriňaková, R.; Kovaľ, K.; Sisáková, K.; Petruš, O.; Kostecká, Z. Controlled nitrogen release fertilizer based on zeolite clinoptilolite: Study of preparation process and release properties using molecular dynamics. Curr. Res. Green Sustain. Chem. 2020, 3, 100030. [Google Scholar] [CrossRef]
- Maharani, D.K.; Dwiningsih, K.; Savana, R.T.; Andika, P.M.V. Usage of Zeolite and Chitosan Composites as Slow Release Fertilizer. In Proceedings of the International Conference on Science and Technology (ICST 2018); Atlantis Press: Amsterdam, The Netherlands, 2018; Volume 1, pp. 179–182. [Google Scholar] [CrossRef]
- Colella, C. Recent advances in natural zeolite applications based on external surface interaction with cations and molecules. Stud. Surf. Sci. Catal. 2007, 170, 2063–2073. [Google Scholar] [CrossRef]
- Reháková, M.; Čuvanová, S.; Dzivák, M.; Rimár, J.; Gaval’Ová, Z. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 2004, 8, 397–404. [Google Scholar] [CrossRef]
- del Pino, J.N.; Padrón, I.A.; Martin, M.G.; Hernández, J.G. Phosphorus and potassium release from phillipsite-based slow-release fertilizers. J. Control. Release 1995, 34, 25–29. [Google Scholar] [CrossRef]
- Jha, V.K.; Hayashi, S. Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. J. Hazard. Mater. 2009, 169, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rabai, K.A. Improving formulated nitrogen, phosphorus and potassium compound fertilizer using zeolite. Afr. J. Biotechnol. 2012, 11, 12825–12829. [Google Scholar] [CrossRef]
- Baerlocher, C.; Mccusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Gupta, P.; Khanday, W.A.; Majid, S.A.; Kushwa, V.; Tomar, S.; Tomar, R. Study of sorption of metal oxoanions from waste water on surfactant modified analog of laumontite. J. Environ. Chem. Eng. 2013, 1, 510–515. [Google Scholar] [CrossRef]
- Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Oliveira, C.; Rubio, J. New basis for adsorption of ionic pollutants onto modified zeolites. Miner. Eng. 2007, 20, 552–558. [Google Scholar] [CrossRef]
- Warchoł, J.; Misaelides, P.; Petrus, R.; Zamboulis, D. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mater. 2006, 137, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Gorre, K.; Yenumula, S.; Himabindu, V. A Study on the Ammonium Adsorption by using Natural Heulandite and Salt Acti-vated Heulandite. Int. J. Innov. Appl. Stud. 2016, 14, 483–488. [Google Scholar]
- Omar, O.L.; Ahmed, O.H.; Muhamad, A.M.N. Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water. Int. J. Phys. Sci. 2010, 5, 2193–2197. [Google Scholar]
- Ramesh, K.; Biswas, A.K.; Somasundaram, J.; Rao, A.S. Nanoporous zeolites in farming: Current status and issues ahead. Curr. Sci. 2010, 99, 760–764. [Google Scholar]
- Dwairi, I.M. Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4+. Environ. Earth Sci. 1998, 34, 1–4. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Yuvaraj, M.; Subramanian, K.S. Development of slow release Zn fertilizer using nano-zeolite as carrier. J. Plant Nutr. 2018, 41, 311–320. [Google Scholar] [CrossRef]
- Li, J.-X.; Wee, C.-D.; Sohn, B.-K. Growth Response of Hot Pepper Applicated with Ammonium (NH4+) and Potassium (K+)-Loaded Zeolite. Korean J. Soil Sci. Fert. 2010, 43, 741–747. [Google Scholar]
- Li, Z.; Zhang, Y.; Li, Y. Zeolite as Slow Release Fertilizer on Spinach Yields and Quality in a Greenhouse Test. J. Plant Nutr. 2013, 36, 1496–1505. [Google Scholar] [CrossRef]
- Bansiwal, A.K.; Rayalu, S.S.; Labhasetwar, N.K.; Juwarkar, A.A.; Devotta, S. Surfactant-Modified Zeolite as a Slow Release Fertilizer for Phosphorus. J. Agric. Food Chem. 2006, 54, 4773–4779. [Google Scholar] [CrossRef]
- Wee1, C.; Li1, B.S.J. Effect of Ammonium- and Potassium-Loaded Zeolite on Kale (Brassica alboglabra) Growth and Soil Property. Am. J. Plant Sci. 2013, 4, 1976–1982. [Google Scholar]
- Pasqualini, E.; Civolani, S.; Grappadelli, L.C. Particle film technology: Approach for a biorational control of Cacopsylla pyri (Rhynchota Psyllidae) in Northern Italy. Bull. Insectology 2002, 55, 39–42. [Google Scholar]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress Toward Liquid Formulations of Particle Films for Insect and Disease Control in Pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Larentzaki, E.; Shelton, A.; Plate, J. Effect of kaolin particle film on Thrips tabaci (Thysanoptera: Thripidae), oviposition, feeding and development on onions: A lab and field case study. Crop Prot. 2008, 27, 727–734. [Google Scholar] [CrossRef]
- Risk Assessment of Sodium Aluminium Silicate—Zeolite A. HERA. 2004. Available online: https://www.heraproject.com/RiskAssessment.cfm?SUBID=8 (accessed on 1 July 2022).
- Ma, Y.; Zhu, M.; Shabala, L.; Zhou, M.; Shabala, S. Conditioning of Roots with Hypoxia Increases Aluminum and Acid Stress Tolerance by Mitigating Activation of K+Efflux Channels by ROS in Barley: Insights into Cross-Tolerance Mechanisms. Plant Cell Physiol. 2016, 57, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.J.; Yang, J.L. Target sites of aluminum phytotoxicity. Biol. Plant. 2005, 49, 321–331. [Google Scholar] [CrossRef]
- Rengel, Z.; Zhang, W. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol. 2003, 159, 295–314. [Google Scholar] [CrossRef]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
- Currie, H.A.; Perry, C.C. Silica in Plants: Biological, Biochemical and Chemical Studies. Ann. Bot. 2007, 100, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, C.S.; Vlessidis, A.G.; Nalbandian, L.; Evmiridis, N.P. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Mesoporous Mater. 2001, 47, 369–388. [Google Scholar] [CrossRef]
- Szostak, R. Secondary synthesis methods. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2001; Chapter 6; Volume 137, pp. 261–297. [Google Scholar] [CrossRef]
- Fenoglio, I.; Croce, A.; Di Renzo, F.; Tiozzo, R.; Fubini, B. Pure-Silica Zeolites (Porosils) as Model Solids for the Evaluation of the Physicochemical Features Determining Silica Toxicity to Macrophages. Chem. Res. Toxicol. 2000, 13, 489–500. [Google Scholar] [CrossRef]
- Silaghi, M.C.; Chizallet, C.; Raybaud, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater. 2014, 191, 82–96. [Google Scholar] [CrossRef]
- Petushkov, A.; Ndiege, N.; Salem, A.K.; Larsen, S.C. Toxicity of Silica Nanomaterials: Zeolites, Mesoporous Silica, and Amorphous Silica Nanoparticles. In Advances in Molecular Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 4. [Google Scholar] [CrossRef]
- Suzuki, Y. Carcinogenic and fibrogenic effects of zeolites: Preliminary observations. Environ. Res. 1982, 27, 433–445. [Google Scholar] [CrossRef]
- Lehman, S.E.; Larsen, S.C. Environmental Science Nano Zeolite and Mesoporous Silica Nanomaterials: Greener Syntheses, Environmental Applications and Biological Toxicity. Environ. Sci. Nano 2014, 1, 200–213. [Google Scholar]
- Shevlin, S. Looking deeper into zeolites. Nat. Mater. 2020, 19, 1038–1039. [Google Scholar] [CrossRef]
- Čejka, J.; Millini, R.; Opanasenko, M.; Serrano, D.P.; Roth, W.J. Advances and challenges in zeolite synthesis and catalysis. Catal. Today 2020, 345, 2–13. [Google Scholar] [CrossRef]
- Marselos, M.; Vainio, H. Carcinogenic properties of pharmaceutical agents evaluated in the IARC Monographs programme. Carcinogenesis 1991, 12, 1751–1766. [Google Scholar] [CrossRef] [PubMed][Green Version]
Zeolite Type | Synthesis Methodology | Particle Size | Porosity | Research Findings | Reference |
---|---|---|---|---|---|
Microporous zeolites | |||||
Zeolite Beta | OSDA (organic structure directing agent) free synthesis. | Size: >100 nm, | Micro porous volume: 0.16–0.23 cm3g−1 | Seed-assisted synthesis | [95] |
ZSM-5, ZSM-8 | Hydrothermal synthesis | Size: >50 nm, | Microporous, pore diameter: 6Ao | High-temperature hydrothermal synthesis (80–240 °C) with varying ratio of precursors (Si/Al) used | [96] |
FAU | Organic template-free room temperature synthesis | 40–50 nm, | Microporous, pore diameter: 0.74 nm | Crystallization time up to 38 days, where 100–300 nm aggregated results into formation of 40–50 nm crystals | [70] |
EMT | Organic template-free homogenous suspension | 6–15 nm, microporous, pore volume: 0.28–0.85 cm3g−1 | Microporous, pore size: 0.2–0.45 nm | Tuning of precursor solutions with crystallization under mild hydrothermal conditions | [97] |
Zeolite beta, ZSM-5 | Sustainable synthesis | 50–100 nm, | Microporous, pore volume: 0.21 cm3g−1 | Reduced cost of production, high yields of zeolites, and reduction in reaction pressure | [98] |
FAU(Y)- Type | Autoclaved synthesis | 20–30 nm, | Microporous, pore diameter: 0.74 nm | Tetra-methyl ammonium hydroxide (TMAOH) and tetra-methyl ammonium bromide (TMABr) were employed as organic templates | [68] |
Mesoporous zeolites | |||||
BEA, MOR, CHA, MFI- type, ZSM-5, ZSM-34, ECR-1 | Green synthesis | 50–100 nm | Mesoporous, pore size (7–50 nm) | Sustainable raw materials (such as kaolin, diatomite, coal ash, etc.) used. Introducing continuous flow synthesis route | [65] |
Zeolite-A (LTA, SOD-type) | Sol–gel system | 200–600 nm, | Mesoporous zeolites | Optimization of synthesis parameters including choice of reactants, Si/Al ratio and crystallization time | [66] |
Na-A zeolite | Sol–gel method | 75 nm, | Mesoporous, pore size: 2.8 nm | High surface area and pore volume achieved | [69] |
Zeolite Beta | Dense gel steam-assisted conversion | 20–40 nm, | Mesoporous, pore diameter: 13 nm | Mesopores size of 13 nm formed using Tetra ethyl ammonium hydroxide (TEAOH). Reduced time of synthesis | [99] |
Beta-H, ZSM-5-H | Autoclave crystallization | Beta H: 200–400 nm, ZSM-5-H: 0.3–1 µm, | Mesoporous, pore size: 5–40 nm | Organic cations tetra propyl ammonium hydroxide (TPAOH) and cationic polymer poly-dialyl dimethyl ammonium chloride (PDADMAC) were employed | [100] |
MFI type | Steam-assisted crystallization-aggregation method | 0.5–3 µm, | Mesoporous, pore size: 11–15 nm | Zeolite with Si/Al ratio-5 to 20 was synthesized with dual porosity by using TPAOH | [101] |
Meso-Z5 | Self-assisted seed induction method | 400 nm, | Mesoporous, pore size: 10–40 nm | Silicalite-1 seed of size 200 nm was used into OSDA free precursor gel | [102] |
Zeolite Y (Sodalite type) | Hydrothermal synthesis | 1–3 µm, | Mesoporous, pore size: 5–15 nm | Tetramethyl ammonium hydroxide (TMAOH) and cetyl trimethyl ammonium bromide (CTAB) were used as cationic surfactants | [103] |
Macroporous zeolites | |||||
SAPO-34 (CHA-type), | Hydrothermal synthesis | 5–10 µm, | Macro-porous, pore size: 100 nm | Hydrothermal synthesis via in situ growth etching with excess hydrofluoric acid. Zeolite formed with excellent catalytic properties against methanol to olefin (MTO) conversion | [104] |
ZSM-5, MFI Type | Organic template Hydrothermal synthesis | 290–680 nm, | macro porous, pore diameter: 137–300 nm | Mesoporous silica nanoparticle as sacrificial template along with TPAOH (tetra propyl ammonium hydroxide) | [105] |
TS-1 zeolite (MFI type) | Steam assisted crystallization (Dry gel conversion) | TS-1: 1.5–2 µm, | Macro-porous, pore size: 100 nm | Mesoporous Ti-SiO2 nanoparticles were used as templates along with TPAOH (tetra propyl ammonium hydroxide) | [106] |
ZSM-5 | Alkaline-media erosion method (A-ZSM-5) Gel-casting method (G-ZSM-5) | 150–200 nm | Macroporous, Pore size: 2–100 nm | Organic monomer acrylamide along with cross-linker N-methylene bis-acrylamide (NBAM) were used for gel casting. Zeolites with excellent catalytic properties and 1,3,5-triisopropyl benzene and n-hexadecane were synthesized | [49] |
Type of Zeolite | Procurement Method | Important Parameters and Nutrient Loading | Research Findings | Ref. | |
---|---|---|---|---|---|
Tenerife phillipsite | Naturally available zeolite | Phosphorous (P) and potassium (K) were loaded from KH2PO4 and K2HPO4 | Three forms of available nutrients: KH2PO4 crystals covering the surface of zeolites, some filled up in the zeolite pores, and a very low fraction of exchangeable K and precipitated forms of P | [121] | |
Surfactant-modified zeolite (SMZ) | Naturally available with 74% clinoptilolite, 12% feldspar and 12% quartz | Surfactant-modified (HDTMA) | Size: 0.42–0.83 mm, sulphate | Zeolite modified to 150–200% ECEC (external cation exchange capacity) retained 70–80% of loaded sulphate as compared with water-soluble sulphate. Column leaching tests confirmed that sulphate release rate was reduced 5–7-fold using SMZ | [13] |
Zeolite modified with cationic surfactant, able to sorb up to 80 mmol kg−1 of nitrate. Column leaching test showed a decrease of 95% in the effluent nitrate concentration was achieved | [116] | ||||
Natural zeolite (Clinoptilolite) | Ball-milling | Size: 90–110 nm, zinc from ZnSO4 | Release study revealed that Zn from nano-zeolite extends up to 1176 h as compared with Zn release from ZnSO4 exists up to 216 h. | [133] | |
Clinoptilolite | Naturally available | Size: 50 µm, 200 µm Ammonium chloride | Molecular dynamics simulations were adopted to confirm the diffusion of ions through zeolites. Smaller particles of 50 μm release fertilizer at slower rate as compared with 200 μm particles | [117] | |
Zeolite–chitosan fertilizer | Chemically derived using impregnation method | Sodium nitrate (NaNO3) as nitrogen source. | Slow release of nitrogen achieved, by zeolite: chitosan (1:1), whereas the fastest was shown in case of zeolite alone as a fertilizer | [118] | |
Natural zeolite | Naturally available (mordenite and clinoptilolite) | Size: 1–2 mm, ammonium sulphate ((NH4)2SO4) and potassium chloride (KCL) | As compared with the commercially available fertilizer, zeolite-loaded ammonia and potassium showed increase growth in treated plants and enhanced soil quality | [134] | |
Natural zeolite | Naturally available (Shangdong, China) | N fertilizer sources: ammonium chloride and mono ammonium orthophosphate | Zeolite as slow-release fertilizer (SRF) increases the spinach plant yield as compared with conventional nitrogen fertilizer | [135] | |
Zeolite-A | Naturally available | Surfactant (HDTMA-Br) modified zeolite (SMZ) | KH2PO4 was used as phosphate (PO43−) fertilizer | Surfactant-modified zeolite shows increased loading of P by factor of 4.9 along with the slow release of P | [136] |
Natural zeolite | Naturally available (Handu Co. Korea) | Size: 1–2 mm, ammonium sulphate ((NH4)2SO4) and potassium chloride (KCL) | Treated plants with zeolites show high yield as well as increased nutrient availability for sustained development | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Javed, B.; Byrne, H.; Curtin, J.; Tian, F. Zeolites as Carriers of Nano-Fertilizers: From Structures and Principles to Prospects and Challenges. Appl. Nano 2022, 3, 163-186. https://doi.org/10.3390/applnano3030013
Sharma V, Javed B, Byrne H, Curtin J, Tian F. Zeolites as Carriers of Nano-Fertilizers: From Structures and Principles to Prospects and Challenges. Applied Nano. 2022; 3(3):163-186. https://doi.org/10.3390/applnano3030013
Chicago/Turabian StyleSharma, Vinayak, Bilal Javed, Hugh Byrne, James Curtin, and Furong Tian. 2022. "Zeolites as Carriers of Nano-Fertilizers: From Structures and Principles to Prospects and Challenges" Applied Nano 3, no. 3: 163-186. https://doi.org/10.3390/applnano3030013