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Abstract: A continuously growing interest in convenient and ‘green’ reaction techniques encourages
organic chemists to elaborate on new synthetic methodologies. Nowadays, organic electrochemistry
is a new useful method with important synthetic and ecological advantages. The employment of an
electrocatalytic methodology in cascade reactions is very promising because it provides the combina-
tion of the synthetic virtues of the cascade strategy with the ecological benefits and convenience of
electrocatalytic procedures. In this research, a new type of the electrocatalytic cascade transformation
was found: the electrochemical cyclization of 1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-
4H-pyran-2-yl](aryl)methyl]pyrimidine-2,4,6(1H,3H,5H)-triones was carried out in alcohols in an
undivided cell in the presence of sodium halides with the selective formation of spiro[furo[3,2-
b]pyran-2,5′-pyrimidines] in 59-95% yields. This new electrocatalytic process is a selective, facile, and
efficient way to create spiro[furo[3,2-b]pyran-2,5′-pyrimidines], which are pharmacologically active
heterocyclic systems with different biomedical applications. Spiro[furo[3,2-b]pyran-2,5′-pyrimidines]
were found to occupy the binding pocket of aldose reductase and inhibit it. The values of the
binding energy and Lead Finder’s Virtual Screening scoring function showed that the formation
of protein–ligand complexes was favorable. The synthesized compounds are promising for the
inhibition of aldose reductase. This makes them interesting for study in the treatment of diabetes or
similar diseases.

Keywords: electrochemistry; electrocatalysis; electrolysis; mediators; undivided cell; cyclization;
electrosynthesis; spiro[furo[3,2-b]pyran-2,5′-pyrimidine]

1. Introduction

Privileged structures or scaffolds have become an important way to produce pharmaceu-
tically active compounds [1]. Merck researchers were the first, who used this definition in the
study on benzodiazepines [2]. These privileged scaffolds generally have a rigid heterocyclic
system with a special orientation of the functional substituents for target recognition.

Cascade reactions or domino reactions are often used as efficient strategies in the
synthesis of complex organic molecules since they ensure multiple transformations via a
series of one-pot reactions. The design and development of cascade reactions is a rapidly
expanding area of research in the field of organic synthesis [3].

The elaboration of convenient and efficient methods of synthesis of privileged scaffolds
in one-pot cascade reactions is one of the important aims of organic chemistry.

Organic electrochemical synthesis has become a useful method with important syn-
thetic and ecological advantages in the last few decades [4–6]. However, the usage of
the electrochemical methods is generally limited by equipment complexity and long reac-
tion times.

Electrochem 2021, 2, 295–310. https://doi.org/10.3390/electrochem2020021 https://www.mdpi.com/journal/electrochem

https://www.mdpi.com/journal/electrochem
https://www.mdpi.com
https://orcid.org/0000-0002-4647-5410
https://orcid.org/0000-0001-8675-4943
https://orcid.org/0000-0002-5826-2279
https://orcid.org/0000-0002-5844-6019
https://www.mdpi.com/article/10.3390/electrochem2020021?type=check_update&version=1
https://doi.org/10.3390/electrochem2020021
https://doi.org/10.3390/electrochem2020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electrochem2020021
https://www.mdpi.com/journal/electrochem


Electrochem 2021, 2 296

One of the most useful electrochemical synthetic methods is the electrocatalytic oxida-
tion of organic compounds in the presence of mediators [7]. Among a variety of mediators,
the redox halide anion/halogen pair is the pair most often used for electroorganic transfor-
mations [8]. Electrolysis in an undivided cell in the presence of alcohols as solvents and
alkali metal halides as mediators affords the simultaneous generation of a base (alkoxide
anion) at the cathode and a halogen at the anode, which then initiates a chemical cascade
of the oxidative transformations in solution.

C–H acids are well-known and useful starting compounds for electrocatalytic trans-
formations using alkali metal halides as mediators [9–13]. The electrocatalytic processes
with C–H acids are often carried out in an undivided electrolyzer with alkali metal halides
as mediators. The electrocatalytic synthesis of functionally substituted cyclopropanes
and related spirocyclopropanes is a special class of such electrocatalytic processes [14–16].
Electrocatalytic reactions of heterocyclic C–H acids [17] have also been intensively studied,
as they afford the synthesis of different classes of heterocyclic compounds with a wide
range of bioactivity [18].

Barbiturates (pyrimidine-2,4,6-triones) are well known in medicinal chemistry as a
class of nitrogen- and oxygen-containing compounds that act as central nervous system
depressants [19]. Recently, it has been established that barbiturates possess anti-AIDS and
anticancer activity [20–22].

Moreover, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) is a known fungal
metabolite and chelation agent that is produced by several species of fungi, especially
Aspergillus oryzae, as a by-product in the fermentation process of rice [23]. It is widely
used for averting enzymatic browning in food production and as a skin-lightening agent
in the cosmetic field [24]. In the last few decades, it has been established that kojic acid
and its derivatives reveal antibacterial [25], anti-inflammatory [26], antimicrobial [13],
antiviral [27], and anti-HIV activities [28], and inhibit human neutrophil’s elastase [29].

In addition, spirocyclic organic compounds are also known as active compounds in
medicinal chemistry [30]. Spirocyclic compounds possess enough conformational stiffness
together with flexibility. Therefore, the special orientation of the functional substituents
facilitates the recognition of bioactive targets [30]. Spirobarbiturates have the special
attention of the pharmaceutical community due to their broad spectrum of biological
properties [31]. They exhibit useful neuropharmacological effects [32]. Spirobarbiturates
are known as inhibitors of matrix metalloproteinase 13 (MMP)-13 [33] and dihydroorotate
dehydrogenase (DHODase) [34]. 1-Phenyl-5,7-diazaspiro [2.5]octane-4,6,8-trione acts as a
tumor necrosis factor alpha (TNF-α) and is used in the treatment of various inflammatory,
infectious, immunological, or malignant diseases [35].

In continuation of our research on electrocatalytic cascade transformations of carbonyl
compounds and C–H acids into different types of spirocyclic compounds [36–40], and
taking into consideration the biomedical applications of spirocyclic barbiturates given
above, we were prompted to design a facile and efficient electrocatalytic one-pot cas-
cade methodology for the conversion of 1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-
oxo-4H-pyran-2-yl](aryl)methyl]pyrimidine-2,4,6(1H,3H,5H)-triones 1 into spiro[furo[3,2-
b]pyran-2,5′-pyrimidines] 2.

2. Experimental Section

All melting points were measured with a Gallenkamp melting point apparatus (Lon-
don, UK) and were uncorrected. 1H and 13C NMR spectra were recorded in DMSO-d6 with
Bruker Avance II 300 and Bruker DRX 500 spectrometers (Billerica, MA, USA) at ambient
temperature. Chemical shift values are relative to Me4Si. 1H–13C HSQC and 1H–13C HMBC
2D NMR spectra were recorded in DMSO-d6 with a Bruker AV400 spectrometer (Billerica,
MA, USA) at ambient temperature. IR spectra were recorded with a Bruker ALPHA-T FTIR
spectrometer (Billerica, MA, USA) in KBr pellets. Mass spectra (EI = 70 eV) were obtained
directly with a Kratos MS-30 spectrometer (Bremen, Germany). High-resolution mass
spectra were obtained on a Bruker micrOTOF II instrument using electrospray ionization.
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X-ray diffraction data were collected at 100K on a Bruker Quest D8 diffractometer
(Billerica, MA, USA) equipped with a Photon-III area detector (graphite monochromator,
shutterless ϕ- andω-scan technique) using Mo Kα radiation. The intensity data were inte-
grated using the SAINT program [41] and were corrected for absorption and decay using
SADABS [42]. The structure was solved via direct methods using SHELXT [43] and refined
on F2 using SHELXL-2018 [44]. All non-hydrogen atoms were refined with individual
anisotropic displacement parameters. The location of atom H5 was found from the electron
density difference map; it was refined with an individual isotropic displacement parameter.
All other hydrogen atoms were placed in ideal calculated positions and refined as riding
atoms with relative isotropic displacement parameters. The SHELXTL program suite1 was
used for molecular graphics.

1,3-Dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](aryl)methyl]p
yrimidine-2,4,6(1H,3H,5H)-triones 1 were obtained in one step from the arylaldehydes,
N,N′-dimethylbarbiturate and kojic acid according to the literature procedure [45].

General Procedure for the Electrocatalytic Synthesis of Spiro[furo[3,2-b]pyran-2,5′-
pyrimidines 2: 1,3-Dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl]
(aryl)methyl]pyrimidine-2,4,6(1H,3H,5H)-trione 1 (5 mmol) and sodium iodide (3 mmol) in
methanol (20 mL) was electrolyzed in an undivided cell equipped with a magnetic stirrer,
a graphite anode (5 cm2), and an iron cathode (5 cm2) at 20 ◦C under a constant current
density of 100 mA/cm2 until the quantity of 2.8 F/mol of electricity was passed. After the
electrolysis was finished, the reaction mixture was concentrated to a volume of 4 mL and
cooled to 0 ◦C to crystallize the solid product, which was then filtered out, twice rinsed
with an ice-cold ethanol/water solution (1:1, 4 mL), and dried under reduced pressure.

5-(Hydroxymethyl)-1′,3′-dimethyl-3-phenyl-2′H-spiro[furo[3,2-b]pyran-2,5′-pyrimi
dine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2a: (white powder, 1.56 g, 81%), mp 222–223 ◦C (de-
comp.) (from MeOH). FTIR (KBr) cm−1: 3366, 1712, 1694, 1675, 1632, 1427, 1369, 1259, 1035,
699. 1H-NMR (300 MHz, DMSO-d6) δ 2.39 (s, 3H, CH3), 3.22 (s, 3H, CH3), 4.22–4.30 (m,
2H, CH2), 5.57 (s, 1H, CH), 5.73 (t, 3J = 6.1 Hz, 1H, OH, exchange with D2O), 6.47 (s, 1H,
CH), 7.04–7.14 (m, 2H, 2 CH Ar), 7.32–7.43 (m, 3H, 3 CH Ar) ppm. 13C-NMR (126 MHz,
DMSO-d6) δ 28.1, 29.5, 56.9, 59.7, 87.5, 113.5, 129.1 (2C), 129.6 (2C), 129.7, 132.5, 144.9, 148.7,
150.6, 164.1, 166.5, 168.8, 168.9 ppm. MS (EI, 70 eV) m/z (%): 283 [M-C4H4O3-H]+ (17),
256 (28), 199 (16), 151 (5), 137 (45), 101 (40), 69 (66), 57 (73), 43 (100), 41 (83). HRMS–ESI:
[M + H]+, calcd for C19H16N2O7 385.1030, found 385.1025.

5-(Hydroxymethyl)-3-(2-hydroxyphenyl)-1′,3′-dimethyl-2′H-spiro[furo[3,2-b]-pyran
-2,5′-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2b: (white powder, 1.30 g, 65%),
mp 242–243 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3235, 1715, 1691, 1622, 1584,
1463, 1374, 1215, 1043, 768. 1H-NMR (300 MHz, DMSO-d6) δ 2.84 (s, 3H, CH3), 3.15 (s, 3H,
CH3), 3.85–4.18 (m, 2H, CH2), 5.43 (s, 1H, CH), 5.66 (br s, 1H, OH, exchange with D2O),
6.31 (s, 1H, CH), 6.88–7.46 (m, 4H, 4 CH Ar), 9.87 (br s, 1H, OH, exchange with D2O) ppm.
13C-NMR (126 MHz, DMSO-d6) δ 28.6, 29.4, 52.9, 59.5, 87.4, 109.4, 110.2, 122.1, 122.5, 126.0,
130.2, 142.8, 145.0, 150.8, 160.2, 165.4, 167.7, 168.5, 173.3 ppm. MS (EI, 70 eV) m/z (%):
400 [M+] (1), 299 (8), 272 (3), 215 (3), 186 (3), 145 (20), 101 (27), 89 (80), 31 (100), 15 (41).
HRMS–ESI: [M + H]+, calcd for C19H16N2O8 401.0985, found 401.0980.

5-(Hydroxymethyl)-3-(4-methoxyphenyl)-1′,3′-dimethyl-2′H-spiro[furo[3,2-b]-pyran
-2,5′-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2c: (white powder, 1.26 g, 61%), mp
217–218 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3464, 1696, 1632, 1613, 1514,
1431, 1371, 1259, 1035, 748. 1H-NMR (300 MHz, DMSO-d6) δ 2.46 (s, 3H, CH3), 3.21 (s,
3H, CH3), 3.74 (s, 3H, OCH3), 4.20-4.30 (m, 2H, CH2), 5.50 (s, 1H, CH), 5.73 (br s, 1H, OH,
exchange with D2O), 6.46 (s, 1H, CH), 6.92 (d, 3J = 8.1 Hz, 2H, 2 CH Ar), 7.01 (d, 3J = 8.1 Hz,
2H, 2 CH Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ 28.3, 29.5, 55.7, 56.5, 59.6, 59.7, 87.5,
113.5, 114.5 (2C), 124.2, 130.9 (2C), 144.7, 149.0, 150.7, 160.3, 164.2, 166.5, 168.8 ppm. MS (EI,
70 eV) m/z (%): 414 [M+] (1), 355 (1), 313 (10), 286 (6), 229 (2), 201 (2), 172 (12), 101 (18), 55
(71), 15 (100). HRMS–ESI: [M + H]+, calcd for C20H18N2O8 415.1141, found 415.1137.
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5-(Hydroxymethyl)-1′,3′-dimethyl-3-(p-tolyl)-2′H-spiro[furo[3,2-b]pyran-2,5′-pyri
midine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2d: (white powder, 1.75 g, 88%), mp 227–228 ◦C
(decomp.) (from MeOH). FTIR (KBr) cm−1: 3367, 1716, 1696, 1676, 1631, 1426, 1369, 1258,
1075, 746. 1H-NMR (500 MHz, DMSO-d6) δ 2.30 (s, 3H, CH3), 2.42 (s, 3H, CH3), 3.22 (s,
3H, CH3), 4.25 (d, 2J = 15.7 Hz, 1H, CH2), 4.28 (d, 2J = 15.7 Hz, 1H, CH2), 5.52 (s, 1H, CH),
5.61–5.90 (br s, 1H, OH, exchange with D2O), 6.47 (s, 1H, CH), 6.97 (d, 3J = 8.0 Hz, 2H, 2 CH
Ar), 7.19 (d, 3J = 8.0 Hz, 2H, 2 CH Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ 21.2, 28.2,
29.5, 56.7, 59.6, 87.5, 113.5, 129.5 (3C), 129.6 (2C), 139.3, 144.8, 148.9, 150.7, 164.1, 166.5, 168.8,
168.9 ppm. MS (EI, 70 eV) m/z (%): 339 [M-C2H3O2]+ (1), 297 (7), 270 (7), 213 (9), 201 (7),
156 (88), 115 (100), 101 (41), 69 (60), 28 (67). HRMS–ESI: [M + H]+, calcd for C20H18N2O7
399.1187, found 399.1182.

3-(4-Ethylphenyl)-5-(hydroxymethyl)-1′,3′-dimethyl-2′H-spiro[furo[3,2-b]pyran-2,5′

-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2e: (white powder, 1.38 g, 67%), mp
140–141 ◦C (from MeOH). FTIR (KBr) cm−1: 3544, 1677, 1648, 1611, 1568, 1458, 1424,
1382, 1246, 1041. 1H-NMR (500 MHz, DMSO-d6) δ 1.16 (t, 3J = 7.5 Hz, 3H, CH3), 2.58 (q,
3J = 7.5 Hz, 2H, CH2), 3.01 (s, 3H, CH3), 3.06 (s, 3H, CH3), 4.16–4.26 (m, 2H, CH2), 5.04 (s,
1H, CH), 6.31 (s, 1H, CH), 7.14 (d, 3J = 7.8 Hz, 2H, 2 CH Ar), 7.20 (d, 3J = 7.8 Hz, 2H, 2 CH
Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ 15.9, 28.2, 28.4, 28.6, 45.5, 59.7 (2C), 109.5, 128.1
(2C), 129.3 (2C), 133.7, 143.3 (2C), 147.7, 151.9, 167.3, 167.5, 167.6, 173.7 ppm. MS (EI, 70 eV)
m/z (%): 414 [M + 2H]+ (2), 313 (7), 259 (11), 230 (9), 201 (9), 156 (34), 143 (16), 115 (23), 69
(27), 42 (100). HRMS–ESI: [M + H]+, calcd for C21H20N2O7 413.1349, found 413.1342.

3-(4-Chlorophenyl)-5-(hydroxymethyl)-1′,3′-dimethyl-2′H-spiro[furo[3,2-b]pyran-
2,5′-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2f: (beige powder, 1.98 g, 95%), mp
170–171 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3380, 1716, 1697, 1631, 1596,
1427, 1368, 1264, 1075, 747. 1H-NMR (500 MHz, DMSO-d6) δ 2.49 (s, 3H, CH3), 3.22 (s, 3H,
CH3), 4.20-4.32 (m, 2H, CH2), 5.62 (s, 1H, CH), 6.48 (s, 1H, CH), 7.14 (d, 3J = 8.3 Hz, 2H, 2
CH Ar), 7.47 (d, 3J = 8.3 Hz, 2H, 2 CH Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ 28.2, 29.5,
55.9, 59.6, 87.2, 113.5, 129.2 (2C), 131.5 (2C), 131.6, 134.6, 145.0, 148.3, 150.6, 164.0, 166.3,
168.8, 169.0 ppm. MS (EI, 70 eV) m/z (%): 290 [M-C6H4Cl-H2O]+ (1), 277 (1), 264 (1), 235 (1,
37Cl), 233 (3, 35Cl), 178 (7, 37Cl), 176 (20, 35Cl), 136 (15), 101 (54), 75 (21), 69 (100), 42 (87).
HRMS–ESI: [M + H]+, calcd for C19H15ClN2O7 419.0641, found 419.0632.

Crystal Data for 2f: orthorhombic, space group P212121, a = 5.68820(10) Å, b = 11.4345(2)
Å, c = 27.5456(6) Å, α = β = γ = 90◦, V = 1791.61(6) Å3, Z = 4, T = 100(2) K, µ(Mo Kα) = 0.262
mm−1, Dcalc = 1.553 g/cm3, 35,956 reflections measured (2.09◦ ≤ 2Θ≤ 34.65◦), 4446 unique
(Rint = 0.0618), which were used in all calculations. The final R1 was 0.0339 [I>2sigma(I)]
and wR2 was 0.0727. CCDC 2,049,440 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via http://www.ccdc.cam.ac.uk (accessed on 24 May 2021).

3-(3-Bromophenyl)-5-(hydroxymethyl)-1′,3′-dimethyl-2′H-spiro[furo[3,2-b]pyran-
2,5′-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2g: (beige powder, 1.74 g, 75%), mp
151–152 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3432, 1772, 1700, 1675, 1623,
1436, 1371, 1269, 1080, 695. 1H-NMR (500 MHz, DMSO-d6) δ 2.49 (s, 3H, CH3), 3.22 (s, 3H,
CH3), 4.24–4.31 (m, 2H, CH2), 5.62 (s, 1H, CH), 6.49 (s, 1H, CH), 7.10 (d, 3J = 7.7 Hz, 1H,
CH Ar), 7.32–7.41 (m, 2H, 2 CH Ar), 7.61 (dd, 3J = 7.7 Hz, 4J = 1.1 Hz, 1H, CH Ar) ppm.
13C-NMR (126 MHz, DMSO-d6) δ 28.2, 29.5, 55.8, 59.6, 87.2, 113.6, 122.2, 128.7, 131.3, 132.2,
132.6, 135.2, 145.1, 148.1, 150.6, 163.9, 166.1, 168.8, 169.0 ppm. MS (EI, 70 eV) m/z (%):
362 [M-C4H4O3-H]+ (1, 81Br), 360 [M-C4H4O3-H]+ (1, 79Br), 336 (3, 81Br), 334 (3, 79Br), 323
(1, 81Br), 321 (1, 79Br), 279 (3, 81Br), 277 (3, 79Br), 222 (28, 81Br), 220 (30, 79Br), 182 (9), 126
(25), 101 (91), 69 (100), 28 (71). HRMS–ESI: [M + H]+, calcd for C19H15BrN2O7 463.0141,
found 463.0133.

5-(Hydroxymethyl)-1′,3′-dimethyl-3-(4-nitrophenyl)-2′H-spiro[furo[3,2-b]pyran-2,5′

-pyrimidine]-2′,4′,6′,7(1′H,3H,3′H)-tetraone 2h: (white powder, 1.27 g, 59%), mp
194–195 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3491, 1764, 1690, 1650, 1602,
1524, 1446, 1346, 1266, 1027. 1H-NMR (300 MHz, DMSO-d6) δ 2.47 (s, 3H, CH3), 3.22 (s,

http://www.ccdc.cam.ac.uk
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3H, CH3), 4.23-4.30 (m, 2H, CH2), 5.80 (s, 1H, CH), 6.55 (s, 1H, CH), 7.42 (d, 3J = 8.2 Hz,
2H, 2 CH Ar), 8.24 (d, 3J = 8.2 Hz, 2H, 2 CH Ar) ppm. 13C-NMR (126 MHz, DMSO-d6) δ
28.2 (2C), 59.9 (2C), 109.6, 124.0 (2C), 131.0 (2C), 140.4, 142.4, 148.5, 150.2 (2C), 166.4, 169.7,
175.2, 187.3 (2C) ppm. MS (EI, 70 eV) m/z (%): 328 [M-C4H4O3-H]+ (1), 312 (1), 282 (1), 244
(1), 187 (18), 156 (8), 141 (20), 101 (31), 69 (51), 42 (100). HRMS–ESI: [M + H]+, calcd for
C19H15N3O9 430.0887, found 430.0881.

Methyl 4-(5-(hydroxymethyl)-1′,3′-dimethyl-2′,4′,6′,7-tetraoxo-1′,3,3′,4′,6′,7-hexah
ydro-2′H-spiro[furo[3,2-b]pyran-2,5′-pyrimidin]-3-yl)benzoate 2i: (white powder, 1.88 g,
85%), mp 227–228 ◦C (decomp.) (from MeOH). FTIR (KBr) cm−1: 3442, 1768, 1699, 1676,
1629, 1436, 1373, 1287, 1117, 1039. 1H-NMR (500 MHz, DMSO-d6) δ 2.56 (s, 3H, CH3), 3.37
(s, 3H, CH3), 4.01 (s, 3H, COOCH3), 4.37–4.47 (m, 2H, CH2), 5.85 (s, 1H, CH), 6.64 (s, 1H,
CH), 7.42 (d, 3J = 7.3 Hz, 2H, 2 CH Ar), 8.10 (d, 3J = 7.3 Hz, 2H, 2 CH Ar) ppm. 13C-NMR
(126 MHz, DMSO-d6) δ 28.2, 29.5, 52.8, 56.2, 59.6, 87.2, 113.5, 129.8 (2C), 130.1 (2C), 130.7,
137.8, 145.1, 148.3, 150.6, 163.9, 166.1, 166.2, 168.8, 169.0 ppm. MS (EI, 70 eV) m/z (%):
442 [M+] (1), 383 (1), 314 (24), 283 (5), 257 (6), 200 (23), 156 (14), 101 (20), 69 (36), 42 (100).
HRMS–ESI: [M + H]+, calcd for C21H18N2O9 443.1091, found 443.1084.

3. Results and Discussion

In this paper, we report the data on the selective and efficient cascade electrocatalytic
cyclization of 1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](aryl)
methyl]pyrimidine-2,4,6(1H,3H,5H)-triones 1a–i into substituted spiro[furo[3,2-b]pyran-
2,5′-pyrimidines] 2a–i in alcohols in an undivided cell in the presence of alkali metal halides
(Scheme 1, Tables 1 and 2).
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Table 1. Electrocatalytic cyclization of 1a into spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2a.

Entry Solvent Mediator Time (min) Electricity (F/mol) Yield of 2a (%)

1 MeOH LiBr 64 2.0 59
2 MeOH NaBr 64 2.0 65
3 MeOH KBr 64 2.0 62
4 MeOH LiI 64 2.0 63
5 MeOH NaI 64 2.0 70
6 MeOH KI 64 2.0 66
7 MeOH NH4I 64 2.0 53
8 EtOH NaI 64 2.0 64
9 n-PrOH NaI 64 2.0 60

10 MeOH NaI 70 2.2 74
11 MeOH NaI 77 2.4 77
12 MeOH NaI 83 2.6 80
13 MeOH NaI 90 2.8 82
14 MeOH NaI 96 3.0 78

Electrolysis conditions: 1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl]-
(phenyl)methyl]pyrimidine-2,4,6(1H,3H,5H)-trione 1a (5 mmol), mediator (3 mmol), alcohol (20 mL),
iron cathode (5 cm2), graphite anode (5 cm2), undivided cell, constant current density 50 mA/cm2, 20 ◦C.

Table 2. Electrocatalytic cyclization of 1a–i into spiro[furo[3,2-b]pyran-2,5′-pyrimidines] 2a–i.
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(1H,3H,5H)-trione 1a in alcohols as a solvent in an undivided cell in the presence of
alkali metal halides was specially studied (Scheme 1, Table 1).

Thus, at the beginning of our study, MeOH was used as a solvent and alkali metal
bromides were used as mediators. Under these electrolysis conditions in an undivided
cell after 2 F/mol of electricity were passed, spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2a
was obtained in 59–65% yields (Entries 1–3, Table 1). Under these electrolysis conditions
with iodides as mediators, the yields of spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2a were
in the range of 53–70% (Entries 4–7, Table 1). The best yield of spiro[furo[3,2-b]pyran-2,5′-
pyrimidine] 2a in this series of experiments was obtained with NaI as a mediator was 70%
(Entry 5, Table 1).

Other alcohols, namely ethanol, and n-propanol, were less efficient as solvents com-
pared with methanol such that the yields of 2a were 64% and 60% (Entries 8 and 9, Table 1).
The increase of the amount of electricity passed through the cell up to 2.8 F/mol led to the
best yield of spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2a (Entry 13, Table 1) with 82%.

Under the optimal conditions thus found, spiro[furo[3,2-b]pyran-2,5′-pyrimidines]
2a–i were obtained in 59–95% yields as a result of the electrocatalytic cyclization of 1,3-
dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](aryl)methyl]pyrimidine-
2,4,6-(1H,3H,5H)-triones 1a–i (Scheme 1, Table 2).

In all these electrocatalytic processes, after the electrolysis had ended, the reaction
mixture was concentrated to a volume of 4 mL and cooled to 0 ◦C to crystallize the solid
product, which was then filtered out, twice rinsed with an ice-cold ethanol/water solution
(1:1 v/v, 4 mL), and dried under reduced pressure.

The structure of all new compounds 2a–i was confirmed using 1H, 13C NMR, and IR
spectroscopy, as well as mass spectrometry data. For all compounds, only one set of signals
was observed in the 1H and 13C NMR spectra.

The structure of the compound 2a was additionally confirmed via NMR spectroscopy
using 2D 1H–13C HSQC and 1H–13C HMBC experiments. The assignment of 1H and 13C
signals in the NMR spectra was carried out and the chemical shifts correlated well with the
structure of 2a. It should be noted that the carbon atoms of the amide group, as well as the
signals of protons and carbons of methyl residues, had chemically nonequivalent natures;
therefore, they had different chemical shifts. Key interactions are indicated by arrows in
Figure 1. Complete correlation of signals:
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1H-NMR (400 MHz, DMSO-d6) δ 2.39 (s, 3H, NCH3), 3.22 (s, 3H, NCH3), 4.27 (s, 2H,
CH2), 5.58 (s, 1H, H3), 5.71 (s, 1H, OH), 6.48 (s, 1H, H6), 7.13–7.03 (m, 2H, Ho), 7.43–7.33
(m, 3H, Hm, Hp) ppm.

13C-NMR (101 MHz, DMSO-d6) δ 27.6 (NCH3), 29.0 (NCH3), 56.4 (C3), 59.2 (CH2),
87.0 (C2), 113.0 (C6), 128.6 (Cm), 129.1 (Co), 129.2 (Cp), 132.0 (Ci), 144.4 (C7a), 148.2 (C3a),
150.1 (NC(O)N), 163.6 (NCO), 166.0 (NCO), 168.3 (C7), 168.4 (C5) ppm.
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The structure of compound 2f was confirmed using an X-ray diffraction study (Sup-
plementary Material (Figures S19 and S20) and Figure 2).
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Scheme 2. Electrocatalytic cyclization of 
1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](aryl)methyl]pyrimidine-2,4,6
(1H,3H,5H)-triones 1. 

The evolution of hydrogen was the cathodic process, which was accompanied by 
methoxide anion generation. The formation of iodine was an anodic process and the 
corresponding iodine color was observed at the anode when the electrolysis was con-
ducted without stirring of the reaction mixture. 

The reaction in solution between a methoxide ion and 
6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)(aryl)methyl]-1,3-dimethyl-pyrimidin
e-2,4-(1H,3H)-dione 1 led to the anion of 
6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)-(aryl)methyl]-1,3-dimethyl-pyrimidin
e-2,4-(1H,3H)-dione A formation. Then, the iodination of anion A resulted in iodinated 
6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)-(aryl)methyl]-1,3-dimethyl-pyrimidin
e-2,4-(1H,3H)-dione 3 formation, which, by the action of the next methoxide anion, was 
cyclized into spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2 with the regeneration of the iodine 
ion. 

Aldose reductase catalyzes the reduction of aldehydes and acids. It participates in 
glucose into sorbitol transformation [49], which is the first step in fructose formation. In-
hibitors of aldose reductase are employed for the treatment of diabetic peripheral neu-
ropathy [50]. Computational chemistry, docking in particular, is a tool that is applied in 
drug development [51]. It allows for getting insights into protein–ligand interactions and 
reduces the time and effort directed toward the development of potential drugs [51,52]. 

In this research, the investigation of substituted spiro[furo[3,2-b]pyran-2,5′-pyrimi- 
dines] and aldose reductase interactions was conducted in Flare 3.0.0. [53–58]. The pro-
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The evolution of hydrogen was the cathodic process, which was accompanied by
methoxide anion generation. The formation of iodine was an anodic process and the
corresponding iodine color was observed at the anode when the electrolysis was conducted
without stirring of the reaction mixture.

The reaction in solution between a methoxide ion and 6-hydroxy-5-[(2-hydroxy-6-
oxocyclohex-1-en-1-yl)(aryl)methyl]-1,3-dimethyl-pyrimidine-2,4-(1H,3H)-dione 1 led to
the anion of 6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)-(aryl)methyl]-1,3-dimethyl-
pyrimidine-2,4-(1H,3H)-dione A formation. Then, the iodination of anion A resulted in
iodinated 6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)-(aryl)methyl]-1,3-dimethyl-
pyrimidine-2,4-(1H,3H)-dione 3 formation, which, by the action of the next methoxide
anion, was cyclized into spiro[furo[3,2-b]pyran-2,5′-pyrimidine] 2 with the regeneration of
the iodine ion.

Aldose reductase catalyzes the reduction of aldehydes and acids. It participates in
glucose into sorbitol transformation [49], which is the first step in fructose formation.
Inhibitors of aldose reductase are employed for the treatment of diabetic peripheral neu-
ropathy [50]. Computational chemistry, docking in particular, is a tool that is applied in
drug development [51]. It allows for getting insights into protein–ligand interactions and
reduces the time and effort directed toward the development of potential drugs [51,52].

In this research, the investigation of substituted spiro[furo[3,2-b]pyran-2,5′-pyrimidines]
and aldose reductase interactions was conducted in Flare 3.0.0. [53–58]. The protein
structure was downloaded from RCSB (pdb code: 2NVD) [44]. Build Model was used for
the protein preparation, the water molecules out of 6A from the binding site were removed,
then docking was performed with a co-crystallized ligand as a template molecule in very
high precision mode. The Lead Finder’s energy and Virtual Screening scoring functions
were used for benchmarking [53–58].

The cavity of aldose reductase is divided by Trp111 into the catalytic subpocket and
the specificity pocket. The catalytic pocket is related to the catalytic mechanism and is
represented by Tyr48, Lys77, and His110 residues [59–61]. However, almost all inhibitory
activity is related to Trp20 and, in several cases, Leu300 enhances the intercalation of
inhibitor between these two residues [51].

In docking studies, all synthesized compounds, with the exception of spiro[furo[3,2-
b]pyran-2,5′-pyrimidine] 2d, intercalated near Trp20 (Table 3). Other structures interacted
with Val47, Tyr48, His110, Trp111, Asn160, Tyr209, Ser210, Ser214, Cys298, and Leu300
(Table 3). Many of them are key residues for inhibitors, for example, the reference co-
crystallized ligand interacts with Trp20, Tyr48, His110, Ser210, and Ser214 [51]. The
diagrams of interaction, the interacting residues, the calculated values of binding energies
(LFdG), and the Lead Finder’s Virtual Screening Score (LFVS) are presented in Table 3.
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Table 3. The results of docking studies of substituted spiro[furo[3,2-b]pyran-2,5′-pyrimidines] 2a–i.

Compound LFdG (kcal/mol) LFVS Interaction Residues Remark

2a −8.426 −9.520
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Spiro[furo[3,2-b]pyran-2,5′-pyrimidines] 2e, 2g, and 2i showed the best results in
docking studies from a thermodynamic point of view. The binding energies of interaction
with the protein were −9.124, −9.588, and −9.238 kcal/mol, respectively. The LFVS values
were also high, where the values were −10.496, −10.799, and −10.634, respectively. Both
the binding energy and LFVS values of 2e, 2g, and 2i surpassed the same values of the
co-crystallized ligand (−8.545 kcal/mol and −10.089). At the same time, 2e and 2g formed
many interactions with the aldose reductase, namely 2e formed π–π intercalations with
Trp20 and Tyr209 and two hydrogen bonds to Ser210 and Asn160, while spiro[furo[3,2-
b]pyran-2,5′-pyrimidine] 2g formed the similar intercalations with Trp20 and Tyr209 and
three hydrogen bonds to Tyr48, Asn160, and Trp111. As mentioned above, Tyr48 and
Trp111, as well as Trp20, are considered key residues for inhibition [51,59–61].

Despite a good position and several hydrogen bonds forming with key amino acids
(Cys298, Ser214, Ser210, Trp20), the nitro derivative 2h showed the lowest binding energy
among the examined compounds, which was −6.399 kcal/mol. The LFVS value was
also moderate, which was −7.686. Nevertheless, because of the moderate value and the
presence of a key interaction (Trp20), it may be interesting for further investigations in
drug development.

Thus, according to docking studies, substituted spiro[furo[3,2-b]pyran-2,5′-pyrimidines]
have conformations that may inhibit aldose reductase function. The values of the binding
energy and Lead Finder’s Virtual Screening scoring function found for this formation
of protein–ligand complexes were favorable and, in several cases, it may surpass the
co-crystallized inhibitor. Thus, substituted spiro[furo[3,2-b]pyran-2,5′-pyrimidines] are
promising for the further investigation of their inhibitory activity related to aldose reductase
as its inhibitors are applied in the treatment of diabetes or similar diseases.

4. Conclusions

Thus, the new electrochemically induced and highly efficient cyclization of 6-hydroxy-
5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)(aryl)methyl]-1,3-dimethylpyrimidine-2,4-(1H,3H)-
diones in methanol in the presence of sodium iodide as a mediator in the undivided cell
resulted in the formation of the earlier unknown substituted spiro[furo[3,2-b]pyran-2,5′-
pyrimidines] in 59–95% yields.

This new electrocatalytic cyclization is a facile path to the earlier unknown substi-
tuted spiro[furo[3,2-b]pyran-2,5′-pyrimidines] containing both barbituric and kojic acid
fragments, which are promising compounds for different biomedical applications, with
anticonvulsants, anti-AIDS agents, and anti-inflammatory remedies among them.

This efficient electrocatalytic procedure utilizes simple equipment, an undivided cell,
and an available and cheap mediator, namely, sodium iodide. It is easily carried out and the
isolation procedure is very simple. Thus, this new method is valuable from the viewpoint
of environmentally benign, diversity-oriented, large-scale processes. All these advantages
make this method valuable for the synthesis of new potential drug libraries.

It was found that substituted spiro[furo[3,2-b]pyran-2,5′-pyrimidines] may occupy
the binding pocket of aldose reductase to inhibit its action. The values of the binding
energies and Lead Finder’s Virtual Screening scoring functions showed that the formation
of protein–ligand complexes was favorable. The synthesized compounds are promising for
further investigation of their inhibitory activity related to aldose reductase, it makes them
interesting for the treatment of diabetes or similar diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electrochem2020021/s1, 1H and 13C Spectra of synthesized compounds 4a–i (Figures S1–S18),
2D NMR Spectra of Compound 2a (Figures S19 and S20), Single-crystal X-ray Diffraction Data for
Compound 2f (Tables S1–S7).
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