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Abstract: Zeolites are porous materials that have cavities interconnected by channels. These crys-
talline materials are composed of Si-O tetrahedral structures, and according to the assembly of such
tetrahedral structures, specific crystalline structures are obtained. Until now, it has been said that
there are more than 245 different zeolitic frameworks, and since each one has a specific distribution
of pores and cavities, each kind of zeolite has a specific area-to-volume ratio. As a result of the type
of zeolite structure, the zeolite can exhibit specific properties, i.e., electrical or optical. Moreover, the
physical properties of zeolites can be modified after the inclusion of another chemical species in their
structure or in their voids, which can result in tuning a zeolite for specific applications. In this work,
synthetic zeolites of types LTA, FAU and MFI are characterized by a number of methods. In particular,
the data from UV-Vis spectroscopy are analyzed, and the effect of crystalline structure on properties
such as optical bandgap, refractive index, absorption coefficient, incident photon frequency, and
extinction coefficient is studied.

Keywords: zeolites; relative permittivity; impedance spectroscopy

1. Introduction

Optical properties of materials allow one to understand where they can be applied
and, at the same time, how these materials can be tuned, with the objective of matching
specific requirements. In particular, the optical properties of a material define how the
material interacts with light. Different types of analysis based on light can be used for
studying the properties of a material, for example, IR and UV-Vis spectroscopies. In
modern materials science, the use of UV-Vis spectroscopy allows one to obtain information
regarding the chemical composition of an analyte. Among the uses of this technique is the
determination of the band-gap of a sample, absorption coefficient, optical conductivity, and
dielectric constant.

The use of UV-Vis spectroscopy allows one to study the presence of chemical species
in zeolites. In particular, after preparing mononuclear titanium oxide species in faujasites
with a variation of Si/Al ration, the use of UV-Vis diffuse reflectance spectra, Raman spec-
troscopy, and XRD showed the presence of three different species of titanium oxide [1].
Hamidouche et al. [2] synthesized a composite material based on zeolite HY/polypyrrole;
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in particular, the zeolite HY is obtained after a process of ammonium ion exchange in
NaY zeolite [3]. The material was studied using UV-Vis spectroscopy, and it was de-
termined that the band-gap energy of the composite was lower than the values of its
precursor components.

Although UV-Vis spectroscopy is an experimental technique that requires the physical
analysis of the sample, in the last years and with the advance of computational technology,
theoretical advancements have made the study of theoretically generated UV-Vis spectra
available. For instance, Fois et al. [4] studied the red shift that is attributed to the ligand-
to-metal-charge-transfer electronic transitions detected by UV-Vis studies, after the use of
density functional theory (DFT), where the periodicity of crystalline phase is considered.

While there are reports of studies related either to optical or to electrical properties
of zeolites, a clear link between the phenomena associated during the analysis is not pre-
sented. In particular, relative permittivity is frequency dependent and at low frequencies,
it is obtained from electrical measurements, while optical measurements yield relative
permittivity at high frequencies. For this reason, calculating the relative permittivity in a
wide frequency range allows one to understand the physical properties of a material under
analysis. Hence, it is known that the permittivity of a material is related to the dielectric
absorptivity, and it is a complex parameter. In the case of the real part of permittivity, it de-
scribes the field-induced charge separation, while the imaginary part defines the absorbed
energy that is converted into heat [5]. There are diverse applications where the relative
permittivity of a material is of interest. For example, the absorption of electromagnetic
energy can be adjusted through the permittivity and permeability of a material [6]. The
relative permittivity of zeolites allows one to use them as sensors. This is possible because
if the zeolite is used as a “dielectric”, there is a change of its relative permittivity when
there is the presence of gases [7,8]. It is also known that the conductivity and dielectric
permittivity are used in the study of catalytic activity [9].

Even though the importance of studying optical and electrical properties of materials
is undeniable, the literature is scarce when dealing with frequency analysis in the electrical
and optical spectrum. One example of this kind of study is reported by Saad et al. [10]. In
the case of zeolites, to our knowledge, there is no similar study regarding zeolites.

In this work, the optical and electrical properties of synthetic zeolites with codes—
provided by the International Zeolite Association (IZA) [11]—LTA, FAU and MFI are
studied. This is after the study of optical data generated from UV-Vis spectroscopy and the
frequency response analysis using electrochemical impedance spectroscopy. Finally, the
results of data analysis are compared, and the relationship between electrical and optical
processes is presented.

2. Materials and Methods
Preparation of Samples

Like the method described in [12], for the synthesis of zeolite X in accordance with
the IZA recipe [5], the synthesis is carried out by mixing two preprepared solutions. To
make the first solution, 50 g of deionized water (conductivity ≤4.3 µS/cm) and 50 g of
sodium hydroxide (Sigma Aldrich, reagent grade ≥98%) were mixed and dissolved using a
magnetic stirrer. During agitation, the temperature of the mixture was set to 303 K with the
aim of promoting the integration of NaOH in the water. Then, 48.75 g of alumina trihydrate
(Sigma Aldrich, reagent grade, 50.0–57.5% Al) was added, the mixture was stirred again at
100 ◦C until completely dissolved, and cooled to 25 ◦C. Next, it was mixed with 101.25 g
of water. Then, 50 g of this solution was mixed with 306 g of water and 26.56 g of sodium
hydroxide and homogenized with a magnetic stirrer. Thus, stock precursor solution Ax
was obtained.

Stock precursor solution Bx was prepared by mixing 109.85 g of sodium silicate
solution (Sigma Aldrich, reagent grade, 12.0–13.0% Si basis, 13.4–14.4% NaOH), 306 g of
water, and 29.56 g of sodium hydroxide until the mixture was completely dissolved. The
mixture was then divided into two equal volumes, one corresponding to solution Bx for
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synthesis according to the IZA method. Then, equal volumes of solutions, Ax and Bx, were
mixed at room temperature and magnetically stirred until homogenized. The mixture was
transferred to 500 mL polypropylene bottles and placed inside an oven at 90◦ C for 12 h.
Thereafter, the solids were filtered and washed at the filter with 2 L of deionized water.
Finally, the resulting crystals were dried in an oven at 100 ◦C for 24 h.

In the case of zeolite A, the method described in [12] was followed. According to
the IZA recipe [11], deionized water, sodium hydroxide, sodium aluminate, and sodium
metasilicate were used as starting materials; 80 mL of water and 0.723 g of sodium hydrox-
ide were mixed until NaOH was completely dissolved. The mixture was divided into two
equal volumes, which were stored in polypropylene bottles and labeled as “mixture Aa”.
Half of mixture Aa was then mixed with 8.259 g of sodium aluminate; the mixture was
stirred in the capped bottle until homogeneity was reached and labeled as “mixture Ba”.
The other half of mixture Aa was mixed with 15.48 g of sodium metasilicate; the mixture
was stirred until it reached homogeneity and labeled as “mixture Ca”. The two mixtures,
Ba and Ca, were combined, and a thick gel formed. This gel was stirred until a complete
homogenization was observed and stored in a polypropylene bottle. For the crystallization
process, the homogenized gel was placed inside an oven for 4 h at 372 K, after which the
product was withdrawn from the oven and cooled until room temperature was achieved.
Then, the contents of the vessel were mixed with 1 L of water, and this mixture was stirred
for 30 min and then filtered; the resulting powder was recovered after drying the filter in
an oven for 3 h at 372 K, and each powder was dried for 3 h at the same temperature.

The zeolite MFI with a nominal SiO2/Al2O3 mole ratio of 50 in ammonium cation form
(product CBV 5524G) was purchased from Zeolyst International (Kansas City, MO, USA).

3. Scanning Electron Microscopy and X-ray Diffraction Analysis

The micrographs of each zeolite were obtained after the use of scanning electron
microscopy (SEM) on a JEOL JIB-4500 (Peabody, MA, USA) microscope equipped with an
EDS detector. Characteristic micrographs are presented in Figure 1. As is observed, the
zeolites MFI and FAU show quite small particles in comparison to LTA crystals. However,
energy dispersive spectrometry (EDS) allows for study of chemical elements present in
each sample; in Figure 2, the normalized data of EDS spectra are presented.
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Figure 1. Micrographs of zeolites: MFI (a), LTA (b), and FAU (c). Figure 1. Micrographs of zeolites: MFI (a), LTA (b), and FAU (c).
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Figure 2. Normalized EDS spectra of all samples.

From Figure 2, it can be noted that all the samples have the characteristic elements
expected on these zeolites, namely, oxygen, sodium, aluminum, and silicon. Moreover, the
relative amount of each element can be correlated. As expected for zeolite, LTA and FAU,
with a theoretical Si/Al ratio of 1 and 1.2, respectively [11], both of them exhibit a similar
amount of Si and Al atoms. In the case of zeolite MFI, the theoretical Si/Al ratio is 13.28,
which is similar to that presented in experimental data.

In order to study the crystalline characteristics of samples, all powders were studied
using X-ray diffraction (XRD) by using Aeris Panalytical (Malvern, UK) equipment with
Cu K alpha monochromatic radiation (l = 0.154056 nm, 40 kV, 15 mA). The results are
presented in Figure 3. Theoretical diffractograms were retrieved from IZA (International
Zeolite Association) [11], and they are identified with -r (FAU-r, LTA-r, MFI-r) as reference.
For comparison purposes, the intensity of all diffractograms was normalized. When the
experimental and theoretical data are compared, it can be noted in each case how the
position of theoretical peaks coincides with those of peaks from experimental data.

In particular, for FAU-r and FAU, the relative intensity shows variations, and also,
there is a displacement in 2θ, which indicates a variation in the call parameter. In the
case of LTA-r and LTA, there are no observable variations in the angular position of peaks.
Finally, for zeolite MFI, when comparing theoretical (MFI-r) and experimental (MFI) data,
the peaks are located at almost the sample angles, but also, in the case of experimental data,
the narrowest peaks are masked. From the SEM, EDS and XRD data, it is confirmed that
the characteristics of the materials correspond to the target zeolites. Furthermore, from the
Scherrer Equation, the average crystallite sizes are calculated as 19, 58 and 8 nm for MFI,
LTA and FAU zeolites, respectively. Based on the micrographs in Figure 1, the particle size
of MFI and FAU zeolites is smaller than LTA crystals. This is confirmed by the average
particle size calculated from XRD, and it was found that the average particle size of FAU is
smaller than MFI zeolites.
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Figure 3. Comparison of theoretical and experimental diffractograms of MFI, LTA and FAU zeolites.

4. UV-Vis Analysis

UV-Vis spectroscopy data were obtained through the use of a UV-Vis NIR Cary 5000
(Santa Clarita, CA, USA) spectrophotometer. From the UV-Vis data, plenty of information
can be obtained. In this regard, relative permittivity real part εr is given by

εr = n2 − k2, (1)

and the imaginary part εi can be calculated from

εi = 2nk, (2)

where n and k are the refractive index and extinction coefficient, respectively.
Considering the percent transmittance Ts and the absorbance A in arbitrary units (a.u.),

Ts = 100·10−A. (3)

Then

n =
1
Ts

+

√
1

Ts − 1
, (4)

and from the wavelength λ and absorption coefficient α can be calculated from the thickness
of the film in cm as α = 2.303A·l−1. As a result, the extinction coefficient k is given by

k =
αλ

4π
. (5)

Given the speed of light as c = 299, 792, 458 m/s, the optical conductivity is given by

σopt =
αnc
4·π . (6)

In addition to these parameters, the band-gap can be estimated from the UV-Vis data.
In this case, the Tauc model, which is a general formula for absorption in material [13], can
be used

(αhv)1/n = A
(
hv− Eg

)
. (7)
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From direct measurements, the UV-Vis absorption spectra were obtained. As is
presented in Figure 2, zeolites FAU and LTA have a similar Si/Al ratio, which leads to a
similar presence of Al2O3. This can be observed in the evident similarity of their UV-Vis
absorption spectra (Figure 4a). In the case of MFI zeolite, there is a greater Si/Al ratio
than in FAU and LTA zeolites [14,15], which is observed in Figure 1 and in the absorbance
(Figure 4a). In addition, the data of Figure 4a can be evaluated through CIE lab space [16].

Color spaces are widely recognized as a means of describing colors, including ab-
sorbance, through descriptors such as numerical values. In this context, the CIE Lab color
space is particularly employed due to its ability to establish a correlation between numeric
values and human visual perception. In this sense, L, A and B refer to luminosity, red/green
coordinates, and yellow/blue coordinates, respectively.
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As shown in Figure 4b, according to the absorption presented by each zeolite, a color
is assigned in the CIE lab space. As a result, we can compare the colors associated with
each zeolite. As can be observed, the greatest variation exists when the color of LTA is
compared with FAU, and also FAU and MFI are closer among them.

As stated before, from the UV-Vis absorption spectra, a plethora of parameters can
be obtained. In the case of the band-gap, after the use of Equation (7) and considering
n = 2 for direct allowed transitions (direct band-gap), the Tauc plot for each zeolite was
obtained (Figure 5). As is observed, zeolites FAU and LTA have a close band gap among
them, but the MFI zeolite exhibits the widest forbidden band energy. This can be attributed
to the chemical composition of zeolites. This includes the location of Al, Na atoms in the
zeolitic matrix [17–19], as well as the inclusion of novel chemical species into the crystalline
array [14,20].

In addition, after the use of Equations (1) and (2), the optical relative permittivity
can be calculated. These results are presented in Figure 6a–c. As discussed by Sebastian
et al. [21], the relative permittivity of a material shows its energy storing capacity when a
potential is applied across it. It is related to the macroscopic properties, such as polarization
or capacitance.
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In this sense, each material presented in Figure 6 exhibits a particular behavior of
its complex relative permittivity, which is defined by the nature of the sample and also
by the frequency range where the analysis has been carried out. At has been discussed
elsewhere [22], the UV-Vis range shows us the electronic processes that are taking place
in the sample under study. Hence, the behavior of real and imaginary parts of relative
permittivity follows the expected behavior, which is that, after an increase in frequency,
there is an increment of the real part, and there is a decrement of the imaginary part.

In the case of the optical conductivity, it can be calculated after Equation (6). This
leads to a plot (Figure 7) similar to Figure 4a, but in this case, we have the magnitude
corresponding to the conductivity in S/m. Since the optical conductivity shows the rela-
tionship between the magnitude of the induced electric field for arbitrary frequencies and
the induced current density in the material, it is clear from Figure 4 that the MFI zeolite



Optics 2023, 4 466

has the greatest optical conductivity at the highest frequencies or wavelengths. In contrast,
between 200 and 300 nm, the LTA zeolite is the best conductor.

Since the data from UV-Vis allows us to calculate the real and imaginary parts of
relative permittivity, we can say that this process works as a “sort” of optical impedance,
where the dissipation factor can be calculated as a function of frequency. Therefore, the
relative optical permittivity demonstrated in Figure 6a–c can be effectively utilized with
data obtained from electrochemical impedance spectroscopy. This combined approach
enables a deeper comprehension of the dielectric processes occurring within zeolites.
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for each zeolite: LTA (a), FAU (b), MFI (c); electrical complex relative permittivity, real (gray) and
imaginary (red) parts, calculated for each zeolite: LTA (d), FAU (e), MFI (f).
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5. Electrochemical Impedance Spectroscopy

For this study, the methodology described was used. Each sample was ground and
compressed into a pellet with a diameter of 1 cm and a thickness of 1 mm; the pellet was
then placed between two polished copper electrodes, which were connected to an E4980A
Precision LCR Meter. As a result, for each sample, a data set was obtained corresponding
to the magnitude of the total impedance |ZT | in ohms, phase angle θ in arc degrees, and
frequency of interrogation signal in hertz.

As is well known, the complex impedance is given in terms of the real Z′ and imaginary
part Z′′ of ZT ,

ZT = Z′ + jZ′′ , (8)

and the phase angle is given by

θ = arctan
(

Z′′

Z′

)
. (9)

The electrical conductivity σT of the sample is given in terms of AC conductivity σac
and DC conductivity σdc,

σT = σac + σdc. (10)

From the data obtained during the frequency interrogation process and using
Equations (8) and (9), the real and imaginary parts of impedance were calculated. The
results are presented in Figure 1. As can be noted, all zeolites have a Nyquist plot that
shows an “arc”-like behavior. This can be attributed to electric interactions inside the
zeolitic matrix and how the ionic conductivity is taking place. A greater magnitude of Z′′ is
caused by an increase in the energy storage processes of the material, which is caused by the
morphology of the crystals. In this sense, it is clear that all zeolites exhibit variations in the
electrical processes that are taking place. Although there is no linear relationship between
Z′ and Z′′, there are zones where such behavior could be apparent, for example, the inset in
Figure 8. In the case of Z′ being equal to Z′′, this indicates that a purely reactive impedance
exists. This means that the reactive and resistive components of impedance have the same
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component, but they are out of phase by 90◦. As a consequence, the impedance has, in
its parts, equal amounts of resistance and reactance, and impedance is frequency depen-
dent, which occurs at specific frequency values. Therefore, if |Z′| =|Z′′|, this suggests that
the electrical model is neither purely resistive nor purely reactive but lies somewhere in
between. This depends on the values and types of electrical elements in the electrical model.
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After examining the data in Figure 8, two electrical models can be used to describe the
observed behavior. FAU and MFI zeolites exhibit an electrical response corresponding to
a circuit of the form Rs +

(
Rp
∣∣∣∣CPE

)
, and in the case of LTA, there is a circuit of the form

(R1||CPE1) + (R2||CPE2) . These circuits are presented in Figure 9. After using ZView
software, the parameters of the elements in the proposed circuits are fitted. These values
are presented in Tables 1 and 2.
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Table 1. Fitted parameters for FAU and MFI zeolites.

Zeolite Rs(Ω) Rp(Ω) CPET(F) CPEP

FAU 1462 1.41× 107 5.87× 10−11 0.95398
MFI 4021 153670 4.267× 10−11 0.90562

Table 2. Fitted parameters for LTA zeolite.

R1 (Ω) CPE1T CPE1P R2 (Ω) CPE2T (F) CPE2P

57,776 1.023 × 10−10 0.90556 3.7769 × 106 5.68 × 10−10 0.81504

As described elsewhere [23,24], the grain boundary and the particle size define how
the conductivity takes place in ionic conductors. In this sense, the synergic effects of these
characteristics define the system dynamics and, as a consequence, the electrical model that
describes such a system. As is shown by the XRD data, the average particle size of MFI is
almost twice that FAU. This allows us to understand why the Rs value of MFI is almost
twice that presented by FAU zeolite, and this parameter can be proposed as the electrical
effects between grains. At the same time, since they have a different morphology and
chemical composition, the CPE and Rp parameters follow a non-linear variation. Since the
CPEp parameter approaches 1, we conclude that reactance takes place due to capacitive
effects [25], and while the capacitance CPET of MFI and CPE is almost the same, the Rp
value in FAU is almost two orders of magnitude above MFI. In the case of LTA zeolite, there
are two branches that contribute to the observed impedance, each one with reactive effects.
Like in the data of Table 1, CPE1T and CPE2T approaches 1, which shows that reactive
effects are due to a capacitive behavior. In addition, branch 1 models the interparticle
effects, while branch 2 models the effects that take place inside the particles.

The total conductivity for all samples is presented in Figure 10. Three characteristic
zones are found. The first one corresponds to DC conductivity, the second one is the transi-
tion from DC to AC conductivity, and finally the third zone corresponds to AC conductivity.

As observed, the conductivity is almost constant at low frequencies, which coincides
with the Nyquist plot. In the case of high frequencies, the conductivity has a greater slope
than the DC conductivity. The transition zone defines what kind of conductivity is taking
place, and as has been shown elsewhere, after the use of Jonscher power law, it is found
that we are dealing with ionic conductors. This is characteristic of these materials examined
within the frequency range presented in Figure 10.

From electrical impedance data, the electrical complex relative permittivity can be
obtained [26]. With the aim of comparing the electrical data with the optical data, the
relative electrical permittivity is presented in Figure 6d–f. As is observed, for each case,
both real and imaginary parts have almost constant values. This is expected for ionic
conductors that are interrogated with frequencies below microwaves. In general terms, the
electric permittivity decreases as the frequency increases; this fact can be appreciated if the
optical relative permittivity is observed after the electrical relative permittivity.



Optics 2023, 4 470Optics 2023, 4 470 
 

 

Figure 10. Electrical conductivity of zeolites LTA, FAU and MFI. 

As observed, the conductivity is almost constant at low frequencies, which coincides 

with the Nyquist plot. In the case of high frequencies, the conductivity has a greater slope 

than the DC conductivity. The transition zone defines what kind of conductivity is taking 

place, and as has been shown elsewhere, after the use of Jonscher power law, it is found 

that we are dealing with ionic conductors. This is characteristic of these materials exam-

ined within the frequency range presented in Figure 10. 

From electrical impedance data, the electrical complex relative permittivity can be 

obtained [26]. With the aim of comparing the electrical data with the optical data, the rel-

ative electrical permittivity is presented in Figure 6d–f. As is observed, for each case, both 

real and imaginary parts have almost constant values. This is expected for ionic conduc-

tors that are interrogated with frequencies below microwaves. In general terms, the elec-

tric permittivity decreases as the frequency increases; this fact can be appreciated if the 

optical relative permittivity is observed after the electrical relative permittivity. 

6. Conclusions 

In this work, the optical and electrical properties of LTA, FAU, and MFI zeolites were 

investigated. Consequently, a comprehensive analytical framework has been developed 

and presented to facilitate the study of these properties in a thorough manner. It was 

found that the data obtained from optical measurements allows us to understand the basic 

properties of the materials, in particular, bandgap, optical conductivity, and relative per-

mittivity. In the case of the electrical analysis, the results show how the morphology and 

chemical composition of the material defines the frequency response and the parameters 

obtained from it, such as electrical conductivity and relative permittivity. The most signif-

icant contribution of this research lies in the presentation of the relationship between rel-

ative permittivity derived from electrical and optical sources. This correlation has been 

validated by comparing it with reports on other materials, further solidifying its im-

portance and relevance. As a result, the methodology presented in this work can be ex-

tended to any zeolitic material. 

Author Contributions: Conceptualization, F.N.M.-R., V.P. and J.A.-G.; methodology, F.N.M.-R.; val-

idation, V.P. and R.I.Y.-G.; formal analysis, F.N.M.-R., V.P. and J.A.-G.; investigation, F.N.M.-R., 

V.P., J.A.-G., R.I.Y.-G., A.R.S., M.X., O.S., W.F.-F. and J.C.R.-Q.; writing—original draft preparation, 

F.N.M.-R., V.P., J.A.-G., R.I.Y.-G., A.R.S., M.X., O.S., W.F.-F. and J.C.R.-Q.; writing—review and 

Figure 10. Electrical conductivity of zeolites LTA, FAU and MFI.

6. Conclusions

In this work, the optical and electrical properties of LTA, FAU, and MFI zeolites were
investigated. Consequently, a comprehensive analytical framework has been developed and
presented to facilitate the study of these properties in a thorough manner. It was found that
the data obtained from optical measurements allows us to understand the basic properties
of the materials, in particular, bandgap, optical conductivity, and relative permittivity. In
the case of the electrical analysis, the results show how the morphology and chemical
composition of the material defines the frequency response and the parameters obtained
from it, such as electrical conductivity and relative permittivity. The most significant
contribution of this research lies in the presentation of the relationship between relative
permittivity derived from electrical and optical sources. This correlation has been validated
by comparing it with reports on other materials, further solidifying its importance and
relevance. As a result, the methodology presented in this work can be extended to any
zeolitic material.
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