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Abstract: This work is aimed to give an electrochemical insight into the ionic transport phenomena
in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is
presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale
neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the
liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical
potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial
membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome
these limitations, are also discussed.
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1. Introduction

There are two main processes governing the ionic transport, i.e., diffusion—the particle
motion caused by a gradient of concentration, and migration—motion of ions caused by a
gradient of electrical potential. These two processes are referred to as electrodiffusion [1].
Electrodiffusion of electrolytes serves as a mean for communication in the nervous system.
It can directly affect the excitatory transmission in the synaptic cleft [2]. Electrodiffusion
maintains the local ions concentration in brain extracellular spaces at heathy levels [3]
but may be also involved in the propagation of epileptic seizures during pathological
conditions [4]. The accurate interpretation of physiological observations requires better
understanding of the underlying electrodiffusion phenomena [1].

The description of electrodiffusion is very often performed using the Nernst–Planck–
Poisson (NPP) model. It has been acknowledged that the spatiotemporal dynamics of the
ion concentrations in thin dendrites and dendritic spines of nerve cells follow the Nernst–
Planck equation [5], and sub-membrane currents in neuronal membrane have already been
successfully described using the NPP model [6–9].

The NPP equations may provide better understanding of electrodiffusion phenomena
occurring in neurophysiology, allowing more adequate insights into nanoscale observations.
Nevertheless, the NPP was only briefly mentioned in the recent review “Electrodiffusion
phenomena in neuroscience: a neglected companion” [1], while the Poisson equation
was never shown. The present paper aims to fill this gap by presenting the NPP model
and reviewing its application for the description of electrodiffusion-related phenomena
observed in brain tissue, namely, the propagation of electrical signal in neurons, the non-
stationary liquid junction potential (LJP) formation, the electrodiffusion in ion channels,
and the distortions of electrical potential invisible to patch-clamp measurements.
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2. The Nernst–Planck–Poisson Model

The Poisson equation describes the electric field occurring due to the movement of
ions, i.e., relates the electrical potential, ϕ, to the concentrations of ions:

∇2 ϕ = − F
ε ∑

i
zici, (1)

where ci represents the concentration of the i-th ion, zi denotes its charge, ε is the dielectric
permeability of the medium and F = 96485.3 C mol−1 is the Faraday constant. In order
to include the information about the external current Iext applied to a system, Poisson
equation can be substituted with the Displacement Current equation [10]:

∂E
∂t

= Iext −
F
ε ∑

i
zi Ji, (2)

where the electric field E is directly connected to the gradient of electrical potential, i.e.,
E = −∇ϕ.

The Nernst–Planck equation relates the flux of ions Ji to the diffusion (driven by the
gradient of concentration,∇ci), the migration (driven by the gradient of electrical potential,
∇ϕ), and the convection processes:

Ji = −Di∇ci −
F

RT
ziDici∇ϕ + civ, (3)

where Di is the diffusion coefficient of the i-th ion, R = 8.31 J mol−1 K−1 is the gas constant,
T represents the temperature, and v is the drift velocity. The general contribution of the
convection is minor, hence, the component civ is often neglected.

Together with the mass-balance equation:

∂ci
∂t

= −∇Ji, (4)

they form a set of coupled nonlinear partial differential equations, and with proper initial
and boundary conditions, they provide a quantitative description of electrodiffusion phe-
nomena. This set of equations is known as drift-diffusion in computational physics [11,12];
as the Nernst–Planck–Poisson (NPP) [13,14] in electrochemistry and materials engineering,
where the role of time-dependent flux is stressed; or as the Poisson–Nernst–Planck (PNP) in
biophysics and electrophysiology, where the importance of computing the variable spatial
distribution of potential is emphasized [15].

In the end of 19th century, Planck provided the first solution of the NPP equations [16].
He considered one-dimensional diffusion of two monovalent ions through a homogeneous
membrane, assuming the occurrence of steady-state (i.e., no changes of concentrations
or electric field and constant ionic fluxes across the system). More than a half-century
later [17], his solution was extended to describe an arbitrary number of ions of any valence
number. These and other analytical solutions [18–20] use the electroneutrality assumption.
Alternatively, the constant electric field across the membrane can be assumed [21]. It has
been shown that the electroneutrality assumption and the constant field hypothesis are the
two limiting cases of the Poisson equation [22–24].

The electroneutrality is a central principle of the classical electrolyte theory, upon
which the key electrochemical and electrophysiological derivations have been based [1].
The NPP problem with the electroneutrality assumption is significantly easier to solve.
Although this simplification was historically almost necessary due to the lack of high
performing computers, nowadays this attitude cannot be defended, as the access to high
computing power is ubiquitous.

By solving the Nernst–Planck equations, we are trying to determine the effect of
the electric field, which only arises in the presence of a net charge separation. Therefore,
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the electroneutrality assumption suffers from a fundamental inherent paradox [25]. Fur-
thermore, the electroneutrality was denounced as unphysical [26], i.e., at finite time it is
dynamically inconsistent with the solutions where the Poisson equation is obeyed.

The difficulties with the analytical solution of the NPP problem without the elec-
troneutrality assumption, as well as the search for a more general and widely applicable
approach, led the researchers to use the numerical methods. The first time-dependent NPP
model using a numerical procedure, namely, an explicit (non-predictive) finite difference
method, was developed in 1965 [10]. A decade later, an efficient simulation procedure for
multi-component NPP equations using the first fully implicit (predictive) finite difference
time scheme was presented by Brumleve and Buck [13]. Their approach to the numerical
treatment of NPP has been used in numerous papers in electrochemistry of ion-selective
membranes [27–37]. Other numerical methods proposed for the solution of the NPP
problem include fast implicit finite difference [38], finite element [39–42], and network
simulation [43–45]. The existence of an asymptotic analytical solution [46], found for small
voltage-clamp values and for early times, allows testing of the numerical approaches also
with respect to temporal dynamics.

The NPP model has been successfully used for the description of a large variety of elec-
trochemical sensors used in potentiometry [31–37,47] and impedance
spectroscopy [13,48,49]. That includes the NPP description of neutral carrier electrodes [50],
solid-contact electrodes [51], coated-wire electrodes [52], and ion-selective field effect tran-
sistors [52]. Application of NPP in sensors leads to a deeper understanding of sensing
mechanisms and underlying electrochemical processes, together with the miniaturization
that can lead to the development of more robust and precise electrochemical sensors for
in vivo measurements. Particularly interesting is, e.g., the development of biomimetic
membranes using the Mg2+/Ca2+ antagonism mechanism [53], mimicking the action of
glutamate-gated ion channels in NMDA receptors present in neural tissue [54,55]. The
application of NPP for the description of ion sensors will be the topic of another review.

In the field of biophysics, the NPP equations were introduced by Eisenberg [56] in
the early 1990s. The numerical method that can be easily transposed in two- or three-
dimensional geometry [57], the numerical scheme working in two-dimensional geome-
try [40], and finally, a lattice-relaxation algorithm able to solve a 3D model [58] allowed the
description of physiological systems with various complicated shapes.

Currently, the system of the NPP equations has become multidisciplinary, abundant
in many fields of science and technology, e.g., semiconductors [11,12,59], building mate-
rials [60–62], synthetic and biological charged membranes [63], colloids [64], and electro-
chemical ion sensors [14]. The NPP allows the optimal scaling of semiconductor properties
and device characteristics as devices become smaller [65,66]. The NPP speeds up the
technological development, by replacing slow, expensive trial and error experimentation
with direct computing [15].

Furthermore, the NPP system is easily extendable. The chemical reactions of complexa-
tion (as in the case of neutral-carrier ion-selective electrodes [l]) and precipitation/dissolution
(as in the case of ionic transport in cement-based materials [67,68]), both can be modelled
using modified NPP equations. Other possible extensions and modifications that address
issues relevant for physiological and neurophysiological systems, such as repulsion of a
point charge approaching dielectric medium by its induced image charge, finite size of
ions, steric effects, space- and concentration-dependent diffusion coefficients, fluid flow,
and other physical phenomena, are discussed in more detail in Section 8 of this review.

3. The NPP Description of Neurons

Neurons are highly specialized cells and essential cellular elements in the central
nervous system. All neurological processes are dependent on complex interactions between
single neurons and groups of related neurons. Morphologically, a typical neuron, consists
of three regions: (1) the cell body (soma or perikaryon) containing the nucleus and the
major cytoplasmic organelles, (2) a variable number of dendrites, and (3) a single axon. At
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the interface of axon terminals with target cells are the synapses, i.e., specialized zones of
contact, which consist of a presynaptic (axonal) element, a narrow synaptic cleft, and a
postsynaptic element on a dendrite or soma. The portion of the presynaptic element is the
active zone, enriched with ion channels necessary to permit the neurotransmitter release.
For a very detailed description of neuron morphology as well as different types of neural
cells, see [69].

The NPP equations might serve as a tool for the description of the phenomena occur-
ring during neurotransmitters electrodiffusion [1]. It was used to calculate the reaction
rate constant of neurotransmitter acetylcholine (ACh) in the reaction center of the enzyme
acetylcholinesterase (AChE) [41,42]. The obtained results showed that the rate coeffi-
cient depends on the concentration of the substrate (i.e., change from 2 × 1011 down to
8 × 1010 M−1 min−1 for the substrate concentration change from 1 to 500 mM at an ionic
strength of 134 mM), as well as on the ionic-strength of the solution (i.e., it peaks at around
12 × 109 M−1 min−1 at an ionic strength of 134 mM and reduces to about 8 × 109 M−1

min−1 at an ionic strength of 500 mM). A noticeable shift of the peak, located at 0.15 µs for
maximum rate coefficient, was found at the physiological ionic strength of 134 mM, which
differs from the results of a more idealized Smoluchowski–Poisson–Boltzmann model
(peak at 0.31 µs). This suggests that the NPP model is more desirable for the description of
the electrostatic-driven diffusion and substrate consumption in this system [41].

The NPP model has also been applied for calculations of glutamate electrodiffusion
in synaptic cleft [70]. The results showed that the synaptic currents could significantly
accelerate the dispersion of negatively charged neurotransmitter molecules from the cleft
and attract the positively charged ones towards the current sinks. Therefore, the shape of
the synaptic response strongly depends on the electrodynamic interactions between the
charged neurotransmitter molecules and the postsynaptic current. These predictions are
well supported by experimental evidence [2].

With the possibility to obtain 3D structures from electron tomography [71] came the
opportunity for modelling the systems with complex geometries based on morphologically
realistic depictions of cells and organelles relevant to neuroscience. It led to the neurological
application of NPP in the description of the node of Ranvier [6], a component in myeli-
nated axons consisting of axonal and glial membranes and small aqueous compartments.
Dysfunctions of its nodal complex play an important role in several neurological disorders,
such as multiple sclerosis, Charcot–Marie–Tooth disease and Guillain–Barre syndrome.
The electrodiffusion in the node of Ranvier is significant since the voltages surrounding
individual channels determine channel gating and the response of each channel to the local
electrochemical gradient. The NPP results show the accumulation and depletion of ions
close to the membrane. The algorithm applied to the node of Ranvier can also be applied
for the description of other biophysical processes, such as the generation/transmission of
cardiac impulses and synaptic transmission [6].

The synaptic connections are made on dendritic spines, i.e., parts of the neuron’s
dendrite that receive input from a single axon at the synapse and are comprised of spine
head and spine neck. The strength of the connection between two interacting neurons is
reflected by the electric potential change, induced by excitatory current. To investigate the
dependence of the electrical properties of spines on their geometry, the NPP modelling
was combined with voltage imaging data [72]. Results show that changing the length of
the spine neck can regulate the local dendritic voltage and, consequently, contributes to
the emergence of an action potential. The correlation between the voltage amplitude and
the neck length is confirmed by earlier experimental findings in brain slices [73,74]. This
length modulation is complementary to the possible changes in the number of receptors in
the synapse, resulting in a long-term modification of the synaptic current during synaptic
plasticity [72].

The propagation of the electrical signal in neurons is usually described by cable theory,
developed by Goldman, Hodgkin, and Katz [75,76] and successfully used as a framework
for studying neuronal conduction. The NPP computation of excitatory postsynaptic poten-
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tials shows the limitations of cable theory in cases of thin dendrites or large concentration
changes [5]. Also, in the case of small neuronal compartments or dendritic spines, it seems
that cable theory may be inadequate, because it assumes spatial and ionic homogeneity [77].
The NPP equations are free from such assumption and allow the more accurate modelling
of the constraints that neuronal nanostructures place on the neuronal currents. The applica-
tion of NPP to dendritic spines results in the following predictions about the influence of
geometry on the regulation of electrical current [77]:

1. The voltage inside the spine saturates as the injected current increases.
2. When the spine head is isolated and the current leak through the neck is slow, ions

concentrate at the surface of the spine.
3. A large electric field forms at the spine neck–head junction.

The NPP gives important information on the potential profile within the cells of
the synaptic circuit and in the intersynaptic space. It relates the electric field inside and
outside the cell during the spread of an action potential along an axonal membrane with
the complex interaction of ion movements and the evolution of the extracellular signal [ix].

The visual information is translated into electric currents by photoreceptors through
changes in their membrane potentials. The NPP was applied for the description of the
triad synapse (a type of synapse in the outer plexiform layer formed by a cone, a horizontal
cell, and a bipolar cell) in the goldfish retina in order to investigate the importance of
ephaptic (electrical) effects [78,79]. These effects were demonstrated by calculating the
shift in the current–potential curve for increasingly narrower openings between the cone
and the horizontal cell. The NPP results provide convincing evidence that an ephaptic
mechanism can produce the feedback effect seen in the experiments. The simulations of
the triad synapse also demonstrate the dependence of the feedback on the behavior of the
bipolar cell under background illumination [79]. Better understanding of the feedback
mechanisms is essential to unravel how visual processing takes place in the retina.

Owing to their close proximity, neurons must have a direct electrodiffusive impact
on their neighbors. The neuron environment, consisting of densely packed neurons and
neuroglia, has been described using the NPP equations [7]. The results qualitatively and
quantitatively agree with the Goldman equation but indicate that there is always a particle
flux, even at steady-state.

4. Non-Stationary Liquid Junction Potential

The diffusive currents in extracellular space surrounding a small population of neu-
rons can evoke a non-zero potential gradient, so that potential in soma region is more
negative than in the apical region [80]. This diffusion-generated-potential is known as
liquid junction potential (LJP), i.e., a potential emerging at a non-selective boundary be-
tween two electrolytes. The analysis of the time-dependent LJP response is also important
for the practical applications in methods of analytical potentiometry, such as patch-clamp
analysis [81] or fully automatic clinical electrolyte analyzers [82–84].

The value of LJP is usually calculated using Henderson equation [85,86]. This method
is easy to implement and available as free online calculators [87]. However, it has been
shown that the Henderson equation is only a special case of NPP [32]. It has also been
proven using asymptotic analysis [88] that the Henderson equation is inexact in cases other
than liquid junctions of two solutions of common phase but different concentrations, i.e.,
type 1 in Lingane’s classification [89]. Only for this type of junction does the steady state
solution of NPP reduce to the form equivalent to the Henderson equation, consequently,
giving the same values. The steady-state solution of NPP allows the validation of the linear
concentration profiles assumption and the electroneutrality assumption used in derivation
of Henderson equation, showing when the deviations occur [47].

Liquid junction can be described as an imaginary barrier, that separates two solutions
of electrolytes connected by the means of a porous plug [90], has a limited width, and
possesses the physical characteristics of water. A schematic depiction of the liquid junction
system is presented in Figure 1a. This classical approach, developed in the end of 19th
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century by Nernst [91] and Planck [16] and defined later [92] as constrained liquid junction,
has been widely used since [13,26,27,32,47,85,86]. Alternatively, instead of the unphysical
barrier, a dynamically relaxing junction of two liquids, in which a diffuse layer continues
to expand in a linear semi-infinite space, can be used. This approach, known as free liquid
junction, was first presented and described using NPP equations by Hafemann [93]. The
dynamics of free liquid junction, as well as the methods of analysis and simulation of liquid
junction potentials, have been discussed in more detail in a recent review [94].
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The NPP system brings the modelling of liquid junction potentials closer to physical
relevance, by allowing the simulation of time-dependent potential formation of both free
and constrained liquid junction [47]. Figure 1 shows the evolution of liquid junction
potential. Initially, the deviation from electroneutrality and the resulting changes in the
electric field profiles occurs at the contact between solutions until the value of electric field
reaches the maximum. Then, the deviation from electroneutrality and, consequently, the
changes in the electric field propagate through the system, while their maximum decreases
and shifts away from the initial interface of the junction (see Figure 1c,d). The value of
overall electrical potential (area between the electric field and x-axis on Figure 1d) remains
constant and corresponds to the value of free LJP. The free liquid junction is not at steady
state, and the value of its potential arises as a consequence of the electric field expanding
into the solutions.

If the deviation from electroneutrality and the resulting changes in the electric field
reach the boundaries of the system, the pseudo-steady state characteristic for free liquid
junction is disrupted. The potential changes its value, while the maximum of deviation
from electroneutrality and maximum of the electric field shift towards the solution with
lower concentration, until the steady state is attained (see Figure 1e,f).

The situation during the continued dialysis and solution mixing, when the interface of
junction expands away from the electrode [1], corresponds to free liquid junction; therefore,
the value of LJP in this case cannot be correctly estimated based on the Henderson method
(the constrained junction approach). Furthermore, the electroneutrality, used by Henderson
as assumption, is not fulfilled even at steady state (as shown in Figure 1e). The deviation
from the Henderson equation for Lingane’s type 3 junctions ranges from very small
(<0.02%) to very significant (>8%) over a very limited range of the diffusion coefficients
ratio [95].

5. The NPP Description of Ion Channels

The neuronal compartments, as well as all other types of cells and organelles, are
surrounded by phospholipid membranes. Embedded in these membranes are specialized
assemblies of proteins, known as ionic channels and pumps—the nanoscopic pathways
used to transport ions across the biological membranes [96]. Some types of the ion channels
have a selectivity filter, permitting passage of only one type of ions, while others are non-
selective, allowing multiple ion species to be transported. The opening and closing of ion
channels regulate the communication between cells, the influence of hormones and drugs
on the cell function, as well as other electrical activities in the nervous system [97].

The number and density of the ion channels can vary significantly between different
types of cells, as well as between different neuronal compartments. The density of sodium
channels in soma is quite low with 1 to 5 channels per µm2, while in some axons it can
reach 700 to 2000 channels per µm2 [98]. The density of potassium channels varies from 0.5
to 5 channels per µm2 in soma to 240–1100 channels per µm2 in axons [98]. Modifying the
density and distribution of ion channels (by natural regulation, spontaneous mutations, or
pharmacological intervention) changes the activity pattern of a neuron. The differences in
channel density and their influence on neural response have been extensively discussed in
several papers [98–101].

The NPP models used for the description of neuronal compartments, presented in
Section 3 of this review [5–9,41,42,72,77–79], neglect the effects of ionic channels and the
influence of the number, size, and distance between them. Instead, they treat the membrane
as an inert and uniform boundary of the considered system and describe it using proper
(Dirichlet or Neumann) boundary conditions. Although this approach is justified, allowing
much higher computational efficiency, the modeling of individual channels is also of an
interest for many researchers.

The NPP found a very wide application in channology [102], i.e., a branch of bio-
physiology devoted to ion channels. The NPP equations predict quite accurately the
current-voltage response of narrow channels over a wide range of salt concentrations in
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the surrounding solution [103]. The NPP has been applied to explain how the current
rectification can be produced by the charges at the channel openings [104,105] and to
demonstrate how a channel with ion-specific binding sites can exhibit a lower conductance
in a mixture of two types of ions than in the pure solutions of either type [106].

The access resistance (important component of the conductance of ion channel, par-
ticularly in wide and short channels) calculated using NPP at the entrance of a circular
uncharged pore in neutral membrane [107] is in good agreement with the results of classical
Hall’s expression [108], derived from electrostatics. The NPP can be applied also in the
situations when Hall’s expression overestimates the access resistance, i.e., for channels
embedded in charged membranes [107].

The NPP implementation developed by Nonner and Eisenberg [109,110] has been
used in a series of more than 40 papers (see review [111]) to describe the properties of three
distinct ion channels: the Cav channels that control the heartbeat, the Nav channels that
produce signaling in nervous systems, and the RyR channels that control calcium signaling
in nearly all cells, including cardiac and skeletal muscles [112].

Ion channels have been described by a variety of one-dimensional [56,106,113], two-
dimensional [114,115], and three-dimensional [58,114,116–118] NPP models. The detailed
comparison between these models and the experimental responses of simple ionic channels
(i.e., gramicidin A channel) shows when the geometrical simplifications are justified. The
2D circularly-symmetric model is especially helpful, because it enables parameter extraction
from the experimental data with much more realism than the 1D model and much less
computational effort than the 3D model [114].

The NPP can serve as a computationally efficient alternative to other methods avail-
able for the description of the individual ionic channels, namely, molecular dynamics
(MD) [119–122] and Brownian dynamics (BD) [123,124]. NPP can be also combined with
classical mean density functional theory and Monte Carlo simulations. Such models, sum-
marized in very recent review [125], fill the gap between the really detailed all-atom models
studied by MD simulations popular in ion channel studies and mean-field continuum
models (such as classical NPP) popular in nanopore studies.

The NPP is probably the simplest form of non-equilibrium theory that takes into
account the shape of the channel, the magnitude and the location of charge residues in
the channel protein, and different ionic concentrations at two sides of the channels [97].
It is worth mentioning that NPP is considered one of the most idealized models for the
description of liquid junction potentials [47] (compared with Henderson equation and
Planck formula) and ion channels [125] (compared with more general MD and BD), while at
the same time, it is considered a most general model for the description of ion sensors [14]
(compared with phase boundary models and diffusion layer models used in potentiometry
or with equivalent circuits used in impedance spectroscopy).

The methods for modelling and simulation of ion channels and their application for a
variety of channel types have been described in detail in several extensive
reviews [97,113,126–129]. The elucidation of how ion channels work might ultimately
help us find the causes of a number of neurological and muscular disorders and potential
cures for them [97].

6. Potential Distortions Invisible to Patch-Clamp

The sub-membrane voltage generated through local charge accumulation essentially
controls the voltage-dependent activity of membrane proteins [1]. The inhomogeneity in
electric fields in the protein and at the lipid-protein interface can result in distortions near
their voltage sensor.

The molecular voltage sensor is driven by the electric fields in nanoscopic proximity
to the membrane [130,131], i.e., sub-membrane potential V*m. However, in patch-clamp
practice, the measured value is the voltage difference between the cell cytoplasm and the
bulk of extracellular medium Vm. Sub-membrane electric fields quickly dissipate away
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from the membrane, therefore, the values of the pipette-measured Vm and the V*m sensed
by the receptors and channels may differ [1].

The potential profiles through the ion-selective lipid bilayer calculated using NPP
equations (see Figure 2) show that the potential changes extend outside the membrane
and consequently cause the potential distortions in neighboring solutions. In the literature,
it is either assumed that the electric potential drops pretty much linearly across the lipid
bilayer [132] or that a maximum in potential profile occurs inside the membrane [1]. Both
of these assumptions are here validated using NPP.

Electrochem 2021, 2, FOR PEER REVIEW 9 
 

from the membrane, therefore, the values of the pipette-measured Vm and the V*m sensed 
by the receptors and channels may differ [1]. 

The potential profiles through the ion-selective lipid bilayer calculated using NPP 
equations (see Figure 2) show that the potential changes extend outside the membrane 
and consequently cause the potential distortions in neighboring solutions. In the litera-
ture, it is either assumed that the electric potential drops pretty much linearly across the 
lipid bilayer [132] or that a maximum in potential profile occurs inside the membrane [1]. 
Both of these assumptions are here validated using NPP. 

  
Figure 2. Distortions in transmembrane potential invisible to patch-clamp measurements. Thick black line represents the 
voltage profile across the system of a cation-selective membrane between two solutions calculated using NPP model. Vm 
is the transmembrane voltage measured in patch-clamp technique, away from the membrane. V*m is the transmembrane 
voltage sensed by the channel voltage sensor. Vertical dotted lines represent the approximate sub-membrane locality that 
primarily affects the channel voltage sensor (assumed at 1 nm distance from the membrane). (a) Concentration of nega-
tive charge in the membrane equals 10 nM, (b) concentration of negative charge in the membrane equals 0. 

Presented NPP results show the dependence of the potential profile on the concen-
tration of the negative charges (anionic sites) inside the lipid bilayer. Near-linear poten-
tial drop is observed when the concentration of negative charge in the cation-selective 
membrane is close in value to the concentration of this cation in the neighboring solutions 
(see Figure 2a). When the concentration of negative charges is significantly lower, the 
maximum of the potential occurs (see Figure 2b). 

Applying NPP in real geometric structures of biological membranes can quantita-
tively show the difference between the sub-membrane potential V*m and the patch-clamp 
readout Vm. 

7. Mitochondrial Calcium Transport 
Although the brain represents only about 2% of the body weight in an average adult 

human, it accounts for about 20% of the oxygen and, hence, the energy consumed by the 
body [133]. The energy (in the form of ATP) is produced in mitochondria through the 
citric acid cycle and reducing the oxygen by oxidative phosphorylation [96]. This process 
is accompanied by the influx of calcium ions into the mitochondrial matrix and the pre-
cipitation of osmotically inactive amorphous carbonated apatite [134]. Mitochondria can 
accumulate, store, and release a large amount of calcium ions under a variety of physio-
logical and pathological conditions, such as epilepsy [135], ischemia [136,137], and con-
cussive brain injury [138]. Mitochondrial Ca2+ uptake influences not only energy metab-
olism [139,140] but also the neural signaling [141,142]. 

The NPP model has been used to simulate the electrodiffusion of calcium ions 
through the mitochondrial membrane [143]. In this approach, the mitochondrial mem-

Figure 2. Distortions in transmembrane potential invisible to patch-clamp measurements. Thick black line represents the
voltage profile across the system of a cation-selective membrane between two solutions calculated using NPP model. Vm is
the transmembrane voltage measured in patch-clamp technique, away from the membrane. V*m is the transmembrane
voltage sensed by the channel voltage sensor. Vertical dotted lines represent the approximate sub-membrane locality that
primarily affects the channel voltage sensor (assumed at 1 nm distance from the membrane). (a) Concentration of negative
charge in the membrane equals 10 nM, (b) concentration of negative charge in the membrane equals 0.

Presented NPP results show the dependence of the potential profile on the concentra-
tion of the negative charges (anionic sites) inside the lipid bilayer. Near-linear potential
drop is observed when the concentration of negative charge in the cation-selective mem-
brane is close in value to the concentration of this cation in the neighboring solutions (see
Figure 2a). When the concentration of negative charges is significantly lower, the maximum
of the potential occurs (see Figure 2b).

Applying NPP in real geometric structures of biological membranes can quantitatively
show the difference between the sub-membrane potential V*m and the patch-clamp readout
Vm.

7. Mitochondrial Calcium Transport

Although the brain represents only about 2% of the body weight in an average adult
human, it accounts for about 20% of the oxygen and, hence, the energy consumed by
the body [133]. The energy (in the form of ATP) is produced in mitochondria through
the citric acid cycle and reducing the oxygen by oxidative phosphorylation [96]. This
process is accompanied by the influx of calcium ions into the mitochondrial matrix and the
precipitation of osmotically inactive amorphous carbonated apatite [134]. Mitochondria
can accumulate, store, and release a large amount of calcium ions under a variety of
physiological and pathological conditions, such as epilepsy [135], ischemia [136,137], and
concussive brain injury [138]. Mitochondrial Ca2+ uptake influences not only energy
metabolism [139,140] but also the neural signaling [141,142].

The NPP model has been used to simulate the electrodiffusion of calcium ions through
the mitochondrial membrane [143]. In this approach, the mitochondrial membrane is
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represented by a one-dimensional continuous element where only the maximum in-
ward/outward flux of ions is limited by the channel density. Inside the mitochondrion
matrix, the complexation reaction has been introduced by including the reaction terms
into the mass balance equations. In cytosol and the mitochondrial matrix, pure Fickian
diffusion has been assumed.

The concentration profiles of calcium have been shown in Figure 3. The inclusion of
the reaction, occurring inside the mitochondrial matrix in the transport model, allows us to
explain the difference between the total matrix concentration of calcium (established to be
in the range of 0.5 M to 0.8 M [144–148]) and the free calcium concentration (in the range of
0.17 to 5 µM [149–156]), reported by numerous studies using fluorescent Ca2+ indicators.
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Figure 3. Calcium concentration profiles in the system consisted of cytosol (x < 0), mitochondrial membrane (0 < x < 10 nm),
and mitochondrial matrix (x > 10 nm). Membrane potential is set to ϕ = −180 mV. (a) When the concentration of calcium
in cytosol is set to 200 nm, the resulting flux is negative (JCa2+ = −2.0 × 10−7), and calcium ions leave the mitochondrion.
(b) When the concentration of calcium in the cytosol is set to 2 µM, the resulting flux is positive (JCa2+ = −3.4 × 10−7), and
calcium ions enter the mitochondrion.

The presented model [143] can be used as an efficient alternative for single-channel
modeling. Despite its simplicity, the model has successfully described the existence of
calcium set-point, i.e., the concentration of calcium in cytosis below which calcium stops
entering the mitochondrion. For the membrane potential of −180 mV, the set-point was
established to be in the range 0.9 µM to 1 µM [143]. The lower the value of the membrane
potential, the higher the tendency for calcium to enter the mitochondrion. Furthermore,
the concentration profiles inside cytosol have shown the existence of an unstirred layer
(see Figure 3), which indicates that the calcium ions enter/leave the membrane faster than
it can diffuse from/toward the bulk.

Proper description of calcium electrodiffusion and precipitation of its salts is especially
relevant in neural tissue, where calcium signaling occurs, e.g., the concentration of calcium
ions in the mitochondria of firing axons have been reported to reach 24 µM [157], compar-
ing with typical values of 1–5 µm [134]. Amorphous carbonated apatite, precipitated as an
effect of calcium influx, acts as a pH buffer and, hence, can contribute in maintaining ATP
production in ischemic conditions, which delays irreversible damage to heart and brain
cells after stroke [134,158]. This calcium salt might also have an auxiliary role in mitigating
the effects of oxidative stress [134]. The oxidative stress occurring in neural tissue can lead
to cancer [159], but also Parkinson’s, Alzheimer’s, amyothropic lateral sclerosis, and other
neurodegenerative diseases [160–162]. A better understanding of the calcium electrodiffu-
sion and precipitation of amorphous calcium apatite in mitochondria may, hence, lead to
the development of new stroke-protective drugs or improve the neurodegenerative disease
prevention.
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8. Limitations and Extensions of NPP Model

Although the NPP model have been extensively used for the qualitative and quanti-
tative description of the phenomena discussed in previous chapters, the extent to which
its results are quantitatively accurate is often challenged [113,163–165]. In this section,
some of the shortcomings of the NPP, as well as extensions of the model that address these
shortcomings are discussed.

Continuum models (such as Poisson–Boltzmann and NPP) are computationally in-
expensive compared to more general MD and BD due to the mean-field approximation.
However, some important physical phenomena are neglected by introducing this assump-
tion. The mean-field approximation breaks down in the systems whose dimensions are
smaller than two Debye lengths [163], causing the overestimation of the shielding effect of
counterions, which reduces the potential barrier. That results in considerable differences
between the conductance through idealized pores obtained using continuum models and
using the BD [163,166–168]. The conductance of the ionic channel formed by OmpF porin
is 50% higher in NPP simulations than in equivalent BD simulations and experimental
results [169].

To address this issue, the Nernst–Planck equations (Equation (4)) can be modified by
including a specific dielectric self-energy term in the potential energy of an ion in order
to describe the interaction of each permeant ion with the dielectrically inhomogeneous
environment provided by the water/channel/membrane system. The results of the NPP
model with such modification are in good agreement with the results obtained for the
idealized channel using BD [168] and the dynamic lattice Monte Carlo simulations [170],
as well as the experimental results for the gramicidin channel [171].

Classical NPP model neglects the finite size of the ions and, consequently, the resulting
excess in chemical potential and steric ion–ion interactions. To incorporate these effects, ions
can be represented as charged, hard spheres of different size and valence, immersed in a
hard-sphere solvent [172,173]. One of the core theoretical approaches of statistical physics,
able to treat such systems successfully and accurately, is the density functional theory
(DFT) [174]. The NPP model, using DFT to calculate the excess chemical potential and
electrostatic potential, correctly reproduces the current/voltage curves of cardiac ryanodine
receptor in a variety of chloride salts and their mixtures over large concentrations and
applied voltage ranges [175].

Another method to address the finite-size effects mentioned above is to use the
free energy functional introduced by Borukhov et al. [176]. This entropic term, which
discourages solvent crowding by ions, when incorporated into the NPP model, allows us
to obtain significantly more realistic concentrations for high surface potentials [177]. This
approach was further developed to describe non-identical ion sizes and more than two ion
species [178].

Steric effects, polarization of water, and ion–ion and ion–water correlations can also be
included by treating ions and water molecules as discrete particles with different sizes and
valences, described using Fermi distributions derived from the configuration entropy of
these particles and interstitial voids between them [179]. This approach, known as Poisson–
Fermi theory [180–182], the NPP–Fermi model [183,184] or NPP–Bikerman model [129],
allows for computing the electric and steric energies from all atoms, ions, and molecules
while still treating the solution as a continuous dielectric medium. This method has been
summarized in a very recent in-depth review [129].

The effects of fluid flow, induced by electro-osmotic forces and pressure, are also
very often neglected by the NPP model. In order to include the information about them,
the full form of Nernst–Planck equation (Equation (4)), i.e., without neglecting the con-
vection term, must be used. The drift velocity is calculated using the Navier–Stokes
equations [165,185,186]. It has been reported that the inclusion of the convection term
calculated using the Navier–Stokes equation yields better results than the standard NPP
model theories when applied for the evaluation of the viscous drag force acting on DNA
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inside a silicon nitride nanopore [185] or simulating the probability and distribution of
capture of analytes in α-hemolysin ion channels [186].

The diffusion coefficients of ions (Di) depends on the local concentrations of all the
ions in the electrolyte. Other properties of the solution, including the density, viscosity,
and relative permittivity, may also significantly affect the ion and water flux. These
issues have been addressed by the extended NPP model with non-linear, ion density-
dependent mobilities and diffusion coefficients [187], which allow us to obtain significantly
more realistic results for the conductance of biological and synthetic nanopores than
the classical NPP model. NPP, with space-dependent diffusion coefficients, has been
successfully used to predict the ionic conductance of the α-hemolysin nanopore [188,189],
KcsA potassium channel [190], as well as the properties of the gramicidin A channel
and an L-type calcium channel [184]. Another NPP extension included a concentration-
dependent relative permittivity and an additional ion–water interaction energy term [191].
The NPP equations can be also modified to include the description of some additional
physical effects, such as hydrodynamic interactions [192–195] or the effect of semiconductor
membrane on the ionic current [196–198].

A successful attempt to consolidate some of the corrections presented above has been
made very recently by Willems et. al. [165]. Their model includes the information of the
finite size of the ions using free energy functionals and describes the fluid flow using Navier–
Stokes equation. It also considers the spatial-dependencies of the diffusion coefficients
and solvent viscosity, as well as the concentration-dependence of the diffusion coefficients
and solvent density, viscosity, and relative permeability. This novel approach, applied
for the description of nanopore Cytolysin A, faithfully reproduces the ionic conductance
measured experimentally over a wide range of ionic strengths and bias potentials [165].

The extensions of the NPP model discussed above allow us to include additional phys-
ical effects, while, as a consequence, making the problem computationally more expensive.
On the other hand, the NPP model can be also idealized in order to provide higher com-
putational efficiency. An example of such simplification is the Kirchhoff–Nernst–Planck
model [80,199–201], used to simulate the dynamics of the potential and ion concentrations
in the extracellular space of neural tissue. This approach uses the electroneutrality assump-
tion (discussed in more detail in Section 2). The results obtained using this model show that,
while the neuronal current sources could induce local changes in the extracellular potential
by few mV, the diffusive currents could induce local changes in this potential by a few tens
of mV [80]. However, a detailed analysis using the full form of NPP with Navier–Stokes
equations shows that the contribution of electroosmotic flow is not negligible and should
be considered when describing the biological systems at nanoscale [186].

9. Conclusions

The electric field, and consequently, electrodiffusion, plays a major role in bio-physical
processes. As presented above, the NPP equations can be used for the description of various
systems and processes related to physiology and neuro-physiology. It has been applied
to describe ionic transport in several neuronal nanostructures, allowing, e.g., predictions
about the effect of geometry on the regulation of electrical current in dendritic spines.
The NPP model can be also used to elucidate the difference between free and constrained
liquid junction potential occurring in extracellular space. The NPP approach continues
to play a major role in improving our understanding of the physics of ion channels. The
distortions in electrical potential invisible to patch-clamp measurements, as well as the
mitochondrial calcium transport, have been also successfully described using NPP model.
The inclusion of local electrodiffusion phenomena, analyzed using NPP model, also in
the interpretation of the neuro-physiological data, is expected to become a routine in
computational neuroscience.

The NPP model can be used as a viable alternative to more idealized models used
for the description of neural signaling (such as cable theory) or liquid junction potential
formation (such as Henderson equation), allowing more realistic representation of these
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phenomena. At the same time, it can serve as an alternative to more general and computa-
tionally more expensive models used for the description of ionic channels (such as MD and
BD). Furthermore, the NPP is easily extendable, allowing for the description of a variety of
physical processes occurring in nanoscale while maintaining the computational efficiency.

There are many similarities between neurons and other types of eukaryotic cells.
All cells are surrounded by phospholipid membranes, rich in a variety of ionic channels
and pumps. In the vicinity of some these channels, the potential distortions invisible to
patch-clamp technique may occur, or the liquid junction potential may form. Furthermore,
most of the eukaryotic cells (except, e.g., erythrocytes) contain mitochondria responsible
for energy production. Hence, the NPP description of the electrodiffusion phenomena,
discussed here, might be relevant not only in neuroscience but also in other fields of biology
and physiology.
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136. Erecińska, M.; Silver, I.A. Relationships between ions and energy metabolism: Celebral calcium movements during ischemia and
subsequent recovery. Can. J. Physiol. Pharmacol. 1992, 70, S190–S193. [CrossRef]

137. Zaidan, E.; Sims, N.R. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and
recirculation in the rat. J. Neurochem. 1994, 63, 1812–1819. [CrossRef] [PubMed]

138. Fineman, I.; Hovda, D.A.; Smith, M.; Yoshino, A.; Becker, D.P. Concussive brain injury is associated with a prolonged accumulation
of calcium: A 45Ca autoradiographic study. Brain Res. 1993, 624, 94–102. [CrossRef]

139. Sparagna, G.C.; Gunter, K.K.; Sheu, S.S.; Gunter, T.E. Mitochondrial calcium uptake from physiological-type pulses of calcium. A
description of the rapid uptake mode. J. Biol. Chem. 1995, 270, 27510–27515. [CrossRef] [PubMed]

140. Williams, G.S.; Boyman, L.; Chikando, A.C.; Khairallah, R.J.; Lederer, W.J. Mitochondrial calcium uptake. Proc. Natl. Acad. Sci.
USA 2013, 110, 10479–10486. [CrossRef]

141. McCormack, J.G.; Denton, R.M. The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian
tissues. Biochim. Biophys. Acta 1990, 1018, 287–291. [CrossRef]

142. Kannurpatti, S.S.; Sanganahalli, B.G.; Herman, P.; Hyder, F. Role of mitochondrial calcium uptake homeostasis on resting-state
fMRI brain networks. NMR Biomed. 2015, 28, 1579–1588. [CrossRef]

143. Jasielec, J.J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A. Continuous Modeling of Calcium Transport through
Biological Membranes. J. Mater. Eng. Perform. 2016, 25, 3285–3290. [CrossRef]

144. Lehninger, A.L.; Rossi, C.S.; Greenawalt, J.W. Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat
liver mitochondria. Biochem. Biophys. Res. Commun. 1963, 10, 444–448. [CrossRef]

145. Lehninger, A.L. Mitochondria and calcium ion transport. Biochem. J. 1970, 119, 129–138. [CrossRef]
146. Rossi, C.S.; Lehninger, A.L. Stoichiometric relationships between accumulation of ions by mitochondria and the energy-coupling

sites in the respiratory chain. Biochem. Z. 1963, 338, 698–713.
147. Rossi, C.S.; Lehninger, A.L. Stoichiometry of respiratory stimulation, accumulation of Ca2+ and phosphate and oxidative

phosphorylation in rat liver mitochondria. J. Biol. Chem. 1964, 239, 3971–3980. [CrossRef]

http://doi.org/10.1007/s00249-003-0330-y
http://doi.org/10.1023/A:1026212825047
http://doi.org/10.1529/biophysj.108.136499
http://www.ncbi.nlm.nih.gov/pubmed/18641071
http://doi.org/10.1016/j.bpj.2011.06.010
http://www.ncbi.nlm.nih.gov/pubmed/21843471
http://doi.org/10.1073/pnas.0911691107
http://www.ncbi.nlm.nih.gov/pubmed/20231479
http://doi.org/10.1021/jz401847d
http://doi.org/10.1017/S0033583504003968
http://doi.org/10.1016/j.bbamem.2012.12.018
http://www.ncbi.nlm.nih.gov/pubmed/23313453
http://doi.org/10.3390/e22111259
http://doi.org/10.14708/ma.v42i1.469
http://doi.org/10.1088/0034-4885/64/11/202
http://doi.org/10.1007/s00018-005-5405-8
http://doi.org/10.3390/e22050550
http://doi.org/10.1152/physrev.2000.80.2.555
http://www.ncbi.nlm.nih.gov/pubmed/10747201
http://doi.org/10.1016/j.neuron.2010.08.021
http://doi.org/10.1146/annurev.cellbio.21.020404.145837
http://www.ncbi.nlm.nih.gov/pubmed/16704338
http://doi.org/10.3390/membranes10050081
http://www.ncbi.nlm.nih.gov/pubmed/32349446
http://doi.org/10.1016/0304-3940(82)90421-9
http://doi.org/10.1139/y92-262
http://doi.org/10.1046/j.1471-4159.1994.63051812.x
http://www.ncbi.nlm.nih.gov/pubmed/7931337
http://doi.org/10.1016/0006-8993(93)90064-T
http://doi.org/10.1074/jbc.270.46.27510
http://www.ncbi.nlm.nih.gov/pubmed/7499209
http://doi.org/10.1073/pnas.1300410110
http://doi.org/10.1016/0005-2728(90)90269-A
http://doi.org/10.1002/nbm.3421
http://doi.org/10.1007/s11665-016-2160-y
http://doi.org/10.1016/0006-291X(63)90377-2
http://doi.org/10.1042/bj1190129
http://doi.org/10.1016/S0021-9258(18)91230-5


Electrochem 2021, 2 214

148. Lehninger, A.L.; Carafoli, E.; Rossi, C.S. Energy-linked ion movements in mitochondrial systems. Adv. Enzymol. Relat. Areas Mol.
Biol. 1967, 29, 259–320. [PubMed]

149. Arnaudeau, S.; Kelley, W.L.; Walsh, J.V.; Demaurex, N. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the
depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 2001, 276, 29430–29439. [CrossRef]

150. Brandenburger, Y.; Kennedy, E.D.; Python, C.P.; Rossier, M.F.; Vallotton, M.B.; Wollheim, C.B.; Capponi, A.M. Possible role
for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells.
Endocrinology 1996, 137, 5544–5551. [CrossRef]

151. Schreur, J.H.; Figueredo, V.M.; Miyamae, M.; Shames, D.M.; Baker, A.J.; Camacho, S.A. Cytosolic and mitochondrial [Ca2+] in
whole hearts using indo-1 acetoxymethyl ester: Effects of high extracellular Ca2+. Biophys. J. 1996, 70, 2571–2580. [CrossRef]

152. Miyata, H.; Silverman, H.S.; Sollott, S.J.; Lakatta, E.G.; Stern, M.D.; Hansford, R.G. Measurement of mitochondrial free Ca2+

concentration in living single rat cardiac myocytes. Am. J. Physiol. 1991, 261, H1123–H1134. [CrossRef] [PubMed]
153. Moreno-Sanchez, R.; Hansford, R.G. Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial

free Ca2+ concentration. Biochem. J. 1988, 256, 403–412. [CrossRef]
154. Allen, S.P.; Stone, D.; McCormack, J.G. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to

estimate matrix Ca2+ under various conditions. J. Mol. Cell. Cardiol. 1992, 24, 765–773. [CrossRef]
155. Lukács, G.L.; Kapus, A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2.

Biochem. J. 1987, 248, 609–613. [CrossRef]
156. Davis, M.H.; Altschuld, R.A.; Jung, D.W.; Brierley, G.P. Estimation of intramitochondrial pCa and pH by fura-2 and 2,7

biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochem. Biophys. Res. Commun. 1987, 149, 40–45. [CrossRef]
157. Ivannikov, M.V.; Macleod, G.T. Mitochondrial free Ca2+ levels and their effects on energy metabolism in Drosophila motor nerve

terminals. Biophys. J. 2013, 104, 2353–2361. [CrossRef]
158. Dołowy, K. Calcium phosphate buffer formed in the mitochondrial matrix during preconditioning supports ∆pH formation and

ischemic ATP production and prolongs cell survival—A hypothesis. Mitochondrion 2019, 47, 210–217. [CrossRef]
159. Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [CrossRef]
160. Simonian, N.A.; Coyle, J.T. Oxidative Stress in Neurodegenerative Diseases. Ann. Rev. Pharmacol. Toxicol. 1996, 36, 83–106.

[CrossRef] [PubMed]
161. Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidatives stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

[CrossRef] [PubMed]
162. Rao, A.V.; Balachandran, B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci. 2002, 5,

291–309. [CrossRef]
163. Corry, B.; Kuyucak, S.; Chung, S.H. Invalidity of continuum theories of electrolytes in nanopores. Chem. Phys. Lett. 2000, 320,

35–41. [CrossRef]
164. Collins, K.D. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects

in ion–protein interactions. Biophys. Chem. 2012, 167, 43–59. [CrossRef]
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