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Abstract: Ferrocene-based porous organic polymers (FPOPs) were prepared from phenol-formaldehyde
polymer (Bakelite) and phenol as starting materials; and two possible mechanisms for polymerization
were discussed. Solid-state 13C CP-MAS NMR, FTIR, powder XRD, elemental analysis and ICP
(Fe, Na, B) were performed to characterize the prepared materials. The two synthetic approaches
produced polymers with different pore sizes: the FPOP synthesized through Bakelite presented a
higher surface area (52 m2 g−1) when compared to the one obtained by the bottom-up polymerization
from phenol (only 5 m2 g−1). Thermogravimetric analysis confirmed the thermal stability of the
material, which decomposed at 350 ◦C. Furthermore, cyclic voltammetry (CV) of the new FPOP on
modified electrodes, in ACN and 0.1 M TBAP as an electrolyte, showed fully reversible electron
transfer, which is similar to that observed for the ferrocene probe dissolved in the same electrolyte.
As a proof-of-concept for an electrochromic device, this novel material was also tested, with a color
change detected between yellow/brownish coloration (reduced form) and green/blue coloration
(oxidized form). The new hybrid FPOP seems very promising for material science, energy storage
and electrochromic applications, as well as for plastic degradation.

Keywords: porous organic polymer; ferrocene; Bakelite; cyclic voltammetry; electrochromic material

1. Introduction

Phenol formaldehyde resins (PFR) are synthetic materials obtained by condensation
of diverse phenol derivatives with aldehydes and were first produced in the nineteenth
century. In 1909, Baekeland synthesized the first commercial PFR-based plastic through
the reaction of unsubstituted phenol and formaldehyde—Bakelite (see Figure 1a)—which
granted PFR the status of the first synthetic resin developed industrially [1]. Nowadays,
they are adopted in most plywood and particleboard industries, along with their use
in the consumer goods industry. Due to high PFR consumption and the sustainability
problems that arise from that, the disposal of these materials has become a relevant issue.
Under environmental conditions, plastic degradation occurs by four different mechanisms:
(i) photodegradation, (ii) thermooxidative degradation, (iii) hydrolysis and (iv) biodegrada-
tion by microorganisms. However, the decomposition process is very slow, turning plastic
pollution into a huge environmental problem due to its systematic accumulation and toxic
degradation [2]. Currently, the only widely employed method for recycling plastic is the
mechanical approach, in which plastic is recovered by washing, followed by shredding,
melting and remolding. Nonetheless, this approach cannot be applied to thermosetting ma-
terials, such as Bakelite, since their rigid 3D structure, obtained by chemical polymerization,
impairs its remodulation. For example, Bakelite can be burned, pyrolyzed or successfully
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employed in the synthesis of a ferrosilicon alloy [3], as well as in the production of silicon
carbide [4].
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properties, such as their higher chemical and thermal stability, the reversible redox 
behavior of the ferrocene/ferrocenium (Fc/Fc+) couple, electrochromic properties, 
switchable polarity, modified charge transport and electric potential [10]. These 
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framework formed by organic building blocks, which are assembled by covalent bonds 
[13,16]. They can be classified as amorphous or crystalline materials. Hyper crossed-
linked polymers (HCPs), polymers of intrinsic microporosity (PIMs), covalent organic 
networks or nanosheets (CONs) and porous aromatic frameworks (PAFs) are examples of 
amorphous POPs, whereas covalent organic frameworks (COFs) are crystalline. POPs 
have been employed in several areas, such as gas separation [17], catalysis [18], CO2 
capture [19] and biomedicine [20]. 

Electrochromic materials, also known as switchable materials, are usually found in 
thin film devices. Moreover, electrochromic smart windows have finally reached maturity 
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devices are applied in architectural glazing, automotive mirrors, rear view mirrors, 
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Figure 1. Chemical structures of the starting materials used in the FPOPs syntheses: (a) Bakelite
skeleton, (b) ferrocene (Fc) structure and (c) phenol (Ph). For reference, the approximate Bakelite
molecular formula is (C44H36O6)n [5–7].

Among iron based organic molecules, ferrocene is quite stable under ambient condi-
tions and is an interesting organometallic compound due to its high reactivity that provides
pathways for easy functionalization, promoting several substituted materials, particularly
through a direct Friedel–Crafts reaction [8]. It is known that polymers containing ferrocene
in their backbone usually involve the covalent attachment at both cyclopentadienyl rings
via divalent 1,1′-ferrocenylene (or ferrocenediyl) units within the main chain [9]. The incor-
poration of covalently bounded ferrocene (see Figure 1b) into a polymer can be performed
in two ways: (i) bottom-up, where the polymerization is from ferrocene and phenol, and
(ii) post-synthetic modification, which consists of the addition of ferrocenediyl moieties
into the already formed polymer backbone.

Ferrocene-containing polymers are an outstanding class of metal-containing polymer
and have recently raised considerable interest, mainly owing to their unique ferrocene
properties, such as their higher chemical and thermal stability, the reversible redox behav-
ior of the ferrocene/ferrocenium (Fc/Fc+) couple, electrochromic properties, switchable
polarity, modified charge transport and electric potential [10]. These characteristics suggest
that ferrocene-based polymers are excellent candidates for electrochemical and catalytic
applications [11,12], redox-stimuli-responsive drug delivery systems [13], magnetic nano-
materials [14], micellar nanocarriers and smart surfactants [11], self-assembly and surface
patterning of nanoparticles [12], as well as for the preparation of porous redox-responsive
materials [15].

Porous organic polymers (POPs) are materials that exhibit a highly crossed-linked
framework formed by organic building blocks, which are assembled by covalent bonds [13,16].
They can be classified as amorphous or crystalline materials. Hyper crossed-linked poly-
mers (HCPs), polymers of intrinsic microporosity (PIMs), covalent organic networks or
nanosheets (CONs) and porous aromatic frameworks (PAFs) are examples of amorphous
POPs, whereas covalent organic frameworks (COFs) are crystalline. POPs have been em-
ployed in several areas, such as gas separation [17], catalysis [18], CO2 capture [19] and
biomedicine [20].

Electrochromic materials, also known as switchable materials, are usually found in thin
film devices. Moreover, electrochromic smart windows have finally reached maturity and
promise to be the next major advance in energy-efficient window technology. These devices
are applied in architectural glazing, automotive mirrors, rear view mirrors, sunroofs,
sunglasses and in high-end industries. Recent advances have shown the potential of
using polymeric and porous scaffolds as very efficient and functional electrochromic
materials [21–24], along with different electrochromic ionic liquids and eutectics that have
been developed [25,26].
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Herein, we report the development of a Bakelite-like ferrocene functionalized POP
and provide a detailed characterization, including a porosity analysis, thermal stability
analysis, electrochemical study and propose a potential application in electrochromism.

2. Results and Discussion
2.1. Synthesis and Characterization of FPOP

In order to incorporate ferrocene in the Bakelite backbone (see Figure 2), two different
synthetic approaches were explored:

• Strategy A consisted of the bottom-up method, using phenol, formaldehyde and
ferrocene to obtain the desired FPOP;

• Strategy B was based on a post-synthetic modification approach, where ferrocene was
incorporated in the already-formed Bakelite (previously prepared by an acid catalyzed
reaction from phenol and formaldehyde).
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Figure 2. Synthesis of ferrocene-based porous organic polymers (FPOPs), using as starting materials 
phenol (Strategy A) and Bakelite (Strategy B). The core Bakelite skeleton is represented in black, in 
which carbon atoms and groups related to FPOP are highlighted in blue, whereas the inserted 1,1′-
ferroenenomethylene unit is in red and the indistinguishable methylene in green. 

Figure 2. Synthesis of ferrocene-based porous organic polymers (FPOPs), using phenol (Strategy
A) and Bakelite (Strategy B) as starting materials. The core Bakelite skeleton is represented in
black, in which carbon atoms and groups related to FPOP are highlighted in blue, the inserted
1,1′-ferroenenomethylene unit is in red and the indistinguishable methylene in green.

Regarding bottom-up polymerization (Strategy A), on several attempts, a homoge-
neous black suspension was consistently formed when quenching the reaction, despite the
excess of ferrocene and paraformaldehyde used. Then, the reaction slurry was reduced with
thiosulfate solution, over several days, until a stable light brown suspension was formed.
The structure of the isolated resulting polymer (see Structure 2 in Figure 2) was deter-
mined by 13C CP-MAS NMR and FTIR spectroscopy. In the case of the derivative prepared
from Bakelite as starting material (Strategy B), after 24 h, a yellow-brown suspension was
formed, along with some black precipitate observed on the walls of the reaction vessel. The
reaction mixture was diluted with dichloromethane, quenched with saturated ammonium
carbonate solution and the resulting slurry was decanted off from the black precipitate.
The structure of the isolated synthesized polymer was evaluated by 13C CP-MAS NMR,
FTIR spectroscopy, elemental analysis (C, H, N) and ICP (Fe, B, Na).

The FPOPs originating from the two different approaches showed similar chemical
characterization, although exhibiting some differences in 13C CP-MAS (see Figure 3) and
in the IR fingerprint region (see supporting info). In addition, the black precipitate was
revealed to be unstable in air, paramagnetic and, therefore, was not further characterized.
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(a) Characterization by 13C CP-MAS NMR

In the case of the solid-state 13C CP-MAS NMR spectrum of FPOP, using Strategy
B (Figure 3), it is possible to observe three distinct peaks attributed to the phenol ring at
151.79, 129.97 and 116.40 ppm, respectively. These results are in accordance with the ones
described for trisubstituted phenol unit of formaldehyde resins [7]. The peak at 151.79 ppm
was assigned to carbon a (see Structure 2 in Figure 2). However, the broadness of this
signal suggests the presence of mono- and disubstituted phenol groups (156.3–155.8 and
155.1–153.0 ppm, respectively), although the maximum position indicates the prevalence
of tri-substitution. Additionally, the broad signal at 129.97 ppm is associated with three
different carbons: unsubstituted meta-(b, b′), substituted ortho-(c) and substituted para-(d′)
of the phenolic ring, which can be found at 136–125 ppm. The presence of unsubstituted
phenolic para-carbons (d), within the range of 122–120 ppm, cannot be clearly confirmed
due to the broadness of the peak at 129.97 ppm. Nonetheless, the presence of some unsubsti-
tuted ortho-carbons (c′) can be attributed to the minor distinctive peak at 116.40 ppm, due
to their usual appearance at 117–115 ppm region. The signals at 88.68 ppm and 69.61 ppm
represent the carbons of the ferrocene rings (e, f, g), pointing to the high ferrocene moiety
symmetry incorporated into the polymeric structure like in 1,1′-ferrocenylene.

On the other hand, the solid-state 13C CP-MAS NMR spectrum of FPOP (Strategy B)
and 13C-NMR of 1,1′-dimethylferrocene solution are similar. In the case of the latter, the
chemical shift at 83.66 ppm is assigned to the substituted carbon of the cyclopentadienyl
ring, whereas 69.68 ppm and 67.70 ppm are associated with the unsubstituted carbon atoms
of the cyclopentadienyl ring. In the case of the spectrum obtained for FPOP (Strategy B), the
peak at 88.68 ppm corresponds to the substituted carbon atom of the cyclopentadienyl ring,
while the peaks related to two unsubstituted carbon atoms are convoluted and, therefore,
cannot be distinguished, producing one broad signal at 69.61 ppm. These results are
in accordance with the ones reported in the literature, in which the prevalence of 1,1′

dialkylation over 1,3-dialkylation of ferrocene is described for Lewis-acid catalyzed Friedel–
Crafts alkylation under similar conditions (HfCl4 in CH2Cl2) [27] and for poly(ferrocenylene
alkylene)s synthesized by ferrocene addition-condensation polymerization with aldehydes
under BF3·Et2O in 1,2-DCE [28]. The dominance of 1,1′-structure over 1,3-dialkylated and
other polyalkylated ferrocenes are due to the protic acid catalyzed trans-alkylation (i.e.,
retro-Friedel–Crafts) reaction, which favors the formation of 1,1′-disubstituted ferrocene.
As no acid was added to the reaction media, the most probable protic acid catalyst formed
in situ is BF3·PhOH (Strategy A) or BF3·H2O (Strategy B) [29,30].

Moreover, the presence of the methylene carbon can be attributed to the unique peak at
28.90 ppm (h). Studies have reported that phenol units of the phenol-formaldehyde resins
can be linked by three types of methylene bridges (para-para, ortho-para and ortho-ortho),
which can be distinguished in the methylene carbon region of the 13C-NMR spectra (range
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40.25–40.05, 35.42–35.02 and 30.80–30.30 ppm, respectively) [7]. However, in the case of
the prepared FPOP, due to the high distance between the methylene group and the other
phenol moiety, only one broad signal associated with the three different methylene bridges
is detected in the spectrum.

Finally, the 13C CP-MAS NMR spectra collected from FPOP obtained by Strategies A
and B are similar (see Figure 3 for further details).

(b) Characterization by FTIR

FTIR spectroscopy is frequently used to determine the compositional structure of
phenol-formaldehyde resins [31–34]. The spectrum obtained for the ferrocene-based poly-
mer (Strategy B) showed a broad signal at 3487 cm−1, which can be assigned to water
and the phenolic -OH group. The bands at 1611 and 1502 cm−1 are attributed to the
C-C aromatic phenol ring moiety, while signals at 1474 and 1430 cm−1 are related to the
aliphatic -CH2. The bands at 1258, 1222, 1105 and 952 cm−1 are associated with C-C-O
asymmetric stretch and C-H in plane deformations. Moreover, the FTIR spectrum does
not include any signal related to these specific ferrocene degradation products: ferroce-
nium, Fe2O3, Fe3O4, FeCO3 and complex Fe(III) carbonates [35–37]. On the other hand,
a signal emerging at 478 cm−1, due to Fe-O vibration, indicates the presence of hydrated
iron(II)hydroxide, which is another degradation product of ferrocene [38–40]. In addi-
tion to FTIR measurements, elemental analysis, ICP data, as well as Fe and inorganic
Fe(II)/Fe(III) titration, suggest that the most possible structure of FPOP (Strategy B) is
C132H118O6Fe8·Fe(OH)2·3.5H2O (see Structure 2 in Figure 2).

It is important to comment on the stability of the novel materials. Both polymers
(prepared by Strategies A and B) were kept in an inert atmosphere (nitrogen) and, although
they seem stable upon repeated FTIR, the air exposition decreases the intensity of the bands,
which is a sign of decomposition. This behavior is evident with the disappearance of the
signals associated with CH2 at 1474 and 1430 cm−1. One explanation may be the fact that
the material decomposes due to multi-wave redox behavior and an oxidative degradation
process [41].

(c) Characterization by PXRD

FPOP prepared by Strategy B was also characterized using powder XRD (see Figure 4a).
The diffractogram acquired shows a low crystallinity profile, with a broad peak at ~15◦.
The absence of specific diffraction peaks of iron(II) hydroxide, Fe3O4, Fe2O3 might be
due to their particle size (<5 nm). Thus, the weak diffraction signals from the structure
are mitigated by the presence of species with a higher scattering factor (iron), randomly
oriented within the pores, which dominates the scattering [42].

(d) Characterization by BET

The Brunauer–Emmet–Teller (BET) specific surface area obtained by nitrogen adsorp-
tion isotherm at 77 K of the ferrocene modified Bakelite indicated a type IV isotherm
(mesoporous material) and a BET area of 52 m2 g−1 (Figure 4b). The pore size distribution
(see the inset of Figure 4b), calculated by NLDFT model from desorption branch N2 at
77 K on carbon cylindrical/slit pores, showed two pore sizes: 12 Å and 53 Å, matching
with the isotherm type. The hysteresis at the desorption branch could also indicates that
there is some degree of pore flexibility, which can be due to the low-barrier rotation of
the ferrocene moiety. This possible structural flexibility may be one the reasons for the
low crystallinity, as noted above. This same behavior is observed in materials that form
nanosheets, whose stacking can generate a structural disorder [43]. The product prepared
by Strategy A exhibited a much lower BET specific surface area (5 m2 g−1), suggesting that
there was no formation of a porous material (see Figure S1).



Electrochem 2022, 3 189

Electrochem 2022, 2, FOR PEER REVIEW 6 
 

is some degree of pore flexibility, which might be due to the low-barrier rotation of the 
ferrocene moiety. This possible structural flexibility might be one the reasons for the low 
crystallinity, as noted above. This same behavior is observed in materials that form 
nanosheets, whose stacking can generate a structural disorder [43]. The product prepared 
by Strategy A exhibited a much lower BET specific surface area (5 m2 g−1), suggesting that 
there was no formation of a porous material (see Figure S1). 

 
Figure 4. (a) PXRD and (b) N2 adsorption–desorption isotherm and pore size distribution for the 
FPOP prepared from Bakelite. 

2.2. Differences in Porosity and Proposed Mechanism 
Both pathways A (bottom-up polymerization) and B (insertion of 1,1′-ferro-

cenenomethylene moieties into Bakelite) produce a similar product with regard to their 
chemical characterization, with the unique difference being the need of ferrocenium re-
duction in Strategy A. As the two polymers also exhibit distinct porosity, the logical pos-
tulation is that the mechanism involved in Strategy A is not the same as in Strategy B. The 

Figure 4. (a) PXRD and (b) N2 adsorption–desorption isotherm and pore size distribution for the
FPOP prepared from Bakelite (Strategy B).

2.2. Differences in Porosity and Proposed Mechanism

Both pathways A (bottom-up polymerization) and B (insertion of 1,1′-ferrocenenomethylene
moieties into Bakelite) produced a similar product in what concerns their chemical charac-
terization, with the unique difference being the need of ferrocenium reduction in Strategy
A. As the two polymers also exhibit distinct porosity, the logical postulation is that the
mechanism involved in Strategy A is not the same as in Strategy B. The low porosity
characteristic of FPOP prepared through Strategy A may be due to the denser packing
of the monomers being denser. In the case of Strategy B, the reaction is conditioned by
the rigid Bakelite structure and, therefore, the insertion of the 1,1′-ferrocenenomethylene
unit into the existing scaffold occurs without mediation of other smaller fragments. In
fact, Y. Amamoto et al. [44] has reported an identical effect on pore size enlargement by
monomer-controlled insertion of styrene into a polymer.

Regarding the reaction mechanism, both strategies may follow a Friedel–Crafts re-
action. However, in the case of Strategy A, polymerization via ortho-quinone methide is
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also possible, as described by S. Gonzales-Pelayo et al. [45]. In contrast, Strategy B can
only follow the retro-Friedel–Crafts reaction. Additionally, in Strategy A, it is possible that
both ferrocenium and ferrocene fragments are being integrated into the polymer structure,
whereas, in Strategy B, only ferrocene is incorporated. The resulting product, FPOP, may
undergo further ferrocene oxidation in Strategy A, but not in Strategy B. In the first case,
the FPOP, containing ferrocenium as a black slurry, was formed, which required further
treatment to obtain a brown polymer, while, in the latter case, a brown FPOP was directly
synthesized (see Figure 5). The oxidation process involved in Strategy A was boosted by a
strong protic acid (BF3·PhOH) present in the solution from the beginning.
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Figure 5. Suggested mechanism for bottom-up polymerization (Strategy A) and insertion into Bakelite
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Moreover, the substituted ferrocenium fragments were incorporated into FPOP by
condensation of phenol units (see reactive sites in Figure 5). However, in Strategy B, phenol
is confined to the polymer, impairing the ferrocene oxidation process in solution. In this
context, the oxidation in the solution could be mediated by increasing the quantity of
BF3·H2O that accumulates during reaction.

2.3. Calorimetric Analyses

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
performed to evaluate the thermal behavior of FPOP (Strategy B). In DSC analysis (see
Figure S2), after thermal treatment to remove the adsorbed water, no thermal events
were detected in the selected experimental conditions for FPOP. On the other hand, TGA
(Figure 6) revealed that FPOP started to decompose at approximately 350 ◦C with an
inflection point, i.e., peak of the first derivative curve of TGA (DTG), at 465 ◦C.

2.4. Electrochemical Studies
2.4.1. Materials and Methods

(a) Preparation of the electrolyte for ECD (deep eutectic solvent, DES)

The synthesis of LiOTf:4EG was adapted from the literature [21,26], in which the
eutectic system was prepared by vigorous stirring of both components (LiOTf and EG) in a
1:4 ratio at a temperature between 60 and 70 ◦C. After 6–8 h of mixing, the mixture turned
into a colorless viscous liquid.
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(b) Cyclic Voltammetry

Cyclic voltammetry (CV) measurements were performed on an Autolab PGSTAT
12 potentiostat/galvanostat controlled by GPES software version 4.9 (Eco-Chemie B.V.,
Kanaalweg 29/G, 3526 KM Utrecht, The Netherlands), using a cylindrical three-electrode
configuration cell of 5 mL. A glassy carbon electrode (GC) (d = 3 mm, BASi Corporate
Headquarters2701 Kent Avenue West Lafayette, IN 47906, USA) was chosen as the working
electrode, while a platinum (Pt) wire acted as an auxiliary (counter) electrode. All potentials
refer to SCE (sat. KCl) as the reference electrode (Metrohm, Herisau, Switzerland). Prior to
use, the working electrode was polished in aqueous suspensions of 1.0 and 0.3 mm alumina
(Beuhler, Leinfelden-Echterdingen, DE) over 2–7/8” micro-cloth (Beuhler, Leinfelden-
Echterdingen, DE) polishing pads, and then rinsed with water and ethanol. Different
scan rates were carried out to characterize the electrochemical response within the desired
electrochemical window (EW).

In order to compare the potential of the commercially available ferrocene with the
new porous material (FPOP, Strategy B), the electrochemical behavior of both was stud-
ied by cyclic voltammetry (CV) in a three-electrode configuration cell. Acetonitrile and
tetrabutylammonium perchlorate (ACN + 0.1 M of TBAP) worked as the electrolyte. Other
experiments performed with H2SO4 are included in supplementary information. For com-
paration with FPOP, was used 1 mM of ferrocene, since its electrochemical behavior in
several electrolytes is well described [46].

It is important to note that:

• The compound was directly tested in ACN + 0.1 M of TBAP, as it is the conventional
electrolyte, allowing a direct comparison with the redox probes which are used for the
study of electrochromic organic material.

• The prepared FPOP, deposited on the electrodes, showed the same behavior as fer-
rocene. Thus, ferrocene was the electrochromic probe model and it was studied under
similar conditions.

• Concerning the electrochromic device (ECD), the deep eutectic solvent LiOTf:4EG was
selected as the electrolyte for the two-electrode configuration devices.
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2.4.2. Electrochemical Studies of Three-Electrode Configuration

In this work, two types of electrochemical cells were used: three-electrode and two-
electrode configurations. The first one consisted of a standard three-electrode set up to carry
out the electrochemical studies and was assembled with a modified working electrode (for
the FPOP deposition on a different disk surface, including a glassy carbon disk electrode),
Ag/AgCl as a reference electrode and Pt wire as a counter-electrode in a cylindrical cell
(see Scheme 1). Before each analysis, the selected electrolyte (ACN + 0.1 M TBAP) was
purged with nitrogen for 15 min.
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Scheme 1. Modified electrode scheme and the three-electrode configuration cell.

The working electrodes were modified with FPOP or monomer slurries, which were
prepared by grinding an adequate amount of active material with a small amount of
polyvinylidene fluoride (PVDF) binder and carbon black powder (CBP), all were mixed
with a small amount of acetone or DMF for 20 min in an agate mortar and pestle (see
Scheme 1). The paste was subsequently transferred to a vial with an additional amount of
solvent and sonicated for 30 min. Finally, a portion of this slurry was pipetted onto the tip
of the electrode and then dried under high vacuum conditions overnight before use [47,48].

Cyclic voltammetry studies in the three-electrode configuration cell were performed
at several scan rates and in the desired electrochemical window. For a better understanding
of the modified FPOP electrochemical behavior, the results were compared against the
ones obtained for the ferrocene under the same experimental conditions. Commercial
ferrocene has well-known behavior: one reversible electron transfer at standard potential
E0 = 390 mV and Epa = 430 mV vs. SCE with peak-to-peak separation ∆E = 80 mV (see
Figure S3 and the first entry of Table 1). Figure 7 illustrates the CV results obtained under
the mentioned experimental conditions of the modified electrode on a glassy carbon disk
surface GCE/CBP/FPOP at different scan rates (10, 20, 50 and 100 mV s−1).

Table 1. Standard potential, anodic peak potential (in mV vs. SCE) and ∆Ep of ferrocene and FPOP
modified electrodes in different solvents at 20 ◦C.

Entry Electrolyte Material E0 (mV) (a) Epa (mV) (b) ∆E (mV) (c) WE

1 ACN + TBAP Fc 390 430 80 GC
2 ACN + TBAP FPOP 353 395 85 GCE/CBP/FPOP

(a) Standard potential, calculated as E0 = (Epc + Epa)/2 measured vs. SCE; (b) anodic peak potential Epa in mV
(vs. SCE). All the results are calculated by an average of the scan rates (Ep +/− 10 mV); (c) ∆E = (|Epc| − |Epa|)
in mV.

The results were calculated using an average value of the scan rates (Ep +/− 10 mV
was accepted as average). Regarding FPOP (second entry of Table 1), there was a potential
shift to lower values. The standard potential was E0 = 353 mV and Epa = 395 mV vs. SCE
and the peak-to-peak separation was ∆E = 85 mV. A potential shift to lower values suggests
an easier oxidation process for the adsorbed material compared to the ferrocene in solution
(Epa = 35 mV and E0 = 37 mV). This might be explained by the incorporation of alkyl
groups acting as electron donors in the ferrocene ring at position 1,1′, which decreases the
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redox potential when compared to unsubstituted ferrocene (as already described for the
simple alkylferrocenes) [49]. Another explanation for this difference could be attributed to
the presence of the FPOP directly adsorbed on the electrode surface, promoting the redox
process. On the other hand, the diffusion coefficient of the electrolyte could also impact
the redox process, as the electrolyte can enter the FPOP pores. Other contributions should
be taken into account, such as the electrolyte resistance that could be attributed to the ion
diffusion in the electrolyte (ACN + 0.1 M TBAP, containing [N4,4,4,4]+ and ClO4

− ions; the
difference is related to the geometry of the FPOP modified electrode).
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2.4.3. Electrochemical Studies of Two-Electrode Configuration

Aiming to evaluate the electrochromic behavior of the ferrocene in the redox activated
FPOP, a proof-of-concept of an electrochromic device was assembled using a two-electrode
configuration cell (see Scheme 2).
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Scheme 2. Schematic of the modified electrodes and ECD assembly.

The cyclic voltammetry study was performed in an EW (0/3/−3/0), meaning that the
method followed for the measurement was: starting point at 0 V, going at the anodic scan
until 3 V, then, reducing upon −3 V and finishing at 0 V. Between 3 V and −3 V, the sample
went to 0 V. The scan rate was 20 mV s−1. First, the cyclic voltammetry of the pure DES
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was performed under same experimental conditions, using glass FTO/LiOTf:4EG/glass
FTO to access the electrochemical window of the electrolyte, in order to evaluate if the DES
could interfere with the redox process of the FPOP material. The approach was similar to
previous studies, in which methyl viologen dichloride was used as the redox probe [26].

The voltammogram acquired for the material exhibits the typical profile for this kind
of ECD, as shown in Figure 8. In the first cycle, an electron transfer (ET) occurs at ~1 V and
a second ET can be detected at ~2 V. However, no color change was observed. As potential
was continuously decreased in the cathodic back scan from 3 V to −3 V, both ET increase in
current intensity (see Figure 8a, light blue dashed line) and the ECD turns into a very light
greenish color. In the anodic back scan from −3 to 0 V, no electron transfer was detected.
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Figure 8. (a) Cyclic voltammograms of the two-electrode device with glass FTO/CBP/PVDF/FPOP
electrode in a new electrolyte LiOTf:4EG at 20 mV s−1 (first cycle: light blue dashed line; second
cycle: blue solid line) and (b) a proof-of-concept of the ECD color change at different potentials.

Furthermore, in the second cycle (blue solid line), it is observed that both current
intensity and coloration increased with the potential, mainly in the peaks located at −2 and
2 V, once the ECD was symmetrical. Afterwards, electrolysis was performed to elucidate
the electrochromic behavior for the ECD at different potentials (see Figure 8b). The first one
was 1 V and provided a very light green coloration after 1 h. Then, the applied potential of
2.5 V for 1 h resulted in a darker green color. Finally, the recovery of the original coloration
was achieved by the application of 0 V and the ECD partially lost the coloration to a
darker brown.

The electrochemical reactions should be balanced when the FPOP is oxidized at the
anode (on one side of the ECD). On the other side, we suggest that the counter-balance
redox process occurs with some compound at the cathode, probably due to the ethylene
glycol (EG) or lithium triflate (LiOTf) which can be reduced. It is also possible that the
increased viscosity of DES LiOTf:4EG influences the wettability of the FPOP [50], and
consequently the possibility that Li+ and TfO− ions or EG occupy the pores of the material.
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The coloration becomes slightly more intense with each cycle. This could be due to a slower
electron transfer, as the viscosity of the liquid electrolyte impairs diffusion. Further studies
are required in order to clarify all these assumptions.

3. Conclusions

In this work, we presented a new porous ferrocene-based organic polymer (FPOP),
prepared by two different approaches, which might be source of inspiration to design a
new series of porous materials based on this building block. The polymer synthesized
from Bakelite (Strategy B) exhibits higher porosity and, therefore, was selected for further
characterization. The material presented interesting electrochemical features, including
being thermoresistant until 350 ◦C, properties that are relevant in several applications
related to energy and material science. In addition, the proof-of-concept of the ECD shows
a reversible color change of FPOP. When the active redox part of the polymer (ferrocene) is
reduced, it exhibits brown coloration and, when it is oxidized, it shows greenish coloration.
The redox-active FPOP material could be explored for use in energy storage, such as
electrode supercapacitors, fuel cells and other electrochemical devices. In this context,
it is important to perform further studies to evaluate its viability for applications in the
industrial field and for commercial power consumption devices.

Finally, the fact that the resulting polymer is unstable in air seems to be advan-
tageous in the context of plastic decomposition, providing a safeguard mechanism for
its degradation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electrochem3010011/s1: general information related to the synthesis of the Ferrocene-based
Porous Organic Polymer and the characterization techniques. A thermogram of the prepared FPOP
is also included, as well as electrochemical studies in H2SO4 acid media in a three-electrode configu-
ration, and electrolysis to switch coloration of the ECD (plot current vs. time).
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