
����������
�������

Citation: Berisha, A. An

Experimental and Theoretical

Investigation of the Efficacy of

Pantoprazole as a Corrosion Inhibitor

for Mild Steel in an Acidic Medium.

Electrochem 2022, 3, 28–41.

https://doi.org/10.3390/

electrochem3010002

Academic Editor: Masato Sone

Received: 11 December 2021

Accepted: 4 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electrochem

Article

An Experimental and Theoretical Investigation of the Efficacy of
Pantoprazole as a Corrosion Inhibitor for Mild Steel in an
Acidic Medium
Avni Berisha

Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina,
Kosovo; avni.berisha@uni-pr.edu

Abstract: The corrosion behavior of mild steel in a 1 M aqueous sulfuric acid medium in the presence
and absence of the drug Pantoprazole was investigated using potentiodynamic polarization and
quantum chemical calculations as well as Monte Carlo and molecular dynamic simulations. The
potentiodynamic experiments indicated that this molecule, as a result of its adsorption on a mild steel
surface, functioned as a mixed inhibitor. The goal of the study was to use theoretical calculations to
acquire a better understanding of how inhibition works. The adsorption behavior of the examined
compounds on the Fe (1 1 0) surface was calculated using a Monte Carlo simulation. Furthermore,
the molecules were studied using density functional theory (DFT), especially the PBE functional, to
determine the relationship between the molecular structure and the corrosion inhibition behavior
of the chemical under research. The adsorption energies of Pantoprazole (in its three different
protonation states) iron were calculated more precisely using molecular mechanics with periodic
boundary conditions (PBC). The predicted theoretical parameters were found to be in agreement
with the experimental data, which was a considerable help in understanding the corrosion inhibition
mechanism displayed by this chemical.
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1. Introduction

The physical and chemical properties of mild steel as well as its availability and cost
have made it one of the most extensively utilized materials in a wide range of industrial
fields [1–6]. This material is used in a range of applications, including mineral processing
equipment, petroleum refining, and other building materials. Despite having a wide range
of uses, the material has a low corrosion resistance when subjected to different atmospheric
conditions. Many metal materials degrade as a result of this exposure, resulting in substan-
tial economic consequences. As a result, corrosion prevention and protection have become
unavoidable requirements. Several methods have been explored to protect metals but one
of the most successful and cost-effective has been the inclusion of inhibitors into the corro-
sion media. According to the literature, the most efficient corrosion inhibitors are organic
molecules containing unsaturated bonds, aromatic rings, and heteroatoms such as O, N,
and S [7–10]. Using mild steel in 1 M H2SO4, we investigated the inhibitory impact of the
drug Pantoprazole [6-(difluoromethoxy)-2-(((3,4-dimethoxypyridin-2-yl)methyl)sulfinyl)-
1H-benzo[d]imidazole] on the corrosion of this material. This drug is a possible corrosion
inhibitor due to its chemical structure, which contains heteroatoms (O, N, S, F) and numer-
ous double bonds. Theoretical calculations (DFT, MC, and MD) were used to complete the
experimental study.
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2. Materials and Methods
2.1. Instrument, Material, Electrode Preparation, and the Corrosive Solution

A PalmSens3 potentiostat was used in combination with a three-electrode cell at 298 K.
A graphite rod (d = 3 cm, l = 4 cm) was employed as an auxiliary electrode, and a saturated
calomel electrode (SCE) was used as a reference electrode. Scanning the electrode potential
vs. EOCP at a 1 mV/s sweep rate yielded potentiodynamic polarization curves. The
measurements were taken in an atmospheric environment. To guarantee reproducibility,
each experiment was carried out three times. Table 1 shows the mass percentages of mild
steel (in weight percent) [11]. The corrosive solution utilized was a 1 M sulfuric acid
solution that was prepared by diluting the solution with bi-distilled water.

Table 1. Composition of mild steel (in %).

Fe C P Mn Si Cr S Mo Ni

99.54 0.1252 0.0316 0.1836 0.0561 0.0124 0.0282 0.0125 0.0015

The electrode for the electrochemical studies was created by embedding a mild steel
rod (d = 1.6 mm, l = 12 cm) into a Teflon® tube (d = 0.8 cm, l = 10 cm) using epoxy glue
and allowing it to cure. The electrode was polished on silicon carbide abrasive paper
with a medium grain diameter of 6.5–15.3 microns, then on a (DP-Nap) cloth soaked in
an aluminum oxide solution with a particle size of 0.3 microns, then rinsed and sonicated
in water.

2.2. DFT Calculations

The DFT calculations were fulfilled by Dmol3 software from Biovia [12,13]. A meta-
generalized gradient approximation [14,15] employing M11-L [15–17] and a double numeric
quality basis set (DNP) [18] were used for the geometry optimizations. A lower than
0.00001 kcal/mol convergence standard for the self-consistent field (SCF) was used for
the SCF. The energy minima were validated by carrying out a vibrational analysis and
establishing that there were no imaginary frequencies present in the data [19–21].

2.3. Monte Carlo (MC) and Molecular Dynamic (MD) Simulation

The simulation of the interaction of a mild steel surface with the drug Pantoprazole was
performed in a corrosion environment by utilizing a ten atom-thick layer unit cell of Fe (1 1
0) surface as the basis for the experiment (under a periodic boundary condition). The sizes
of the slab model were 19.859 Å × 19.859 Å × 18.342 Å with an enclosed addition of a 30 Å
vacuum layer at the C axis that was introduced with 1 Pantoprazole molecule/350 H2O
molecules/5 sulphate + 10 hydronium ions. In advance of the MD step, the geometry of the
simulation boxes was optimized (energy converge tolerance of 1 × 10−5 kcal/mol) using
the Forcite module in the Biovia software package.

MD was performed at a temperature of 25 ◦C [22] using the constant volume/constant
temperature (NVT) canonical ensemble with a simulation period of 1000 ps [23–27]. The
Berendsen thermostat conserved the temperature. The calculations for MC and MD were
carried out using the Condensed Phase Optimized Molecular Potential II (COMPASSII)
forcefield [26,28–36]. A radial distribution function (RDF) analysis included the entire MD
trajectory [2,20,21,23].
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3. Results
3.1. Polarization Measurements

The anodic and cathodic polarization curves of a mild steel electrode in a 1 M H2SO4
solution are shown in Figure 1 in the absence and presence of the drug Pantoprazole at
298 K. The IE (in percent) was determined using Equation (1):

IE(%) =
icorr.
absence o f inhibitor − icorr.

presence o f inhbitor

icorr.
absence o f inhibitor

100 . (1)
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Figure 1. The Tafel plot of the mild steel electrode measured in a H2SO4 solution (c = 1 M) in the 
absence and in the presence of 10, 50, 100, and 250 ppm of Pantoprazole. 
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onto the mild steel surface significantly reduced the corrosion current of the mild steel in 
this hostile environment, indicating a high degree of corrosion inhibition of up to 94.53 
percent. 

When Pantoprazole was present in the solution, the values of the cathodic and anodic 
Tafel slopes (bc, ba) changed. The changes in the Tafel slopes indicated that the molecule 
had an effect on the kinetics of the hydrogen evolution process [10]. This resulted in a 

Figure 1. The Tafel plot of the mild steel electrode measured in a H2SO4 solution (c = 1 M) in the
absence and in the presence of 10, 50, 100, and 250 ppm of Pantoprazole.

The electrochemical parameters of the corrosion potential (Ecorr) and corrosion current
density (icorr) were determined from the intersection of the anodic and cathodic Tafel slopes
and are presented in Table 2.

Table 2. Electrochemical parameters of mild steel at various concentrations of Pantoprazole molecules
in 1 M sulfuric acid.

C
(ppm)

Ecorr
(V)

Icorr
(µA/cm2)

bc
(mV/dec)

ba
(mV/dec)

IE
(%)

- −0.502 0.4891 −153.1 84.4 -
10 −0.480 0.2908 −155.2 92.1 48.34
50 −0.491 0.1933 −166.1 96.4 72.12

100 −0.495 0.1689 −166.9 98.1 78.27
250 −0.472 0.1014 −172.2 99.4 94.53

The Tafel plot in Figure 1 reveals that the adsorption of the Pantoprazole molecules
onto the mild steel surface significantly reduced the corrosion current of the mild steel in this
hostile environment, indicating a high degree of corrosion inhibition of up to 94.53 percent.

When Pantoprazole was present in the solution, the values of the cathodic and anodic
Tafel slopes (bc, ba) changed. The changes in the Tafel slopes indicated that the molecule
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had an effect on the kinetics of the hydrogen evolution process [10]. This resulted in a
greater energy barrier for the proton discharge and, therefore, less gas evolution. The
investigated compound had no discernible effect on the corrosion potential, suggesting
that it acted as mixed-type inhibitor [6].

3.2. DFT, MC, and MD Results

The microspecies distribution of the Pantoprazole molecules was performed using
Chemaxon software prior to the computation to take into consideration the pH influence
on the protonation/deprotonation of the Pantoprazole molecule. As may be observed in
Figure 2A, Form A, C, and E of the chemical structures were below a pH of 7.
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Figure 2. (A) The distribution percentage of Pantoprazole molecular forms vs. the pH value of the
media and (B) three major species distributed at pH < 7 used in the theoretical calculations (DFT, MC,
and MD).

According to [37,38], charge density profiles are seen as a map of the charge density
distribution across the surface of the molecule and give information about the molecule as
well as information about its solubility. To create the charge density curve, referred to as the
sigma profile, it is essential to perform calculations centered on the conductor-like screening
model (COSMO) (Figure 3). COSMO operates on molecular-shaped cavities, which are
characterized by partial atomic charges and serve as a representation of the electrostatic
potential [15,39–42]. As seen in Figure 3 (peaks in the σ-profile at the screen charge density
values near −0.01 and 0.01 e/Å2), the inhibitors operated as an acceptor/donor of H-bonds
in the process. As a result, the solubility of the various protonated forms of Pantoprazole
was dependent on its capacity to interact with water molecules via this type of contact.

When it comes to molecular simulations and mechanism verifications, both HOMO
and LUMO (Figure 4) are frequently employed as recommendations to determine if a
reaction occurs normally and which components of the molecules are responsible for
the reaction [6,29,30]. The HOMO displayed the electrons being donated to the electron-
accepting portions of the molecule and the LUMO illustrated the electrons being donated
to the net-donor sections of the molecule.
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Figure 4. HOMO and LUMO surfaces as well as the electrostatic potential (ESP) for different
protonated forms of a Pantoprazole molecule.

Figure 4 depicts the HOMO and LUMO OM and ESP of the Pantoprazole medica-
tion, and Table 3 lists the most often seen DFT indices. The majority of the HOMO and
LUMO densities were localized in the region of the molecule that contained the imidazole
moiety. When it comes to Pantoprazole, the HOMO and LUMO were significant due to
their ability to interact with the Fe (1 1 0) surface via electron donation and acceptation,
respectively [2,7,21,24–27,29–31,36,43–45].

When the electron affinity and ionization potential of the material were computed, a
comparable capacity was obtained. Additionally, the proclivity of the forms of Pantoprazole
for adsorption on metal surfaces were enhanced by an appropriate softness value and a
relatively low hardness ratio [9,11,46,47].
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Table 3. Calculated theoretical chemical parameters for the different protonated forms of the Panto-
prazole inhibitor.

Theoretical Parameters Pantoprazole
Form A

Pantoprazole
Form C

Pantoprazole
Form E

HOMO −5.9710 −6.2020 −6.7640
LUMO −2.1580 −2.7930 −3.2990

∆E (HOMO-LUMO) 3.813 3.409 3.465
Ionization energy (I) 5.9710 6.2020 6.7640
Electron affinity A) 2.1580 2.7930 3.2990

Electronegativity (X) 4.0645 4.4975 5.0315
Global hardness (η) 1.9065 1.7045 1.7325

Chemical potential (π) −4.0645 −4.4975 −5.0315
Global softness (σ) 0.5245 0.5867 0.5772

Global electrophilicity (ω) 4.3326 5.9336 7.3062
Electrodonating (ω−) power 6.6032 8.3954 10.0385
Electroaccepting(ω+) power 2.5387 3.8979 5.0070
Net electrophilicity (∆ω±) 2.3872 3.7788 4.9074

Fraction of transferred electrons (∆N) −0.2189 −0.3718 −0.5199
Energy from Inhib to Metals (∆N) 0.0913 0.2356 0.4683

∆E back-donation −0.4766 −0.4261 −0.4331

3.3. MC and MD Results

As seen in Figure 5, the lowest energy configurations of the distinct protonated forms
of the Pantoprazole molecule on the metal surface in the simulated corrosion environment
were identified. It appeared that the heteroatoms (mostly oxygen and nitrogen atoms) were
involved in the adsorption process of the inhibitor based on the adsorption geometries.
The creation of a protective anticorrosion layer on the metal surface was a result of this
adsorption affinity.
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The quantitative determination of the interaction of the inhibitor molecule with the
metal surface was accomplished via the computation of the adsorption energies using the
following equation [48]:

Eadsorption = EFe(110)|inhibitor −
(

EFe(110) + Einhibitor

)
(2)

where EFe(110)|inhibitor is the total energy of the simulated corrosion system and EFe(110) and
Einhibitor are the total calculated energy of the Fe (1 1 0) surface and that of the free inhibitor
molecule, respectively.

For each MC, random molecular configurations as large as possible (ions or molecules)
were chosen and deposited in the simulation box. Using the graph in Figure 6, we observed
that when more of these systems were used, the average energy of the system approached
a plateau, indicating that the system had reached its maximum energy balance (after
200,000 steps).
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The results of the Monte Carlo simulations were consistent with those of the experi-
ments. Due to the strong negative value of the adsorption energies (as seen in Figure 7),
the adsorption process was considered to be spontaneous [11,24,25,33].
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Figure 7. Distribution of the adsorption energies for the different protonated forms of the Pantopra-
zole inhibitor on to the iron surface obtained via MC.

It is possible to watch and record the dynamics of the adsorption of an inhibitor on
metal surfaces using MD simulations [30]. Monitoring the actual temperature change
during the MD run is one method to ensure that the system uses the least amount of energy.
From Figure 8, it can be seen that the temperature drift was modest, suggesting that the
MD of our system was successfully conducted.
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Figure 5 depicts the most recent inhibitor configurations on a metal surface. In accor-
dance with the MC calculations, the N and O atoms were responsible for the adsorption of
the Pantoprazole molecule. Using the adsorption energy calculated from the MD simula-
tions (Figure 9), we observed that the inhibitor, regardless of its protonation form (A, C, or
E), interacted strongly with the surface; it laid nearly flat on it, limiting the ability of the
corrosion species to reach the surface, consequently reducing the severity and rate of the
mild steel corrosion.
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Figure 9. Evolution of the adsorption energy during the MD run in the simulated corrosion media
during the interaction of Pantoprazole (Form A, C, and E) with the Fe (1 1 0) surface in the simu-
lated corrosion media (the corresponding mean values of the interaction energies are presented in
the graph).

This deduction was also sustained by the analysis of the radial distribution func-
tion (RDF), which calculated the oxygen atoms from the horizontal of the metal surface
presented in Figure 10.

It has been commonly established that when a peak appears in the RDF graph of
a particular atom(s) and the surface between 1 and 3.5 Å, it is a strong indication that
chemisorption occurred whereas the presence of physisorption RDF peaks is estimated at
greater distances (typically > 3.5 Å) [22,23,25,31–34,43].

The RDF for the O, N, S, and F atoms (Figure 10) of the inhibitor advocated the
chemisorption of the inhibitor on the metal surface [28,29]. The accomplished results from
MD and the corresponding RDF analysis validated the well-founded propensity of the
inhibitors to adsorb and protect the metal.
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Fe (1 1 0) surface gained via MD.

3.4. The Study of the Film Density and the Self-Diffusion Coefficients of Pantoprazole

After 1000 ps of MD, the density values of the Pantoprazole-formed films were ob-
tained; the average density values are presented in Table 4.

Table 4. Parameters for the corrosion thin-film model construction.

Pantoprazole a = b = c (Å) α = β = γ (◦) Density (g/cm3) Number of Molecules Number of Particles

Form A 31.814 90 1.407 50 1
Form C 31.842 90 1.382 50 1
Form E 31.869 90 1.425 50 1

The fractional free volume (FFV) of the inhibitor films were evaluated from the free
and the occupied volumes of the Connolly surface using the following equation [29]:

FFV =
Vf ree

Vf ree + Voccupied
(3)

where Vfree is the free volume and Voccupied is the occupied volume of the PBC box containing
the inhibitor film.

The determination of the self-diffusion coefficient (SDC) was calculated by [29]:

D =
1
6

lim
t→∞

Nα

∑
i=1
〈〈ri(t)− ri(0)〉2〉 (4)

where 〈〈ri(t) − ri(0)〉2〉 is the mean squared displacement (MSD) values obtained from the
MD trajectory (Figure 11).
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half of the MD simulation.

The FFV of the corrosive simulation media was calculated and is shown with other
parameters in Table 5.

Table 5. Parameters for the corrosion thin-film model construction.

Pantoprazole Form A Form C Form E

(Self-diffusion coefficient) (cm2/s) 2.67 × 10−7 1.16 × 10−8 8.33 × 10−9

Free volume (Å3) 2814.56 3288.26 2276.13
Occupied volume (Å3) 20,010.63 19,868.82 20,180.50

FFV 0.123309 0.141998 0.101357

An important characteristic that determines the mobility of corrosive ions (such as
hydronium and sulphate ions) at the interface of a produced inhibitor film is the mobility
of the inhibitors themselves. van der Waals and Coulomb forces work on the film-forming
inhibitor molecules, causing them to interact and become displaced in the corrosive solution.
This causes the volume and shape of the cavities in the film to change as well as the size of
the cavities [29,48]. This has an effect on the mobility of the corrosive ions within the film.
A high mobility film suggests that the corrosive species has a higher diffusion coefficient
than normal. It was proposed that the SDC be used to assess the mobility of the inhibitor
film. The self-diffusion coefficients for the Pantoprazole (Form A, C, and E) inhibitors are
shown in Table 5. These values were determined by the balance between the flexibility
of the molecule and its capacity to interact with nearby molecules in the surrounding
environment. Although the protonation appeared to have no effect on the tight packing
of Pantoprazole, this actually strengthened the interactions between its molecules. The
reflection of the inhibitory performance of an inhibitor molecule is a complicated process
that is the result of an accumulation of a number of different combined effects (volume of
the molecule, adsorption ability, adsorption energy, the FFV of the film, the mobility of the
film-forming molecules, the interaction of the corrosive species with the film, etc.).
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4. Conclusions

The investigated compound was an effective mild steel inhibitor when used in an acidic
environment. Using polarization measurements, it was discovered that this compound
functioned as a mixed inhibitor. The adsorption centers of the inhibitors were determined
by the use of DFT simulations. The MC and MD simulations further confirmed the strong
adsorption contact of the inhibitor with the metal surface, giving molecular proof of the
adsorption behavior (geometry) and adsorption energy of the Pantoprazole molecule on
the iron surface, which was consistent with previous findings. Several theoretical results
(DFT, MC, and MD) confirmed the results of the experiments.
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