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Abstract: In this work, an electrochemical sensor (GCE/MWCNT/Fe3O4@SiO2) based on a composite
of multiwalled carbon nanotubes (MWCNT) and an Fe3O4@SiO2 (MMN) nanocomposite on a glassy
carbon electrode (GCE) was developed for the detection of tetracycline (TC). The composite formed
promoted an increased electrochemical signal and the stability of the sensor, combining its individual
characteristics such as high electrical conductivity and large surface area. The composite material was
characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer
spectroscopy, and scanning electron microscope (SEM). The adsorptive stripping differential pulse
voltammetry (AdSDPV) promoted better performance for the electrochemical sensor and greater
sensitivity for TC detection. Under optimized conditions, the currents increased linearly with TC
concentrations from 4.0 to 36 µmo L−1 (0.997) and from 40 to 64 µmo L−1 (0.994) with detection and
quantification limits of 1.67 µmo L−1 and 4.0 µmo L−1, respectively. The sensor was applied in the
analysis of milk and river water samples, obtaining recovery values ranging from 91–117%.

Keywords: electrochemical sensor; multiwalled carbon nanotubes; nanocomposite of Fe3O4@SiO2;
tetracycline; water samples; milk samples

1. Introduction

Tetracyclines (TCs) are a class of broad-spectrum antibiotics with high activity against
various infections caused by Gram-positive and Gram-negative bacteria as well as a variety
of organisms including mycoplasma and chlamydia [1]. Currently, there are more than
twenty TC derivatives available, among which, tetracycline, chlortetracycline, doxycycline,
and oxytetracycline are the most widely used [2] in the treatment of diseases in humans
and veterinary medicine as a food additive to treat and prevent bacterial infections and as
growth promoters [3]. Given the high consumption of these antibiotics, TC residues have
been detected in aquatic environments [4] and in foods of animal origin such as milk [5]
and honey [6], which represents a serious threat to human health, since it contributes to
the development of antimicrobial resistance and the appearance of allergic reactions [7].

Thus, it is of great importance to developing a sensitive, simple, and low-cost method-
ology to detect TC residues in food, biological, and environmental samples. In recent
years, several methodologies have been developed for the determination of TC including
chromatographic methods [8,9], capillary electrophoresis [10,11], fluorescence [12], and
electrochemical detection. Electrochemical sensors have several advantages such as low
cost, simplicity, high sensitivity, high selectivity, and the possibility of on-site analysis,
among others [13].

Wong et al. developed an electrochemical sensor modified with multiwalled carbon
nanotubes and graphene oxide for tetracycline detection. This sensor showed a linear
response for tetracycline from 2.0 × 10−5 to 3.1 × 10−4 mol L−1 and a detection limit of
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3.6 × 10−7 mol L−1 by using adsorptive stripping differential pulse voltammetry (AdS-
DPV) [14].

The possibility of developing large-scale methodologies with low-cost materials such
as carbon-based materials has further boosted research for the development of electro-
chemical sensors and biosensors. Several studies in the literature have shown that sen-
sors modified with multiwalled carbon nanotubes (MWCNT) and a nanocomposite of
Fe3O4@SiO2 [15,16] promote increased selectivity, stability, and sensitivity.

The carbon nanotubes have properties such as high surface area, excellent electrical
conductivity, mechanical strength, and high chemical stability [17,18]; in sensors, it can be
used to promote the transfer of electrons between electroactive species and the electrode
surface [19,20].

Magnetic iron-oxide-based nanoparticles, known for their applications in magnetic
separation in the sensory field, have been used due to their catalytic properties [21–23].

Fe3O4@SiO2 magnetic nanoparticles with high surface area can be integrated into
sensors in a variety of ways, for example, through contact between the metallic magnetic
nanoparticle and electrode surface, or through the transport of a redox-active species to
the electrode surface, or by a thin film on the electrode surface [24]. Synergistic effects
between nanocomposites of Fe3O4@SiO2 and MWCNTs can improve the capacities of the
electrochemical sensor [25].

In the present work, we report on a glassy carbon electrode (GCE) modified with multi-
walled nanotubes carbon and a nanocomposite of Fe3O4@SiO2 (GCE/MWCNT/Fe3O4@SiO2)
for the determination of tetracycline (TC) in raw milk and river water samples.

2. Materials and Methods
2.1. Reagents and Solutions

All chemical reagents used in this work were of analytical purity. The aqueous
solutions were prepared with deionized water by a Millipore Milli-Q system (18.2 MΩ·cm,
25 ◦C). MWCNTs were acquired from Nanocyl. HCl was obtained from Dinâmica. NaOH,
FeSO4·7H2O, KNO3, KOH, and APTES (3-aminopropyltriethoxysilane) were obtained from
Sigma Aldrich (St. Louis, MO, USA). KCl, CH3COOH, and NaH2PO4·7H2O were obtained
from Synth. Ammonium hydroxide was purchased from Quemis. Tetraethoxysilane (TEOS)
was purchased from Merck. The stock solution of tetracycline 1.0 × 10−3 mol L−1 was
prepared in 5.0 mL of the HCl 1.0 × 10−3 mol L−1.

2.2. Synthesis of Nanocomposites of Fe3O4@SiO2

The nanocomposite of Fe3O4@SiO2 (MMN) was synthesized according to the litera-
ture [26]. The steps of synthesis are illustrated in Figure 1A,B.
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2.3. Characterization of the Modifiers

The spectra of materials by FTIR were obtained using a Spectrum GX Perkin Elmer
spectrometer with transmission mode ranging from 400 to 4000 cm−1 with the accumu-
lation of 32 spectra and resolution of 2 cm−1; the KBr (1%) pellet technique was used
to characterize the materials. The scanning electron micrographs were obtained by mi-
croscopy using JEOL model JSM 300. X-ray diffractograms were obtained by an X’pert Pro
X-ray diffractometer, with Cu Kα radiation. The spectra Mössaubauer were obtained at
298 K with a source of 57 Co/Rh in the range of ±10 × 10−3 m s−1 in 1024 channels in a
SEE Co model W302. A α-Fe was used as a calibration standard.

2.4. Point of Zero Charge of Fe3O4@SiO2 Nanocomposite

The point of zero charge was determined through an experiment (in duplicate), in
which the pH of the sorbent solution was changed by five values (2, 4, 6, 8 and, 10), aiming
to find the pH at which the charge in the material surface is equal to zero. A total of 25 mg
of the MMNs were dispersed in an aqueous solution of sodium chloride (NaCl) 0.10 mol
L−1 under five different conditions of initial pH, ranging from 2.0 to 10.0. The adjustment
was performed with aqueous hydrochloric acid solutions (0.10 mol L−1 and 0.05 mol L−1

and NaOH (0.10 mol L−1). After 24 h of stirring, the pH value was measured again. The
result was interpreted through the initial pH curve versus the final pH. The point of zero
charge corresponds to the point where the final pH is equivalent to the initial pH.

2.5. Apparatus

The electrochemical measurements were carried out with the use of an Autolab
PGSTAT12 potentiostat/galvanostat coupled to a microcomputer containing the NOVA
1.11 and 1.8 software. All measurements were performed in a configuration of three
electrodes such as the working electrode of a modified glassy carbon electrode (GCE),
Ag/AgCl/KCl 3.0 mol L−1 as the reference electrode, and as an auxiliary electrode, a
platinum wire. The operational parameters of each technique were as follows: Adsorptive
differential pulse voltammetry (AdSDPV)—modulation time range: 1 s; modulation time:
10 s; accumulation potential: −0.020 V; accumulation time: 15 s, and accumulation time
range: 1 s. Differential pulse voltammetry (DPV)—amplitude 0.1 V; scan rate 0.030 Vs−1.
Square wave voltammetry (SWV)—amplitude: 0.030 V; frequency: 25 Hz.

2.6. Preparation of GCE/MWCNT/Fe3O4@SiO2 Modified Electrode

The cleaning of GCE was performed with an alumina suspension, followed by washing
with deionized water. After that, the electrode was electrochemically cleaned by twenty
consecutive cycles in cyclic voltammetry (CV) in 0.5 mol L−1 sulfuric acid, varying the
potential from −1.4 to +1.4 V vs. Ag/AgCl at a scan rate of 0.025 V s−1.

In the last step, 5 µL of MWCNT (2.50 mg mL−1) and 5 µL of MMN (2.50 mg mL−1)
were dispersed in dimethylformamide (DMF) and deposited on the surface of the GCE.
Then, the electrode was left to dry at 60 ◦C for approximately 10 min for complete evapora-
tion of the solvent.

2.7. Evaluation of Experimental Parameters

The amount of MWCNTs was changed in the range of 1.0 to 3.0 mg (dispersed in
1.0 mL of DMF). After this stage, the amount of MWCNT was fixed and the amount of
MMN was changed in the range of 0.5 to 2.0 mg (dispersed in 1.0 mL DMF). After the
optimization of the working electrode, the influence of pH in the electrolytic medium was
studied in intervals from 2.0 to 7.0 using the solution of KCl 0.1 mol L−1. After setting
the best pH value, the types of support electrolyte (hydrochloric acid, Britton–Robinson,
phosphate, and acetate) were evaluated. All studies were performed in the presence of TC
22 µmo L−1.
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2.8. Selectivity of the Proposed Sensor

The selectivity of the GCE/MWCNT/Fe3O4@SiO2 sensor was evaluated in the pres-
ence of possible interferents such as doxycycline, amoxicillin, and diclofenac. All solutions
were prepared at a concentration of 1.0 × 10−3 mol L−1.

2.9. Application in Real Samples

The GCE/MWCNT/Fe3O4@SiO2 sensor was applied in the analysis of river water
and raw milk samples. The river water was collected in the city of São João del Rei, in
the interior of Minas Gerais State (Brazil). The samples were collected according to the
sampling protocol [27].

The raw milk samples were collected in two different locations: São João del Rei and
the Elvas District (Minas Gerais, Brazil). To prepare the milk sample, it was necessary to
separate some constituents of milk (fat, protein) that could interfere with TC detection. For
milk pre-treatment, the proposed methodology in the literature was used [28].

Then, the pre-treated samples were enriched with known concentrations of TC. The
recovery rates of the developed method were obtained through the analytical curve.

3. Results and Discussion
3.1. Characterization of the Modifiers

The SEM images obtained for the modifiers are shown in Figure 2. For the MWCNTs,
a tubular structure was observed. In Figure 2B, the Fe3O4@SiO2 has a surface made up of
spherical, agglomerated particles due to the magnetic core (Fe3O4). Finally, the composite
MWCNT/Fe3O4@SiO2 (Figure 2C) shows that these materials were well distributed.
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Figure 2. SEM. (A) MWCNT (B) Fe3O4@SiO2, and (C) MWCNT/Fe3O4@SiO2.

Another technique used for characterization was FTIR (Figure 3A). The FTIR spectrum
of MWCNT showed bands of deformation of the bond C–H2 methylene group around 2926
and 2869 cm−1 [29]. A broad band around 3400 cm−1 may be associated with the stretching
vibration mode of the O–H bond of functional groups that are on the surface of the
MWCNTs. Stretch bands of the C=C bonds around 1640 cm−1, 1497 cm−1, and 1440 cm−1,
characteristics of aromatic compounds, were also observed [30]. In the Fe3O4@SiO2 spectra,
the bands at around 570 cm−1 and 449 cm−1 can be assigned to the stretching and angular
deformation of the Fe–O bond in the magnetic core, respectively.
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The bands at 922 and 862 cm−1 are due to the stretching of the bonds (Si–O) [31] and
the bands around 1100 to 1000 cm−1 are related to the bonds (Si–O–Si) [32]. The difference
between the Fe3O4@SiO2 (MMNs) spectra and the MWCNT/Fe3O4@SiO2 nanocomposite
spectra was associated with the intensity of the bands.

The X-ray diffractogram (Figure 3B) of the Fe3O4@SiO2 nanoparticles revealed well-
defined peaks located around 2θ = 30.4◦, 36.02◦; 43.6◦; 53.8◦; 57.4◦; 62.9◦, characteristics of
the crystalline planes (220), (311), (101), (422), (511), and (440), respectively, of the cubic
structure of magnetite [33], according to JCPDS number 36–0398 [34].

These planes are associated with a spinel-like cubic structure, which shows the exis-
tence of the crystalline phase of the Fe3O4 [32,35]. On the other hand, the MWCNT XRD
peaks around the graphite structure (002) and the graphite 2θ = 26.4◦ and 44.11◦ were
attributed to the graphite structure (002) and the MWCNT planes (100), respectively [36].
The diffraction pattern for the MWCNT/Fe3O4@SiO2 showed a diffraction peak around
2θ = 26◦, corresponding to the peak of the MWCNT, and the absence of the SiO2 peak
in the XRD pattern in the composite was due to its amorphous structure coated on the
Fe3O4 nanoparticles [37]. The diffraction peak at 2θ = 26◦ is a typical Bragg peak of pristine
MWCNT and can be associated with the reflection of graphite [38].

The Mössbauer spectrum of the magnetite (Figure 4) showed two sextets: one of
them is associated with the contribution of the hyperfine magnetic interaction of the
Fe3+ ions at the A sites, and the other with the coupling [Fe3+ ↔ Fe2+] in the coordination
interstices of the B sites of the inverse spinel structure (AB2O4). The correlation of hyperfine
parameters indicates the presence of an oxidized magnetite phase and a small fraction
of hematite. The hyperfine parameters of the isomeric displacement of 0.21 × 10−3 and
0.63 × 10−3 m s−1 and of the hyperfine field of 48.25 T and 43.84 T were outside the values
for pure magnetite. This indicates that the material analyzed was oxidized magnetite, that
is, non-stoichiometric magnetite [35]. A non-stoichiometric substance is composed of a
variable structure, but it is similar to the basic structure, in this case, the magnetite can be
written as (Fe3+)A(Fe2

2,5+)
BO4, where the B site represents the ions Fe3+ and Fe2,5+, both in

octahedral coordination. The Fe2,5+ ion receives this terminology due to the rapid electronic
recombination of the ions when they were above the Verwey transition (T = 120 K) [33,39].
According to the literature, part of the synthesized magnetite may be being oxidized to
maghemite, which according to Cornel would be the intermediate phase of transformation
from magnetite to hematite. The conversion of magnetite in maghemite occurs with the
oxidation of Fe2+ to Fe3+, the latter in turn, is more easily ejected out of the structure due to
its smaller ionic radius. Upon contact with oxygen in the air, Fe2+ is reduced, giving rise to
Fe2O3 [40].



Electrochem 2021, 2 256

Electrochem 2021, 2, FOR PEER REVIEW 6 
 

of the magnetite core with the silica coating did not cause considerable changes in the 
magnetite structure [35]. 

 
Figure 4. Mössbauer spectra of (A) Fe3O4 and (B) Fe3O4@SiO2. 

The point of zero charge of the Fe3O4@SiO2 was 6.3 (Figure 5). This value is in agree-
ment with the data found in the literature, suggesting that below this value, the surface of 
the MMNs acquires positive charges and above 6.3, there are predominantly negative 
charges [36]. As the electrode was immersed in an electrochemical solution (HCl, pH 3.0), 
it can be inferred that the charges present on the GCE/MWCNT/Fe3O4@SiO2 electrode sur-
face were mostly positive. There was an affinity between the modified electrode surface 
and TC. 

 
Figure 5. Determination of the point of zero charge of the Fe3O4@SiO2. 

3.2. Study of the Configuration of the Working Electrode 
Figure 6 shows the study of the working electrode configuration in TC determination. 

The electrode modified only with Fe3O4@SiO2 could not adhere to the electrode surface 
stably. The electrode modified with MWCNTs showed no TC signal (oxidation or reduc-
tion) and showed a high capacitive current. The GCE/MWCNT/Fe3O4@ showed an anodic 
peak current at +0.52 V and a cathodic peak current at +0.50 V. The proposed electrode 
showed better performance in determining TC due to the stability of the sensor, high elec-
trical conductivity, and the increase in the surface area of the electrode [41]. The use of the 
Randles–Sevcik Equation (1), confirms the increase in the electroactive area of the pro-
posed electrode in comparison to the base electrode (GCE). The electroactive area was 
estimated using a solution of 1.0 × 10−3 mol L−1 K3[Fe(CN)6 ] in 0.1 mol L−1 KCl. 

Figure 4. Mössbauer spectra of (A) Fe3O4 and (B) Fe3O4@SiO2.

The magnetite sub specters were also observed in the Fe3O4@SiO2 sample, as shown
in Figure 4B. The difference from the previous sample is that the hyperfine parameters
of hematite were not detected. The hyperfine parameters obtained were similar to those
acquired for the sample of pure magnetite. This indicates that the functionalization process
of the magnetite core with the silica coating did not cause considerable changes in the
magnetite structure [35].

The point of zero charge of the Fe3O4@SiO2 was 6.3 (Figure 5). This value is in
agreement with the data found in the literature, suggesting that below this value, the surface
of the MMNs acquires positive charges and above 6.3, there are predominantly negative
charges [36]. As the electrode was immersed in an electrochemical solution (HCl, pH 3.0),
it can be inferred that the charges present on the GCE/MWCNT/Fe3O4@SiO2 electrode
surface were mostly positive. There was an affinity between the modified electrode surface
and TC.
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3.2. Study of the Configuration of the Working Electrode

Figure 6 shows the study of the working electrode configuration in TC determination.
The electrode modified only with Fe3O4@SiO2 could not adhere to the electrode surface
stably. The electrode modified with MWCNTs showed no TC signal (oxidation or reduction)
and showed a high capacitive current. The GCE/MWCNT/Fe3O4@ showed an anodic
peak current at +0.52 V and a cathodic peak current at +0.50 V. The proposed electrode
showed better performance in determining TC due to the stability of the sensor, high
electrical conductivity, and the increase in the surface area of the electrode [41]. The use
of the Randles–Sevcik Equation (1), confirms the increase in the electroactive area of the
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proposed electrode in comparison to the base electrode (GCE). The electroactive area was
estimated using a solution of 1.0 × 10−3 mol L−1 K3[Fe(CN)6 ] in 0.1 mol L−1 KCl.

Ip = 2.69 × 105 A D 1/2 n 3/2 v 1/2 C (1)

where Ip is the peak current and D is the diffusion coefficient of K3[Fe(CN)6 ]
(7.6 × 10−6cm2 s−1).
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Figure 6. Cyclic voltammograms obtained using different electrodes: GCE; GCE/Fe3O4@SiO2,
GCE/MWCNT, and GCE/MWCNT/Fe3O4@SiO2. Measurements performed in the presence of
22.0 µmo L−1 of tetracycline in 1 × 10−3 mol L−1 HCl at pH 3.0. Scan rate: 25 mV s−1.

The electroactive area was 0.089 cm2 for GCE and 0.158 cm2 for GCE/MWCNT/
Fe3O4@SiO2. The results indicated that the MWCNT not only stabilized the nanoparticles
of the Fe3O4@SiO2 on the electrode surface, but also that these materials together presented
a greater surface area.

3.3. Electrochemical Behavior of the Sensor

The electrochemical behavior of the proposed sensor was investigated by the cyclic
voltammetry technique in different scan rates. The plot of log Ipa (anodic peak current)
versus log ν (scan rate) (Figure 7B) yielded a straight line, with a slope of 0.94. Therefore,
the process is controlled by adsorption, since for processes controlled only by diffusion,
the slope must be 0.5 [42,43].
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3.4. Optimization of Experimental Parameters for GCE/MWCNT/Fe3O4@SiO2 Sensor

Figure 8A,B shows the influence of the modifying materials in the surface of GCE.
For the MWNCTs, at a concentration of 2.50 mg mL−1, there was a significant increase in
the current as smaller amounts of MWNCTs probably did not stabilize the nanocomposite
of Fe3O4@SiO2. For the Fe3O4@SiO2, the best response was obtained using 2.5 mg mL−1;
smaller amounts resulted in low electron transfer. The behavior of the proposed sensor
was evaluated at different pH values (Figure 8C). The results obtained showed that at pH
3, there was the highest anodic current intensity, thus, pH 3 was chosen as the optimal
value. The protonation of dimethyl amino group present in the TC is facilitated in an acidic
medium [44,45]. The specific interactions of hydrogen in the reduced quinone form could
explain the difference in TC oxidation for pH values below 4.0. Strong intramolecular
hydrogen interactions can take place due to the high acidity of the environment, result-
ing in greater sensitivity [41]. Figure 8D presents the results of the study of the support
electrolyte influence on the detection of TC. Hydrochloric acid showed a significant in-
crease in analytical signal in relation to the electrolytes evaluated. HCl did not show any
detectable interaction with TC, which could lead to a decrease in analytical signal. Thus,
the electrolytic medium selected was HCl.
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and 0.40 V.

3.5. Influence of Electrochemical Technical

Table 1 presents the results of the evaluation of the electrochemical techniques used.
According to the results, AdSDPV showed the highest sensitivity in TC detection, and
therefore was used in later studies.
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Table 1. Influence of electrochemical techniques in the determination of TC under optimized condi-
tions (1 × 10−3 mol L−1 HCl pH 3.0).

Technical Sensitivity/µAmol L−1

AdSDPV 0.51
DPV 0.14
SWV 0.0037

3.6. Analytical Curve

Figure 9 illustrates the voltammograms obtained with successive additions of TC
in concentrations between 4.0 and 64 µmo L−1. The voltammograms presented two TC
oxidation peaks, which may be associated with the dimethyl ammonium and phenol
groups present in the TC. The first peak exhibited one linear region and the second peak
presented two linear regions. The second peak was chosen to obtain the analytical curve
(Equations (2) and (3)).

Ipa = 41.71 + 0.55 × [TC] r = 0.997 (2)

Ipa = 50.78 + 0.29 × [TC] r = 0.994 (3)
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The detection limit (LOD) and the quantification limit (LOQ) were 1.67 and 4.0 µmo L−1,
respectively (obtained from Equation (2)).

Reproducibility between different electrodes (n = 2) was investigated in the presence
of TC 31.0 µmo L−1. The results obtained showed a low relative standard deviation (RSD),
−0.71%, showing the reproducibility of the method. Table 2 shows the comparison of the
method proposed in this work with sensors described in the literature for TC detection.
The GCE/MWCNT/Fe3O4@SiO2 sensor presented a low LOD when compared to other
sensors, showing the advantage of being a simple and reproducible method.
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Table 2. Comparison of the proposed sensor with other methods described in the literature.

Electrode Linear Range (µmol L−1) LOD (µmol
L−1) Reference

GR-Pol [a] 3.0–95.0 2.6 [5]
CB-FB/GCE [b] 5.0–120 1.15 [46]

MIOPPy-AuNP/SPCE [c] 1.0–20 0.65 [45]
PtNPs/C/GCE [d] 9.99–44.01 4.28 [41]

GCE/MWCNT/Fe3O4@SiO2 4.0–36 1.67 This work

[a] Polyurethane-graphite composite electrode; [b] Glassy carbon electrode modified with potato starch and black
carbon; [c] Printed electrode modified with molecularly printed polypyrrole and gold nanoparticles; [d] Glassy
carbon electrode modified with platinum nanoparticles.

3.7. Selectivity

The selectivity of the GCE/MWCNT/Fe3O4@SiO2 sensor was evaluated in the pres-
ence of three different substances. Doxycycline (DC) has a similar structure to TC; di-
clofenac (DF), which consists of electroactive functional groups; and amoxicillin (AM),
which is an antibiotic structurally different from TC. As illustrated in Figure 10, DC pre-
sented a greater analytical response compared to AM and DF; this behavior is due to
the structural similarity with TC. Although the three interferents evaluated presented an
analytical response in the same potential range when interacting with the proposed sensor,
these compounds did not make it impossible to detect TC.
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The modification of the electrode surface with MWCNT and Fe3O4@SiO2 facilitated
the process of electronic transfer. The modifiers provided increased conductivity and
electroactive area, providing better interaction with TC. The optimization of experimental
parameters such as the amount of modifiers, pH, and electrolyte support also favored the
selective detection of TC. The entire optimization process was carried out to improve the
oxidation conditions of the TC on the surface of the proposed electrode, thus the method
resulted in greater selectivity for the TC.

3.8. Application of the Method

Tables 3 and 4 show the results obtained in the application of the proposed sensor in
the milk and river water samples enriched with TC. The proposed method under optimized
conditions showed high recovery values (between 91 and 117%) and low RSD (between 0.1
and 1.8). Additionally, the developed sensor did not present a matrix effect.
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Table 3. Determination of TC in water samples.

River Water Sample
Tetracycline/µmol L−1

Recovery (%)
Added Detected *

No. 1 5.2 (6.1 ± 0.8) 117.9
No. 2 9.2 (8.7 ± 0.4) 94.9

* Average three determinations.

Table 4. Determination of TC in milk samples.

Milk Sample
Tetracycline/µmol L−1

Recovery (%)
Added Detected *

No. 1 10 (10 ± 0.2) 102.0
20 (20.1 ± 1.2) 100.3

No. 2 10 (9.1 ± 0.1) 91.0
20 (21.8 ± 1.8) 108.8

* Average three determinations.

4. Conclusions

The developed sensor, GCE/MWCNT/Fe3O4@SiO2, showed excellent performance
in TC detection due to the high electrical conductivity and surface area provided by the
modifiers. The modifying materials were properly characterized. The experimental and
operational parameters of the sensor were optimized, providing a simple and reproducible
method with high sensitivity and selectivity. The results obtained in the application of the
sensor in real samples of milk and water showed high recovery rates, which shows that the
proposed method is a viable alternative in TC detection in this type of sample.
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