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Abstract: A study of keracyanin chloride (KC) electrochemical behavior in an aqueous buffer so-
lution using screen-printed carbon electrodes (SPCEs) and glassy carbon electrodes (GCEs) was
performed. Cyclic voltammetry (CV) and square-wave voltammetry (SWV) were used to analyze the
electrochemical response of KC under studied conditions. A clear redox wave was observed for KC,
primarily due to the oxidation of the catechol 3′,4′-dihydroxyl group of its ring B, with a minor redox
wave from oxidation of the hydroxyl groups in ring A. Compared to GCEs, using modified SPCEs
resulted in two-fold amplification in the electrochemical oxidation signal of KC. Using SPCEs as a
working electrode could provide high sensitivity in the quantification of KC and the ability to gauge
KC quantification to significantly lower detection limits.
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1. Introduction

Anthocyanins are pigments found in the vacuoles of higher plants that are water-
soluble and biologically active. In fruits and vegetables, legumes, and cereals, anthocyanin
pigments are thought to be the most abundant water-soluble pigments [1,2]. Recent epi-
demiological studies suggest that eating fruits and vegetables regularly reduces the risk
of aging-associated chronic diseases [3–5]. In addition to their many health benefits [6–8],
anthocyanins are antioxidant, antitumor, antiradical, antimutagenic, antiproliferative, anti-
apoptotic, and nitric oxide-inhibitory [9–15]. Anthocyanins are flavonoids with different
structural characteristics, such as the number and nature of hydroxyl groups, the degree of
methylation of -OH groups, and sugar attachments [16].

Anthocyanin keracyanin chloride has significant antioxidant properties due to the
breakdown of the O–H bonds attached to the aromatic ring (not the glycoside OH). Re-
searchers have demonstrated that anthocyanins with a lower oxidation potential and are
more efficient at scavenging radicals [17,18]. Antioxidant capacity and electrochemical
behavior have a direct relationship: the lower the oxidation potential, the greater the antiox-
idant capacity [19]. A voltammetric signal at low anodic potentials indicates the presence
of polyphenolic compounds with high antioxidant capabilities, while an oxidation signal at
high potentials indicates the presence of polyphenolic compounds with low antioxidant
capacities [20]. Studies involving voltammetric measurements of fruits are rare, and only
those involving blackberries and raspberries were found [21,22]. The anthocyanin content
and radical scavenging capacity of non-Vitis vinifera grapes were determined using spec-
trophotometry, HPLC with electrochemical detection, and matrix-assisted laser desorption
ionization [23]. Electrochemical sensors derived from sewage sludge were used to detect
anthocyanin in berry fruits [24]. Anthocyanin contents and the antioxidant capacity of
grapes were measured using screen-printed carbon electrodes modified with single-walled
carbon nanotubes (SWCNT-SPCE) [25]. As a result, it is necessarily better to understand the
electrochemical properties of anthocyanin keracyanin chloride to appreciate its antioxidant
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capacity fully. The B ring is reported to be more oxidizable than the A ring (Figure 1) [26].
This study aims to examine the electrochemical oxidation behavior of keracyanin chloride
since this behavior has never been studied before. We used different electrode materials,
including glassy carbon and screen-printed electrodes, to investigate keracyanin chloride’s
electrochemical oxidation behavior.
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Figure 1. Chemical Structure of keracyanin chloride (cyanidin-3-O-rutinoside chloride).

2. Materials and Methods
2.1. Chemicals and Solutions

Merck supplied boric acid 99.95%, glacial acetic acid 100%, and phosphoric acid 85%.
Britton–Robinson buffered solution (B-R) was prepared from 0.04 M acetic, boric, and
phosphoric acids. Additionally, the buffered solution of B-R was adjusted for pH values
by adding 0.2 M sodium hydroxide solution until a pH value of 2.2 was achieved. A
water/ethanol (50:50, %v/v) mixture was used to prepare a stock solution of keracyanin
chloride (KC). All experiments were conducted using significantly bi-distilled water to
prepare fresh solutions.

2.2. Instruments

The electrochemical experiments were conducted on PGSTAT128N Autolab Electro-
chemical Workstation powered by NOVA 2.0 software (current resolution is 0.0003%, and
the current accuracy is 0.2% of the current range) (Eco-Chemie, Utrecht, The Netherlands).
High-purity nitrogen was used for degassing the solution before electrochemical measure-
ments. Afterward, nitrogen was used as a blanket. All experiments were conducted at
room temperature. A pH meter HI2221 (Hanna Instruments, Bucharest, Romania) was
utilized to adjust the pH of solutions.

2.3. Disk Electrode

The study used three electrodes: a glassy carbon electrode (GCE, 3 mm diameter with
a surface area of 0.07 cm2) for working electrodes, an Ag/AgCl electrode for reference
electrodes, and a platinum electrode for counter electrodes. Two minutes were spent
polishing the glassy carbon electrode with aqueous suspensions of 1.0 microns alumina
and 0.05 microns diamond before each run. After rinsing with distilled water, the GCE was
sonicated in ethanol and distilled water for five minutes. With a potential range of −1 to
+1 V, cyclic voltammetry was used to clean the GCE electrochemically for 25 cycles at a
scan rate of 50 mV s−1 in B-R buffer solution (pH 2.2, KC becomes more hydrophobic in an
acidic medium due to their nonionizing OH groups, which migrate on the hydrophobic
surface of GCE [20]).

2.4. Screen-Printed Electrodes

Silver reference and carbon counter electrodes were also used with a screen-printed
working electrode (4 mm diameter, DropSens, Spain). Three screen-printed electrodes
were utilized, including screen-printed carbon electrode (SPCE), single-walled carbon
nanotube-modified SPCE (SWCNTs-SPCE), and multi-walled carbon nanotube-modified
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SPCE (MWCNTs-SPCE). The electrode was electrochemically measured after casting 200 µL
of a keracyanin chloride solution onto it.

3. Results and Discussion
3.1. Voltammetric Behavior of KC on GCE

CV analysis of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) was performed on
GCE at a scan rate of 100 mV s−1 in a potential window between 0 and +1.4 V (Figure 2,
red voltammogram). One oxidation peak was observed at +0.59 V on the voltammogram,
while two oxidation shoulders were observed at +1.1 V and +1.2 V. The anodic peak at
+0.59 V indicates the formation of o-quinone through the oxidation of catechols in the B
ring. In contrast, the smaller shoulders indicate the oxidation of hydroxyl groups in the
less electroactive ring A [27,28]. The behavior of KC in the oxidation process was similar to
what was observed previously in procyanidin B2 [27]. A previous study reported that the
hydroxyl groups of the catechol B ring are more easily oxidized than those of the resorcinol
A ring [29,30]. When the potential scan is switched at +0.9 V, the anodic peak at +0.59 V
indicates a reversible reaction (inset in Figure 2, blue voltammogram). It is illustrated in a
potential window between +0.2 and +0.9 V that KC illustrates a redox wave with an anodic
peak potential (Ep

a) of +0.58 V and a cathodic peak potential (Ep
c) of +0.5 V. It has been

shown that the peak separation was 80 mV when measured ∆Ep = (Ep
a − Ep

c), which is
a higher value than expected in a fully reversible system with two electrons (59/n mV).
Moreover, it should be noted that the peak current ratio (ipc/ipa) was less than unity. In the
inset in Figure 2, the black voltammogram indicates that the background buffer does not
exhibit a redox response without keracyanin. As a result of these data, it can be concluded
that the redox process of KC at GCE was quasi-reversible. The anodic peak can also be
used for electrochemical sensing of KC in the future.
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Figure 2. Cyclic voltammograms (CVs) of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) on GCE 
at scan rate 100 mV s−1. Inset: blue voltammogram of 68 µM keracyanin in a small potential window 
from +0.2 to +0.9 V, and black voltammogram is the background current in the absence of KC. 

SWV was also used on GCE to investigate the electrochemical behavior of KC in 0.04 
M B-R buffer (pH 2.2). SWV is more efficient than CV due to its faster analysis speed, 
lower redox species consumption, and more minor electrode surface poisoning problems 
[31]. Figure 3A shows the SWV of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) on GCE. 
Interestingly, a new oxidation shoulder is observed at +0.45 V, and the original anodic 

Figure 2. Cyclic voltammograms (CVs) of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) on GCE at
scan rate 100 mV s−1. Inset: blue voltammogram of 68 µM keracyanin in a small potential window
from +0.2 to +0.9 V, and black voltammogram is the background current in the absence of KC.

SWV was also used on GCE to investigate the electrochemical behavior of KC in 0.04 M
B-R buffer (pH 2.2). SWV is more efficient than CV due to its faster analysis speed, lower
redox species consumption, and more minor electrode surface poisoning problems [31].
Figure 3A shows the SWV of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) on GCE.
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Interestingly, a new oxidation shoulder is observed at +0.45 V, and the original anodic peak
is found in the same position (+0.59 V). It is possible to explain this because SWV is more
susceptible to the enhancement in the oxidation of the catechol moiety of ring B by two
oxidation waves.
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deposition potential 0.2 V for 60 s accumulation time.

An electroanalytical method can be made more sensitive by employing several strate-
gies. In general, voltammetry is selected as the technique of choice, an accumulation step is
incorporated, and the electroactive species are eventually regenerated through a catalytic
chemical reaction. As a preconcentration step, electrochemical or adsorptive methods
are typically used in electroanalytical applications. Normally, electroactive species are
accumulated on the working electrode through electrochemical processes or adsorptive
processes. As soon as the electroactive species have accumulated, the potential is scanned,
and the current is sampled. The square-wave voltammetry (SWV) technique is widely used
to analyze electrochemical variables quantitatively. Both oxidation peaks of KC were en-
hanced when adsorptive SWV (Figure 3B) was applied at a deposition potential of 0.2 V for
60 s accumulation time. The adsorptive SWV enhanced the other two shoulders involved in
ring A hydroxylation at higher positive potentials. The difference in the measured current
of KC between SWV and CV is approximately ten-times greater when SWV is used instead
of CV. In this regard, square wave voltammetry is one of the most sensitive techniques for
measuring current responses.

The voltammetric oxidation of KC was performed for various pHs of the supporting
electrolyte on GCE. pH values were between 1.8 and 9.9, and the concentration of KC
was fixed to 20 µM CFT in 0.04 M B-R buffer solution (Figure 4A). The anodic peak of
KC oxidation was observed at all pH levels, and its position varied with pH, providing
valuable information regarding the electrode process. The peak potential of oxidation (Ep)
variation versus pH can be observed in Figure 4B, which shifts linearly towards lower
positive values until the highest pH value (pH 9.9). This means that the KC oxidation
mechanism is clearly impacted by deprotonation. Figure 4B shows a linear relationship for
Ep vs. pH: Ep = 0.68 − 0.06 pH. Therefore, KC is electrochemically oxidized to produce the
corresponding o-quinone by two-electron, two-proton oxidation, as shown in Scheme 1 [32].
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Analytical curve parameters were used to calculate the limit of detection (LOD). LOD = 3 
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Scheme 1. The oxidation mechanism of keracyanin (KC).

Using the bare GCE, square wave voltammetry (SWV) was used to produce the cali-
bration curve for KC. According to Figure 5, square wave voltammograms were obtained
at various KC concentrations. As a result of the redox process associated with KC, a well-
defined wave can be observed for all voltammograms near +0.5 V. The inset in Figure 5
illustrates the graph plotting KC concentrations against the peak areas. According to the
regression analysis, the linear equation obtained was observed from 10 to 60 m KC with a
correlation coefficient of 0.996 as follows:

Peak Area (CV/s) = 3.87 × 10−7 + 0.0726 [KC] (µM), r = 0.996

In order to calculate the peak area, the SW peak is integrated from 0.3 to 0.75 V to obtain
a unit of an ampere voltage (A.V). Since ampere equals charge (C) per second (s), the final
unit of the peak area is always calculated as (CV/s). There is a linear relationship between
the concentration of the analyte and the area under the peak. Accordingly, the present
analytical method was found to be linear within the specified range of values. Analytical
curve parameters were used to calculate the limit of detection (LOD). LOD = 3 Sb/s, where
Sb is the standard deviation of the y-intercept and s is the slope. Based on the given
conditions, the calculated LOD is 5.2 µM.
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Figure 5. Adsorptive square wave voltammograms (AdSWVs) of keracyanin in B-R buffer (pH 2.2)
at GCE at deposition potential 0.2 V, accumulation time 60 s, frequency 20 Hz at different KC
concentrations.

3.2. Voltammetric Behavior of KC on SPCEs

The electrochemical response of keracyanin chloride was also determined using
unmodified screen-printed carbon electrodes (SPCEs), single-walled carbon nanotube-
modified screen-printed carbon electrodes (SWCNTs-SPCEs), and multi-walled carbon
nanotube-modified screen-printed carbon electrodes (MWCNTs-SPCEs). A square wave
voltammogram of 68 µM keracyanin in 0.04 M B-R buffer (pH 2.2) at screen-printed carbon
electrode (SPCE) (Figure 6) at a frequency of 20 Hz in a potential range of −0.5 V until
+1.6 V vs. Ag illustrates similar oxidation behavior obtained on GCE. The square wave
voltammograms using SPCEs during electrochemical experiments present one main anodic
peak with a corresponding potential of around +0.35 V, with one shoulder at around 0.24 V
vs. Ag, corresponding to the oxidation of the 3,4-hydroxyl groups of B ring to form the
corresponding o-quinone [33]. Two more shoulders at a potential of around +0.96 V and
1.4 V vs. Ag correspond to the oxidation of the hydroxyl groups of the A ring.
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The square wave voltammograms of KC using SWCNT-SPCEs (Figure 7A) and
MWCNT-SPCEs (Figure 7B) present four anodic peaks representing the same hydroxyl
groups as explained above. Figure 7A,B illustrates the first two peaks at ~0.1 mV and
0.45 mV, corresponding to the oxidation of the 3,4-hydroxyl groups of the B ring to form the
corresponding o-quinone, and the remaining two peaks correspond to the oxidation of the
hydroxyl groups of the A ring. It is worth noting that the modified screen-printed electrodes
improve the sensitivity of the electrochemical response for KC oxidation. MWCNT-SPCEs
show better sensitivity for KC oxidation than using SWCNT-SPCEs, illustrated by the
high current values of the anodic peaks that correspond to the oxidation of the hydroxyl
groups of the B ring and the oxidation of the hydroxyl groups of the A ring. Among the
most interesting designs is the screen-printed carbon electrode (SPCE), which combines
the working electrode (made from carbon-based material), the reference electrode, and
the counter electrode in one single-printed substrate. A number of electrochemical mea-
surements were conducted using an SPCE due to its advantages for microscale analysis.
As a result of the inert nature of SPCE substrates, interferences during electrochemical
measurements are avoided. Aside from its wide potential window, an SPCE is also inert,
has a low background current [34], and is reasonably priced [35]. With disposable SPCE
platforms, this study presents a promising electrochemical investigation and quantification
protocol for KC, which offers several advantages, including reproducibility, ease of scaling,
and low cost. Consequently, screen-printed carbon electrodes may be used to develop
electrochemical sensors for analyzing KC.
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