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Abstract: In this work, an efficient synthesis of bionanohybrids as artificial metalloenzymes (Cu,
Pd, Ag, Mn) based on the application of an enzyme as a scaffold was described. Here we evaluated
the effect of changing the metal, pH of the medium, and the amount of enzyme in the synthesis of
these artificial metalloenzymes, where changes in the metal species and the size of the nanoparticles
occur. These nanozymes were applied in the degradation of hydrogen peroxide for their evalua-
tion as mimetics of catalase activity, the best being the Mn@CALB-H2O, which presented MnO2

nanostructures, with three-fold improved activity compared to Cu2O species, CuNPs@CALB-P, and
free catalase.
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1. Introduction

Hydrogen peroxide (H2O2) is a by-product produced within the cells of living organ-
isms and has detrimental effects on them [1–4]. Catalases are enzymes used by cells to
remove excess cytoplasmic hydrogen peroxide by converting them to water and molecular
oxygen. However, if the concentration of H2O2 increases due to disease, radiation exposure,
and certain chemicals and medications that exceed the capacity of catalase, H2O2 begins
to accumulate and cause cell damage [5–8]. On the other hand, the activity of the catalase
enzyme can be affected by different environmental conditions, such as ionic strength, pH,
and temperature (T), or due to the presence of compounds that inhibit its activity [9,10].

The rapid development of nanotechnology in recent decades has led to the creation
of numerous catalytically active nanomaterials [11]. Currently, nanomaterials of different
natures are widely used in biology, medicine, and biotechnology. This category includes
nanomaterials with enzyme-mimetic properties, such as metallic and non-metallic nanopar-
ticles, their oxides, magnetic nanoparticles, liposomes, and polymeric and carbon-based
materials [12–14]. The ability of these nanomaterials to replace specific enzymes may
offer new opportunities for enzyme-based applications such as immunoassays, biosen-
sors, pharmaceutical processes, oncotherapy, the food industry, ecology, etc. [15–18]. This
demonstrates the great importance of and commercial interest in the use of nanomaterials
as enzyme mimetics. Compared with natural enzymes, nanozymes with inherent enzyme
activities have recently attracted considerable attention due to their easy preparation,
storage, and separation, as well as low cost [18,19].

One of the most used metals in the formation of artificial metalloenzymes is copper,
due to its abundance, low cost, and low toxicity. Although most of the activities described
in the literature are for Cu(II) materials, in fact, recently, in our group, Cu(II)-nanozymes
with catalase activity were developed [20].

In this work, we describe the synthesis of highly stable heterogeneous metal (Cu, Mn,
Pd, and Ag) nanoparticle catalysts (metal NPs–enzyme biohybrids), where the NPs were
created in situ from an aqueous solution of the metal salt (Figure 1A) [21,22]. In addition,
we have shown that these bionanohybrids of different natures, for example, other copper
species and different metals, behaviors, and sizes, have the ability to completely mimic the
particular enzymatic activity of catalase, even improving its activity (Figure 1B).
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we have shown that these bionanohybrids of different natures, for example, other copper
species and different metals, behaviors, and sizes, have the ability to completely mimic 
the particular enzymatic activity of catalase, even improving its activity (Figure 1B).

Figure 1. (A) Metal nanoparticle–enzyme hybrid synthesis; (B) catalase−like activity of different bi-
ohybrids. Me: metal, NP: nanoparticles.

2. Materials and Methods
2.1. Materials 

Lipase B from Candida antarctica (CALB) solution and Catazyme® 25 L (catalase from 
Aspergillus niger) were purchased from Novozymes (Copenhagen, Denmark). Copper (II) 
sulfate pentahydrate [Cu2SO4 × 5H2O], N,N-dimethylformamide (DMF), and hydrogen 
peroxide (33% v/v) were from Panreac (Barcelona, Spain). Sodium bicarbonate, sodium 
phosphate, sodium borohydride, potassium permanganate, Tris base, and sodium tetra-
chloropalladate (II) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Silver ni-
trate and MES were purchased from Thermo Fisher (Whaltam, MA, USA). 

2.2. Characterization Techniques Used 
Inductively coupled plasma–optical emission spectrometry (ICP–OES) was per-

formed on an OPTIMA 2100 DV instrument (PerkinElmer, Waltham, MA, USA). X-ray 
diffraction (XRD) patterns were obtained using a Texture Analysis D8 Advance Diffrac-
tometer (Bruker, Billerica, MA, USA) with Cu Kα radiation. Transmission electron micros-
copy (TEM) and high-resolution TEM microscopy (HRTEM) images were obtained on a 
2100F microscope (JEOL, Tokyo, Japan). Scanning electron microscopy (SEM) imaging 
was performed on a TM-1000 microscope (Hitachi, Tokyo, Japan). To recover the biohy-
brids, a Biocen 22 R (Orto-Alresa, Ajalvir, Spain) refrigerated centrifuge was used. Spec-
trophotometric analyses were run on a V-730 spectrophotometer (JASCO, Tokyo, Japan). 

2.3. Synthesis of CuNPs@CALB Bionanohybrids
A total of 3.6 mL of commercial lipase B from Candida antarctica solution (CALB; 10 

mg/mL) was added to 60 mL buffer 0.1 M (sodium phosphate pH 7.0) in a 250 mL glass 
bottle containing a small magnetic bar stirrer. Then, 600 mg of Cu2SO4 × 5H2O (10 mg/mL) 
was added to the protein solution, and it was maintained for 16 h. After 16 h, 6 mL of 
NaBH4 (300 mg) aqueous solution (1.2 M) was added to the cloudy solution (in two
amounts of 3 mL). The solution turned rapidly black, and the mixture was reduced for 30 
min. After the incubation, in all cases, the mixture was centrifuged at 8000 rpm for 5 min 

Figure 1. (A) Metal nanoparticle–enzyme hybrid synthesis; (B) catalase–like activity of different
biohybrids. Me: metal, NP: nanoparticles.

2. Materials and Methods
2.1. Materials

Lipase B from Candida antarctica (CALB) solution and Catazyme® 25 L (catalase from
Aspergillus niger) were purchased from Novozymes (Copenhagen, Denmark). Copper (II)
sulfate pentahydrate [Cu2SO4 × 5H2O], N,N-dimethylformamide (DMF), and hydrogen
peroxide (33% v/v) were from Panreac (Barcelona, Spain). Sodium bicarbonate, sodium
phosphate, sodium borohydride, potassium permanganate, Tris base, and sodium tetra-
chloropalladate (II) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Silver
nitrate and MES were purchased from Thermo Fisher (Whaltam, MA, USA).

2.2. Characterization Techniques Used

Inductively coupled plasma–optical emission spectrometry (ICP–OES) was performed
on an OPTIMA 2100 DV instrument (PerkinElmer, Waltham, MA, USA). X-ray diffraction
(XRD) patterns were obtained using a Texture Analysis D8 Advance Diffractometer (Bruker,
Billerica, MA, USA) with Cu Kα radiation. Transmission electron microscopy (TEM) and
high-resolution TEM microscopy (HRTEM) images were obtained on a 2100F microscope
(JEOL, Tokyo, Japan). Scanning electron microscopy (SEM) imaging was performed on
a TM-1000 microscope (Hitachi, Tokyo, Japan). To recover the biohybrids, a Biocen 22 R
(Orto-Alresa, Ajalvir, Spain) refrigerated centrifuge was used. Spectrophotometric analyses
were run on a V-730 spectrophotometer (JASCO, Tokyo, Japan).

2.3. Synthesis of CuNPs@CALB Bionanohybrids

A total of 3.6 mL of commercial lipase B from Candida antarctica solution (CALB;
10 mg/mL) was added to 60 mL buffer 0.1 M (sodium phosphate pH 7.0) in a 250 mL
glass bottle containing a small magnetic bar stirrer. Then, 600 mg of Cu2SO4 × 5H2O
(10 mg/mL) was added to the protein solution, and it was maintained for 16 h. After 16 h,
6 mL of NaBH4 (300 mg) aqueous solution (1.2 M) was added to the cloudy solution (in
two amounts of 3 mL). The solution turned rapidly black, and the mixture was reduced for
30 min. After the incubation, in all cases, the mixture was centrifuged at 8000 rpm for 5 min
(10 mL per falcon-type tube of 15 mL). The generated pellet was re-suspended in 15 mL of
distilled water. It was centrifuged again at 8000 rpm for 5 min at RT, and the supernatant
removed. The process was repeated twice more. Finally, the supernatant was removed,
and the pellet was re-suspended in 2 mL of distilled water, transferred to a cryotube, frozen
with liquid nitrogen, and lyophilized overnight. After that, approximately 150 mg of black
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solid was obtained. The hybrid was called CuNPs@CALB-P. Another variation of the
protocol was avoiding the lyophilization step, conserving the catalyst as liquid suspension.
This was called CuNPs@CALB-P-NL.

Other hybrids were synthesized following the previously established protocols under
different conditions of pH, drying, and reduction (Table S1) which were tested in our
work [23]. These bionanohybrids were called CuNPs@CALB-P*, CuNPs@CALB-B, and
CuNPs@CALB-B*.

2.4. Synthesis of MnNPs@CALB Bionanohybrids
2.4.1. Method 1

A total of 3 mL of commercial CALB solution (10 mg/mL) was added to 100 mL
sodium phosphate buffer 0.1 M pH 7.0 in a 250 mL glass bottle containing a small magnetic
bar stirrer. Then, 70 mg of MnSO4 × 5H2O (0.7 mg/mL) was added to the protein solution
and maintained for 16 h. After 16 h, 6 mL of NaBH4 (300 mg) aqueous solution (1.2 M)
was added to the cloudy solution (in two amounts of 3 mL) as a reducing agent. The
mixture was reduced for 30 min. After the incubation, the mixture was centrifuged at
8000 rpm for 5 min at RT (10 mL per falcon type tube of 15 mL). The generated pellet
was re-suspended in 15 mL of distilled water. It was centrifuged again at 8000 rpm for
5 min, and the supernatant was removed. The process was repeated twice more. Finally,
the supernatant was removed, and the pellet of each falcon was re-suspended in 2 mL of
distilled water; all solutions were collected in a round-bottom flask, frozen with liquid
nitrogen, and lyophilized for 16 h. After that, 47 mg of the MnNPs@CALB-P was obtained.

Another variation of the protocol was the omission of the reduction step using
sodium phosphate buffer 25 mM at pH 8.5. After that, 58 mg of the MnNPs@CALB-P-NR
was obtained.

2.4.2. Method 2

KMnO4 (500 mg) was dissolved in 10 mL of DMF or distilled water. This solution was
added to 40 mL of a distilled water solution containing 2 mL of CALB (10 mg/mL). The final
solution was kept under gentle magnetic stirring for 24 h at room temperature (RT). After
that, the resulting suspension was separated by centrifugation (10,000 rpm; 4 ◦C; 15 min).
The recovered pellet was washed once with 10 mL of distilled water containing 20% (v/v)
of the corresponding co-solvent and twice with distilled water (2 × 10 mL). After this, the
suspension was directly lyophilized to obtain the catalyst as a powder for later use. After
that, approx. 350 mg of each bionanohybrid was obtained, called MnNPs@CALB-H2O
and MnNPs@CALB-DMF, respectively.

2.5. Synthesis of MeNPs@CATb Bionanohybrids

AgNO3 (20 mg) or Na2PdCl4 (10 mg) were dissolved in 5 mL of distilled water solution
containing 7.5 mg of bovine catalase (CATb). The solution was kept under gentle magnetic
stirring for 24 h at RT. After that, the resulting suspension was separated by centrifugation
(8000 rpm; 4 ◦C; 15 min). The recovered pellet was washed three times with 10 mL of
distilled water. Afterwards, the suspension was directly lyophilized. The bionanohybrids
were called AgNPs@CATb and PdNPs@CATb.

Characterization of the different metal bionanohybrids was performed by XRD, ICP–
OES, TEM, HR-TEM, and SEM analysis.

2.6. Catalase-like Activity of Metal Bionanohybrids

Hydrogen peroxide (H2O2) (33% (w/w)) solution was prepared by adding 52 µL of
hydrogen peroxide to 9.8 mL of 100 mM or 5 mM phosphate buffer (pH 6.0, pH 7.0, and
pH 8.0), 5 mM tris base buffer pH 9, 5 mM MES buffer pH 5, or distilled water in order
to obtaining a final concentration of 50 mM. The solution pH was adjusted using HCl or
NaOH 1 M. To start the reaction, different amounts of MeNPs hybrids (2 mg or 4.5 mg) or
50 µL of Catazyme® 25 L (31 mg/mL) were added to 3 or 10 mL of the 50 mM solution
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at RT. The reaction was followed by measuring the degradation of hydrogen peroxide
recording the decrease of absorbance by spectrophotometry at 240 nm in quartz cuvettes
of 1 cm path length by adding 2 mL of this solution at different times. Experiments were
performed in triplicate.

In order to determine the catalase activity for each catalyst, the ∆Abs/min value was
calculated using the linear portion of the curve (∆Abss). The specific activity (U/mg) was
calculated using the following equation:

U
(
µmol·min−1·mg−1

)
= ∆Abs/min·V· 1000

ε·mgcatalyst
(1)

where the molar extinction coefficient (ε) used was 43.6 M−1cm−1, and mgcatalyst refers to
mg of enzyme or hybrid metal.

3. Results
3.1. Synthesis and Characterization of MeNPs@Enzyme Biohybrids

The synthesis of MeNPs@Enzyme biohybrids was performed in an aqueous medium
by using a commercial solution of lipase B from Candida antarctica (CAL-B) or bovine
catalase (CATb). This enzyme was previously dissolved in distilled water, and metal
salt was previously dissolved in co-solvent (20% (v/v)) or added directly to the aqueous
solution at RT and under gentle stirring. After 30 min, the initial clear solution turned to a
slight cloudy suspension, which was completely cloudy after 16–24 h incubation. A solid
was easily obtained after centrifugation, which was washed with the same reaction solvent
first and distilled water after and finally frozen in liquid nitrogen and lyophilized, yielding
the MeNPs@CALB hybrid. In some cases, it was necessary to add a reduction step using
NaBH4 after incubation, since although the CALB enzyme used as scaffold induces metal
reduction, in metals with low reduction potential such as transition metals such as Cu,
Fe, Mn, Zn, Co, etc., an additional reduction step is needed to achieve species from lower
valence states.

Firstly, CuNPs@CALB biohybrids were analyzed by XRD, demonstrating differences
in species, depending on the hybrids (Figure 2A). When the bionanohybrids presented
0.6 mg/mL of enzyme, CuNPs@CALB-P and CuNPs@CALB-B were obtained. In these
catalysts, almost unique copper species, Cu2O (matched well with JCPDS card no. 05-
0667) or Cu(0) (matched well with JCPDS card no. 04-0836), respectively, could be seen.
However, when the amount of enzyme was lower (0.3 mg/mL), hybrids synthesized by
these protocols, CuNPs@CALB-P* and CuNPs@CALB-B*, contained both copper species,
Cu2O and Cu(0). In the case of CuNPs@CALB-P*, it presented 40% Cu(0) (Figure 2A),
and in the case of CuNPs@CALB-B*, it presented 30% Cu(I) species. These differences
could be due to the effect that the enzyme performs in the reduction step, since the protein
environment slows down the reduction process. The TEM analysis demonstrated the
formation of nanoparticles with a different diameter size (Figures 2 and S1), in a range
between 6 and 15 nm (Table S1), the smallest ones being in CuNPs@CALB-B (Figure S1D).

Another modification of the synthesis protocol was the elimination of the lyophiliza-
tion step, resulting in the production of CuNPs@CALB-P-NL. Analyzing the XRD pat-
tern, the non-freezing of the enzyme structure could be observed; the species of this
bionanohybrid presented a mixture of copper species [Cu2O and Cu(0) (75:25 Cu2O:Cu(0))].
TEM analysis demonstrated that the diameter size of the nanoparticles was the same as
CuNPs@CALB-P, namely, 10 nm (Table S1).

The Cu amount on the solid was determined by ICP–OES analyses. The percentages
of copper in the different CuNPs@CALB hybrids were 45% to 93% (Table S1).
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Figure 2. (A) XRD spectrum of CuNPs@CALB hybrids; (B) TEM and HR-TEM (inset) images of 
CuNPs@CALB-P; (C) FFT analysis of CuNPs@CALB-P. 
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the non-freezing of the enzyme structure could be observed; the species of this bionano-
hybrid presented a mixture of copper species [Cu2O and Cu(0) (75:25 Cu2O:Cu(0))]. TEM 
analysis demonstrated that the diameter size of the nanoparticles was the same as 
CuNPs@CALB-P, namely, 10 nm (Table S1).

The Cu amount on the solid was determined by ICP–OES analyses. The percentages
of copper in the different CuNPs@CALB hybrids were 45% to 93% (Table S1). 

Subsequently, a manganese salt (MnSO4 salt) in sodium phosphate buffer was used. 
In this case, MnNPs@CALB-P or MnNPs@CALB-P-NR were obtained, respectively. The 
XRD pattern showed the same manganese species in both cases, namely, Mn3(PO4)2·3H2O 
(Figure 3A) [24]. SEM analysis showed similar mesoporous structures (Figure 3B,C). This 
shows that the reduction step did not have any consequence. 

Figure 2. (A) XRD spectrum of CuNPs@CALB hybrids; (B) TEM and HR-TEM (inset) images of
CuNPs@CALB-P; (C) FFT analysis of CuNPs@CALB-P.

Subsequently, a manganese salt (MnSO4 salt) in sodium phosphate buffer was used.
In this case, MnNPs@CALB-P or MnNPs@CALB-P-NR were obtained, respectively. The
XRD pattern showed the same manganese species in both cases, namely, Mn3(PO4)2·3H2O
(Figure 3A) [24]. SEM analysis showed similar mesoporous structures (Figure 3B,C). This
shows that the reduction step did not have any consequence.
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Figure 3. Characterization of MnNPs@CALB hybrids: (A) XRD spectrum; (B) SEM images of
MnNPs@CALB-P; (C) SEM images of MnNPs@CALB-P-NR. 

In addition, bionanohybrids were also prepared using KMnO4 directly in distilled 
water or in the presence of DMF (20% v/v), obtaining MnNPs@CALB-H2O and 
MnNPs@CALB-DMF, respectively. The XRD spectrum revealed the presence of MnO2

(JCPDS card no 18-0802) in both catalysts (Figure 4A) [25]. SEM images showed amor-
phous chunks, and no crystallographic plains were observed in TEM analysis (Figure
4B,C).

Figure 3. Characterization of MnNPs@CALB hybrids: (A) XRD spectrum; (B) SEM images of
MnNPs@CALB-P; (C) SEM images of MnNPs@CALB-P-NR.

In addition, bionanohybrids were also prepared using KMnO4 directly in distilled water
or in the presence of DMF (20% v/v), obtaining MnNPs@CALB-H2O and MnNPs@CALB-
DMF, respectively. The XRD spectrum revealed the presence of MnO2 (JCPDS card no
18-0802) in both catalysts (Figure 4A) [25]. SEM images showed amorphous chunks, and
no crystallographic plains were observed in TEM analysis (Figure 4B,C).

The amount of Mn in the solid in each case was around 25%, determined by ICP–OES
analysis (Table S1).

In addition to the metal change, another variation of the system was the introduction
of other enzymes as scaffold, bovine catalase (CATb). As other metals, silver (AgNO3) and
palladium (Na2PdCl4) were used, to obtain AgNPs@CATb and PdNPs@CATb, respectively.

For the synthesis of the AgNPs@CATb hybrid, different Ag species were formed,
namely, Ag(0), Ag2O, and AgO, as observed in the XRD spectrum (Figure 5A(I)). SEM
analysis demonstrated an aggregate with a mesoporous amorphous superstructure, and
TEM images showed nanoparticles with a size between 10 and 20 nm due to the different
species formed (Figures 5A(II,III) and S2). The amount of Ag was 34%, determined with
ICP–OES analysis (Table S1).
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Figure 4. Characterization of MnNPs@CALB-H2O and MnNPs@CALB-DMF hybrids: (A) XRD 
spectrum; (B) SEM images: (I). MnNPs@CALB-H2O and (II). MnNPs@CALB-DMF; (C) TEM im-
ages of MnNPs@CALB-DMF. 
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Figure 4. Characterization of MnNPs@CALB-H2O and MnNPs@CALB-DMF hybrids: (A) XRD
spectrum; (B) SEM images: (I). MnNPs@CALB-H2O and (II). MnNPs@CALB-DMF; (C) TEM images
of MnNPs@CALB-DMF.

On the other hand, PdNPs@CATb was synthesized with bovine catalase as the scaf-
fold. The XRD spectrum evidenced the existence of palladium chloride nanoparticles
(Figure 5B(I)) [26]. SEM analysis demonstrated mesoporous structures, and TEM images
showed the formation of small spherical nanoparticles with an average diameter of 10 nm
(Figures 5B(II,III) and S3). The amount of Pd was 27%, as determined by ICP–OES analysis
(Table S1).
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Figure 5. (A) AgNPs@CATb hybrid characterization; (B) PdNPs@CATb hybrid characterization. (I) 
XRD spectrum; (II) SEM images; (III) TEM images and HR-TEM (inset). 
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(Table S1). 

3.2. Catalase-like Activity of Different MeNPs Biohybrids 
Firstly, the Cu hybrids were evaluated for H2O2 degradation in distilled water (Figure

6A). In general, all the copper catalysts demonstrated catalase activity, where 
CuNPs@CALB-P was the most efficient biocatalyst with specific activity of 2.5 U/mg. This 
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ity. In the case of the catalyst synthesized at pH 10.0, it can be observed that the activity 
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times lower, while CuNPs@CALB-B, which had mostly Cu(0), presented half the activity 
of CuNPs@CALB-B*. The obtained results clearly demonstrated that the decomposition 
of hydrogen peroxide was more efficient for Cu(I) species.  

Figure 5. (A) AgNPs@CATb hybrid characterization; (B) PdNPs@CATb hybrid characterization.
(I) XRD spectrum; (II) SEM images; (III) TEM images and HR-TEM (inset).

3.2. Catalase-like Activity of Different MeNPs Biohybrids

Firstly, the Cu hybrids were evaluated for H2O2 degradation in distilled water
(Figure 6A). In general, all the copper catalysts demonstrated catalase activity, where
CuNPs@CALB-P was the most efficient biocatalyst with specific activity of 2.5 U/mg. This
was due to the presence of a unique species of copper, namely, Cu2O. Comparing this
result with the rest of the copper catalysts, CuNPs@CALB-P* showed 5.5 times less activity.
In the case of the catalyst synthesized at pH 10.0, it can be observed that the activity of
CuNPs@CALB-B*, which had a greater presence of oxidized species, was only two times
lower, while CuNPs@CALB-B, which had mostly Cu(0), presented half the activity of
CuNPs@CALB-B*. The obtained results clearly demonstrated that the decomposition of
hydrogen peroxide was more efficient for Cu(I) species.

On the other hand, other tests were carried out in buffer solutions with low or high
ionic strength (5 mM and 100 mM) in a pH range of 6.0 to 8.0 (Figure 6B,C). In these cases,
a general decrease in the activity of all catalysts was observed, even at very low buffer
amounts. Specifically, at a low ionic strength, when the pH was higher, they presented
higher catalase activity, although in the case of CuNPs@CALB-P, at any pH, it presented
activity at least six times lower than in distilled water. When the medium had a high ionic
strength, the results were worse for all cases.

These effect of inhibition of phosphate ions in the degradation of hydrogen peroxide
by the copper nanoparticles could be explained considering some kind of binding of a
phosphate group to the copper, generating intermediate species and reducing the reactivity
of the catalyst. Indeed, this can be supported by the results obtained when a hybrid
containing copper phosphate species [23] was used. In this case the catalase activity of this
hybrid was more than 20 times lower in distilled water than the Cu hybrids present in this
work (data not shown).

Therefore, for the conditions of greatest activity in CuNPs@CALB-P (distilled water),
the catalase activity of the same hybrid was evaluated but without lyophilization treatment
(Figure 6D) (CuNPs@CALB-P-NL), where a 5.5-fold lower activity was observed, demon-
strating the effect of the presence of Cu(0) species. Finally, the activity of CuNPs@CALB-P
was compared with the activity of free catalase (Figure 6D), where an activity of 90% could
be observed.

After that, we evaluated the MnNPs@CALB hybrids under the best conditions previ-
ously studied for copper, that is, in distilled water (Figure 7). Catalysts MnNPs@CALB-P
and MnNPs@CALB-P-NR, which have a manganese phosphate species, had no activity.
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phosphate group to the copper, generating intermediate species and reducing the reactiv-
ity of the catalyst. Indeed, this can be supported by the results obtained when a hybrid 
containing copper phosphate species [23] was used. In this case the catalase activity of this 
hybrid was more than 20 times lower in distilled water than the Cu hybrids present in this 
work (data not shown).  

Therefore, for the conditions of greatest activity in CuNPs@CALB-P (distilled water), 
the catalase activity of the same hybrid was evaluated but without lyophilization treat-
ment (Figure 6D) (CuNPs@CALB-P-NL), where a 5.5-fold lower activity was observed, 
demonstrating the effect of the presence of Cu(0) species. Finally, the activity of 
CuNPs@CALB-P was compared with the activity of free catalase (Figure 6D), where an 
activity of 90% could be observed. 

After that, we evaluated the MnNPs@CALB hybrids under the best conditions previ-
ously studied for copper, that is, in distilled water (Figure 7). Catalysts MnNPs@CALB-P 
and MnNPs@CALB-P-NR, which have a manganese phosphate species, had no activity.  

Figure 6. Catalase-like activity of different CuNPs@CALB hybrids. (A) Distilled water; (B) sodium
phosphate buffer 5 mM; (C) sodium phosphate buffer 100 mM; (D) CuNPs@CALB-P in distilled
water compared with free catalase and CuNPs@CALB-P-NL.
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On the other hand, when the species were MnO2 nanostructures, MnNPs@CALB-
H2O presented the highest activity, being 2.2 times higher than MnNPs@CALB-DMF.
Furthermore, these catalysts were evaluated in other reaction media such as 5 mM tris base
buffer pH 9 and 5 mM MES buffer pH 5 (Figure S4). In these cases, the negative effect
generated by the presence of ionic strength could be observed, as in the case of copper
mentioned above, where the activity in both catalysts at a pH similar to that of distilled
water, such as that of the MES buffer, was 45-fold lower for MnNPs@CALB-H2O and
4.5-fold lower for MnNPs@CALB-DMF. In the case of a buffer with a higher pH (pH 9),
for MnNPs@CALB-DMF it presented similar activity, while for MnNPs@CALB-H2O it
was half (Figure S4).

Finally, the MnNPs@CALB-H2O biohybrid exhibited activity three times higher than
that of natural catalase at RT in distilled water (Figure 7).
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Finally, two biohybrids of precious metals (Ag and Pd) were synthesized using bovine
catalase as a scaffold (AgNPs@CATb and PdNPs@CATb) to evaluate a potential synergistic
effect between catalase and metal nanoparticles. However, the specific activity of both
catalysts was very low (more than 100 times lower than the Mn hybrid) (data not shown).
These could be due to the type of metal species formed in each case, namely, PdCl2 for the
Pd hybrid, and a mixture of different silver oxides for the Ag hybrid.

In the literature, there are different methodologies for the degradation of H2O2 as a
mimetic of catalase activity. Some of them use complexes of precious metals, in some cases
supported, or tubular structures, where it is necessary to synthesize systems under drastic
and toxic conditions [27–30]. Therefore, the methodology proposed in our work has an ad-
vantage regarding simplicity and sustainability in the creation of artificial metalloenzymes
capable of degrading H2O2 in aqueous medium at RT.

4. Conclusions

In conclusion, in this study we have presented a simple but versatile strategy for prepa-
ration of different catalase-like activity artificial metalloenzymes (MeNPs@Enzyme) based
on the application of an enzyme that induces the in situ formation of metal nanoparticles
on the protein network.

Different bionanohybrids of different metals (Cu, Mn, Pd, Ag) were synthesized and
evaluated in terms of their ability to decompose hydrogen peroxide at RT in aqueous me-
dia. MnNPs@CALB-H2O, formed by MnO2 nanostructures, presented excellent mimetic
activity, being even three times higher than natural catalase.

Therefore, these results open the potential application of these novel bionanohybrids
in combination with other enzymatic systems for biological and biomedical processes.
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