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Abstract: In the field of automated technology research and development, trajectory tracking plays a
crucial role in the energy consumption of the vehicle’s power battery. Reducing the deviation between
the actual trajectory and the reference trajectory is the focus of trajectory tracking research. This paper
proposes the use of the model predictive control (MPC) method to reduce the deviation of lateral
and longitudinal position between the actual driving trajectory and the reference trajectory. First,
the driving conditions of the vehicle are reflected by establishing the vehicle dynamics model. Then,
the MPC trajectory tracking controller is built by designing the objective function with constraints;
Finally, the feasibility of this approach was verified by a joint Carsim-Simulink simulation. The
simulation results show that the MPC controller designed in this paper can track the trajectory better,
and reduce the lateral and longitudinal position deviation. To a certain extent, the battery energy
consumption is reduced and the accuracy of the tracking trajectory and the safety of vehicle driving
are improved.
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1. Introduction

In recent years, power batteries have become more and more widely used in the
field of automated vehicles. For the study of electric vehicles and automated vehicles, the
service life and cruising range of batteries are the most urgent problems to be solved at
present. By building a prediction model, predicting the cruising range of electric vehicles
and calculating the power consumption required by various equipment, and using the
transient simulation model to calculate the degree of influence of external factors during
the driving of the vehicle, so as to relieve the driver’s cruising range anxiety [1]. One can
design a dedicated control system to increase the range of electric vehicles and automated
vehicles by extending the discharge time of the battery [2]. Part of the aging in the battery
pack determines the performance of the entire battery pack, using distributed feasibility
methods to detect the maximum range of balance current, and then predicting the battery
life through model prediction [3]. In order to reduce the space occupied by the battery, a
long cylindrical lithium battery can be used. Compared with the traditional battery, this
long cylindrical battery has better heat dissipation capacity and longer cruising range [4,5].
Leverage machine learning methods can be used to simulate battery consumption and re-
duce uncertainty in the forecasting process. This approach gives the driver a more complete
grasp of the battery pack’s performance, reducing range anxiety [6]. One can design an
electric vehicle model, and calculate the average energy consumption per kilometer and the
remaining cruising range of the vehicle through the prediction of various indicators of the
battery pack [7]. At different operating temperatures, an insulating material and a heater
are designed to reduce the heat loss of the battery in the environment by analyzing the
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performance of the battery pack [8,9]. In an EV’s battery management module, accurate pre-
diction of battery state of charge and usage can improve battery life and cruising range [10].
The above methods are all improvements to the power battery. For unmanned vehicles,
the vehicle will be affected by many uncertain factors, and the energy consumption of the
power battery cannot be guaranteed. At this time, the high-efficiency and precise tracking
trajectory can exert the maximum performance of the power battery.

In the trajectory tracking control method of automated vehicles, the commonly used
control theories include PID control, fuzzy control, sliding mode control, model predictive
control, and others. PID control, fuzzy control, and sliding mode control are widely used.
In vehicle trajectory tracking control, combining PID control with the genetic algorithm
as well as designing a fuzzy controller based on interval type-3 can improve the stability
of lateral control for vehicles [11,12]. The trajectory tracking accuracy can be improved by
optimizing the controller parameters and adding data-driven control [13,14]. PID-based
DDPG control method and fuzzy control combined with the MPC method can improve the
tracking stability and comfort of the vehicle under different operating conditions [15,16].
Adding visual search to fuzzy control makes steering more accurate [17]. Improved hybrid
fuzzy controller for active vehicle suspension system optimizes vehicle ride smoothness
and road holding [18]. The backstep sliding mode control can overcome the external
interference, and the use of feedforward and backward combined with synovial control can
effectively improve the vehicle tracking performance [19]. The required control signal is
obtained by adding self-adaptation in the sliding mode control. In the bottom layer control,
dynamic regulation is used to give each wheel an appropriate torque, so that the entire
closed-loop system can be stabilized [20]. In the vehicle formation, using sliding mode
control theory and adding a multi-speed difference model, this method can shorten the
formation time and improve the stability in the simulation environment [21]. Based on the
Lyapunov theory, a twisted sliding mode control algorithm is designed, and the stability
of the control system is proved by applying the backstepping technique, which can also
improve the robustness of the vehicle tracking path [22]. Non-singular terminal sliding
mode control can accurately track the reference path in the presence of uncertain controller
parameters and disturbances in the environment [23]. The trajectory tracking comparison
analysis of geometry-based, preview path, LQR, linear MPC, and observer-based integral
action controllers under various perturbations such as road friction coefficient drop and
GPS positioning error shows that the observer-based integral action controller still has
good tracking [24]. This method has higher requirements on the model and may not work
if the model is inaccurate. When the vehicle is moving, or disturbed by external factors,
PID control and sliding mode control cannot meet the wide range of regulations, and the
theoretical nature of fuzzy control cannot be verified.

Model predictive control has a powerful constraint handling capability. It can predict
the future output of the system according to the historical information of the controlled
object and future input. Incorporating MPC in vehicle obstacle avoidance and steering
control can improve obstacle avoidance efficiency [25,26]. The vehicle is driven safely at
high speed by building a coupled nonlinear tire model [27] and adding sigmoid safety
constraints to the MPC controller [28]. The MPC controller with linear time variation can
improve the flexibility and stability of vehicle steering through multi-module allocation
processing [29,30]. Adding adaptive to MPC can control the stability of vehicle tracking
trajectory under complex operating conditions [31,32]. MPC combined with Gaussian
function [33] and predictive following theory (PFT), respectively [34], such can improve
vehicle driving comfort. A cost function is added to the MPC controller, and the yaw angle,
lateral position and longitudinal position are used as constraints to ensure that the vehicle
can effectively track the path [35]. In the human-vehicle interaction, the optimal torque
of the wheels is calculated in the model predictive control framework to complete the
steering [36]. Adding PID speed control to the MPC controller optimizes the controller and
realizes the tracking of the speed [37]. The road factor is added into the MPC controller,
and the vehicle tracking trajectory is realized by combining the road inclination angle and
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the roll angle [38]. Using the MPC theory, the trajectory planning and control are combined,
and the vehicle can be safely driven through the lateral and longitudinal control of the
vehicle [39]. The above method improves the stability and comfort of vehicle driving, but
does not really reduce the deviation between the real driving trajectory and the reference
trajectory. If this deviation is too large, it will greatly waste the electricity of the power
battery and shorten the cruising range.

The main contribution of this paper is to propose a method to reduce the deviation of
the tracking reference trajectory of automated vehicles to reduce the energy consumption
of the vehicle power battery. In order to reduce the lateral and longitudinal deviations
of the automated vehicle tracking reference trajectory, this paper designs an automated
vehicle trajectory tracking controller with constraints based on model predictive control
theory. The feasibility of the controller was verified by adding a reference trajectory to the
controller and co-simulating it on Carsim-Simulink. After the simulation and comparison
analysis of electricity consumption, it shows that the actual electricity consumption is
almost the same as the reference electricity consumption under the premise that the vehicle
accurately tracks the reference trajectory, thus further saving power.

The structure of this paper is as follows. Section 2 introduces the vehicle dynamics
model, the design of the MPC controller, and the definition of the power battery energy
consumption. Section 3 presents the simulation results and analysis. Section 4 draws
the conclusion.

2. Materials and Methods
2.1. Vehicle Dynamics Model

In vehicle motion, building an accurate vehicle model can improve vehicle tracking
control. The coupling between lateral and longitudinal control is added to the vehicle
model, and the tire slip is considered, which can effectively control the vehicle to track
the reference trajectory [40]. Therefore, a vehicle dynamics model considering tire slip is
established in this paper [41], as shown in Figure 1.

|A
|

Figure 1. Vehicle dynamics model.

The force analysis of the above vehicle model can obtain the expression of the nonlinear
dynamic model of the vehicle:
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where m is the vehicle mass, vy and v, are the longitudinal and lateral speeds of the center
of mass in the body coordinate system, I, is the moment of inertia around the Z axis, ¢
is the yaw angle, ! 3 and [, are the distances from the center of mass of the vehicle to the
front and rear axles, J; is the front wheel steering angle, C;r and Cj, are the longitudinal
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slip stiffness of the front and rear tires, C, f and C,, are the lateral slip stiffness of the front
and rear tires, s I and s, are the slip ratios of the left and right front wheels.
Since all of the state points on the predicted trajectory cannot be obtained, the nonlinear

dynamic model should be linearized. In this paper, & = F(&(t), u(t)) is taken and a system
operating point is selected as [§o, ug], the first-order Taylor formula is expanded at the
operating point to obtain the linear time-varying equation:

¢ = A (t) + Beu(t) )
Among them, A; = g—g;Bt = 9F
The Formula (2) 1s discretized to obtain the discrete state expression:

G(k+1) = AG(k) + Bgu(k) + Go(k + 1) — Axo(k) — Bruo(k) 3)

(k) = C&(k) 4)

Among them, Ay = [+ A; x T, By = B x T, I is the identity matrix, T is the sampling
period of the system.

2.2. Design Objective Function

In this paper, the model state quantity is [Y, X, 0,9, X} and the control quantity is
the front wheel steering angle 5. In order to reduce the amount of calculation and ensure
that the controller can effectively track the trajectory, the following objective function with
constraints is specially adopted:

Au T Au ~
]:;{ . ] H[Au .s]+fT[ . }+ETQE
5
st Upin < up+ ArAU < Uy ®
Ymin < Y < Ymux
2(@TQO®+R) 0 T
Among them, H = 0 2]’ f = [2ETQO 0], E = Yier — e — T,

Q =diag(Q,Q,Q, ...), E is the tracking error between the desired path in the predicted
time domain and the free response of the system, ¢ is the relaxation factor, Au is the control
increment, 1 is a N x 1 linear time-varying matrix, ¢ is the deviation augmentation matrix.

In lateral tracking capability, the constraint condition of the front wheel steering angle
(Sf issetas: —25 < Jf < 425,

2.3. Power Battery Energy Consumption

In order to better verify the electricity consumption of the MPC trajectory tracking
controller to control the automated vehicle during the driving mileage. In this paper, the
actual driving distance of the vehicle is divided into several segments, and each segment of
the actual driving distance is multiplied by a fixed battery electricity consumption rate to
get the actual battery power consumption of the vehicle in that segment. For this purpose,
this paper adopts the following electricity consumption expression:

Q=dw (6)

Among them,i=1,2,3,...,dis the actual driving distance of the vehicle, w is electricity
consumption rate (w = 0.22 kWh/km) [42].

3. Results

This paper uses the co-simulation of Carsim and Simulink, builds the vehicle dynamics
module and determines the input and output ports in Carsim, and builds the trajectory
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tracking control module in Simulink. The main parameters of the trajectory tracking
controller are shown in Table 1.

Table 1. Controller parameters.

Variable Name and Unit Numerical Value
Np Prediction time domain 60
N Control time domain 30

T Sampling period/s 0.02
P Relaxation factor weight coefficient 1000
m Vehicle mass/kg 1723
l f Front wheelbase/m 1.232
I Rear wheelbase/m 1.468
I, Moment of inertia/ l<g-m*2 4175
C. f Front wheel lateral cornering stiffness 66,900
Cer Rear wheel lateral cornering stiffness 62,700
Cis Front wheel longitudinal cornering stiffness 66,900
Ciy Rear wheel longitudinal cornering stiffness 62,700

The accuracy and stability of trajectory tracking are affected by the prediction time
domain and the control time domain to a certain extent. Based on the constant sampling
time of the system, in order to verify the effects of different weight coefficients, prediction
time domain and control time domain on the vehicle tracking trajectory, this paper uses
the automated vehicles trajectory planned by the artificial potential field method as the
reference trajectory [43] and selects three different sets of data to test the efficiency of the
vehicle tracking trajectory.

It can be seen from Figure 2a,b that when N, = 25, N. = 10, and p = 500, the
vehicle cannot accurately track the reference trajectory in the interval of 0-20 and a lot
of fluctuations occur. The yaw angle generated by the actual driving of the vehicle also
has a lot of fluctuations, and the vehicle stability is poor. When N, = 40, N = 20, and
p = 700, the tracking accuracy and stability of the controller are only slightly improved,
and it still cannot satisfy the normal driving of the vehicle. When N, = 60, N. = 30, and
p = 1000, the vehicle can accurately track the reference trajectory from the starting position
and reach the target position smoothly. During the whole tracking process, the actual
driving trajectory of the vehicle has no fluctuation and the actual driving trajectory has a
high degree of coincidence with the reference trajectory, it can also track well at the turning
of the reference trajectory. Through the comparison and analysis of the above three sets
of data, when the sampling time of the system remains unchanged, the relaxation factor
weight coefficient, prediction time domain and control time domain parameters in the MPC
controller designed in this paper are selected as Np = 60, N, = 30, and p = 1000.

Figure 3a,b shows the comparison between the reference trajectory and the real trajec-
tory in the lateral and longitudinal positions respectively. Figure 3a compares the lateral
positions of the reference trajectory and the real trajectory, it can be seen that deviations
occur in the 0-10 s and 20-25 s intervals. Figure 3b compares the longitudinal positions
of the reference trajectory and the real trajectory, it can be seen that deviations occur in
the 0-10 s interval. The deviations in the above comparisons are extremely small and are
within the controllable range, which does not affect the overall tracking effect, which shows
that the controller has very good robustness.
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Figure 2. (a) Simulation of vehicle tracking reference trajectory with different controller parameters;
(b) The yaw angle generated by the vehicle tracking the reference trajectory when the controller
parameters are different.
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Figure 3. (a) Comparison of the lateral position of the reference track and the real track; (b) compari-
son of the longitudinal position of the reference track and the real track.

Figure 4a shows the comparison between the reference yaw angle and the actual
gen— erated yaw angle, there are slight fluctuations in the actual generated yaw angle.
The de— viation between the reference yaw angle and the actual generated yaw angle is
less than 0.2° during the whole simulation time, which indicates the high accuracy of the
MPC con— troller. Figure 4b represents the front wheel steering angle generated by the
actual driving of the vehicle. According to the set of constraints, the front wheel steering
angle: —25" < § < +25°. As can be seen from the figure, the actual generated front
wheel steering angle fluctuation range is in accordance with the set constraints. The lateral
and longitudinal velocity curves actually generated by the vehicle in Figure 4c,d fluctuate
slightly, but the range of fluctuation is extremely small and within a controllable range.
Combining the lateral speed curve and the wheel angle curve, it can be seen that when
the lateral speed fluctuates, the front wheel angle generated by the vehicle is still within
the controllable range. Combining the lateral velocity curve and the actually generated
yaw angle curve, it can be seen that when the lateral velocity fluctuates, the vehicle can
keep up with the reference trajectory in time after deviating from the heading. This further
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illustrates that the designed controller can effectively control the steering of the vehicle and
improve the accuracy of the vehicle when tracking the reference trajectory.
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Figure 4. (a) Comparison of reference yaw angle and real yaw angle; (b) generated front wheel
steering angle; (c) generated lateral velocity; (d) generated longitudinal velocity.

Figure 5 shows the comparison between the reference electricity consumption and
the actual electricity consumption of the vehicle during the specified driving mileage. In
the entire driving mileage, the actual electricity consumption is almost the same as the
reference electricity consumption, and the error between the two is very small. This shows
that the battery energy consumption is also within the reference range, and the loss is
extremely small. The above results show that the vehicle’s accurate tracking of the trajec—
tory is beneficial to save electricity and improve the battery cruising range.
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Figure 5. Battery power consumption while the vehicle is running.

4. Conclusions

Based on the vehicle dynamics model, this paper uses model predictive control theory
to design an automated vehicle trajectory tracking controller, in which appropriate con-
straints are added to ensure that the vehicle can accurately track the reference trajectory.
After simulation and comparison the automated vehicle trajectory tracking controller de-
signed in this paper can quickly complete the trajectory tracking task and substantially
reduce the deviation between the real trajectory and the reference trajectory in the lateral
and longitudinal positions. The reduction of this deviation is conducive to reducing the
energy consumption of the power battery of the automated vehicle and improving the
cruising rang of the power battery and the energy utilization rate of the vehicle. The
controller has a quite high accuracy during trajectory tracking.
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