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Abstract: Dy3+-doped, Ag and Dy3+-co-doped, and Tm3+ and Dy3+-co-doped oxyfluoride glasses
have been prepared by a conventional melt-quenching method. White and yellowish light emissions
were generated in the glasses under excitation in the range from 350 to 390 nm. Changes in the
excitation wavelength in the ultraviolet (UV) range do not significantly alter the emission tint of the
Dy and Ag and Dy-co-doped glasses. On the contrary, the tint of the Tm and Dy co-doped glasses
considerably varies under excitation in the same range.
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1. Introduction

Lanthanide-doped compounds have been proposed for use in a number of such op-
tical applications as optical thermometry [1], lasers [2], white light sources [3,4], nanoscin-
tillators [5], bioimaging [6], and optical encoding [7]. Such a wide range of applications
arose due to the versatile nature of the f-f optical transitions occurring in the lanthanide
ions resulting in effective luminescence bands covering the whole visible range. Dy ions are
especially promising for white light generation as they exhibit adjustable blue, yellow and
red photoluminescence bands leading to a variable emission tint. Moreover, it is sufficient
to dope a host solely with Dy3+ ions to generate white light effectively. So far, glassy,
ceramic and glass-ceramic hosts suitable for doping with Dy have been proposed [4,8–12].

White light sources are essential in daily life due to their vast use for outdoor light-
ing [13–15]. White Light Emitting Diodes (WLED) were reported as the most promising
technology for white light generation and replacement for incandescent and fluorescent
lamps due to their remarkably high efficacy. The majority of commercial WLED is based on
a phosphor-converted approach combining blue or near-UV LED excitation with conven-
tional phosphor yellow or white light emission, respectively. Near-UV sources exhibit high
electrical-to-optical-power conversion, independence of WLED emission spectrum on spec-
tral shifts of excitation LED, a high color rendering index and a warm color temperature
compared to the sources with blue excitation. In particular, the 365 nm excitation LEDs are
the most appropriate due to their commercial availability.

An oxyfluoride glass host occupies a prominent position because of the low phonon
energy environment for lanthanide ions and high transparency in near-UV-Vis ranges [3].
For the glasses proposed in this work, the highest phonon energy, attributed to SiO4
tetrahedra, is at about 800 cm−1. This value allows for low non-radiative decay rates and
enhances the quantum yield of white luminescence. Likewise, the oxyfluoride glasses
exhibit high transparency in the near-UV range, resulting in minimal energy losses under
excitation at commercial 365 nm.

In articles [16,17], simple glass hosts with compositions of SiO2-PbF2 or SiO2-PbF2-
AlO1.5 have been proposed. These simple glass hosts demonstrate high glass stability
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and the capability to dissolve lanthanide ions in low concentrations. At the same time,
the glasses can be melted at as low temperatures as 1000 ◦C for 5 min, which makes
them promising for large-scale production due to low energy consumption. Moreover, the
luminescence spectra of Dy-doped oxyfluoride glasses can be significantly modified with
the addition of silver nanoparticles [9,18] or other lanthanides [19].

Regarding glass preparation techniques, melt-quenching, and physical vapor deposi-
tion techniques employ the fast cooling of hot liquids and vapors, respectively, resulting in
some stable solid amorphous materials at room temperature. The melt-quenching method
is widely used in labs because of its simplicity and suitability for the preparation of inor-
ganic [20–22] or hybrid glasses [23]. The technique is suitable for large-scale production
and even lab-fiber drawings. Physical vapor deposition is a more complex technique requir-
ing the use of vacuum systems and is widely used for preparing organic glass-es [24,25]
on various substrates. A broad range of silica glasses can be prepared via the sol–gel
polymeric route followed with the soaking of xerogels in solution and annealing in a gas
atmosphere [26,27]. Moreover, silica-alkaline glasses can be successfully doped with Ag or
Cu nanoclusters through the ion-exchange method [4,28].

In this work, we report on preparing Dy3+-doped, Ag and Dy3+ co-doped, and Tm3+

and Dy3+ co-doped oxyfluoride glasses with simple tricomponent host composition melted
at 1000 ◦C for 5 min and quenched at room temperature. The prepared glasses emitted
white light under excitation in the wide range from 350 to 390 nm.

2. Materials and Methods

The glasses were prepared by the conventional melt-quenching method described in
detail elsewhere [16,29,30]. Briefly, silica, alumina, silver nitrate, lead, and dysprosium
fluorides puratronic-grade powders (Alfa Aesar, Thermo Fisher GmbH, Tewksbury, MA,
USA) were batched (5 g) and melted in a platinum crucible at 1000 ◦C for 5 min in air.
Afterward, the melts were poured into an aluminum mold or left in the crucible and
cooled down to room temperature. The prepared glasses were quite fragile and cracked
upon cooling down. Nevertheless, the resultant pieces of the glasses were collected and
polished out for some optical measurements. The chemical composition of the host was
53(SiO2):42.8–42.9(PbF2):5(AlO1.5), mole %. The dysprosium and silver were added as
dysprosium (0.1 mole %) or thulium (0.1 mole %) fluoride and silver nitrate (1 weight %).
The higher concentrations of dysprosium fluoride led to some visible precipitates in the
glasses. However, higher silver nitrate concentrations did not result in any precipitate
or visible opalescence. The steady-state photoluminescence and excitation spectra were
recorded with an electron-multiplied charge-coupled device (CCD) camera attached to a
lab spectrometer using a xenon arc lamp as an excitation source, as described elsewhere [3].

3. Results

Figure 1a shows room-temperature photoluminescence emissions and excitation spec-
tra of Dy-doped oxyfluoride glass under excitation at 350 (28,571 cm−1), 365 (27,397 cm−1)
and 390 (25,641 cm−1) nm. The detected photoluminescence spectra did not depend
on an excitation wavelength. The spectra contained three major bands and two minor
bands in the visible and near-infrared ranges, respectively. The maxima of the four main
bands were located at 486 (20,921 cm−1, blue color), 575 (17,391 cm−1, yellow color), and
665 (15,038 cm−1, red color) nm. Two minor bands were out of the scope of the research
as they did not contribute to the visible spectrum. The blue, yellow and red bands were
associated with radiative transitions in Dy3+ ions [9,18]. The excitation spectra contained
four excitation bands covering the range from 300 (33,333 cm−1) to 410 (24,390 cm−1) nm.
The band maxima were located at 325 (30,769 cm−1), 350 (28,571 cm−1), 363 (27,548 cm−1),
387 (25,840 cm−1), and 423 (23,641 cm−1) to excitation transition from 6H15/2 ground state
level to highly excited [9,18].
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Figure 1. Room temperature steady-state photoluminescence and excitation spectrum of
Dy-doped (a), Ag and Dy co-doped (b), and Tm and Dy co-doped (c) oxyfluoride glasses. Chromatic-
ity CIE diagram (d) with emission color of the respective glasses at different excitation wavelengths.

Figure 1b shows the photoluminescence spectra of Ag and Dy3+-co-doped oxyfluoride
glass excited in the range from 300 to 410 nm. The photoluminescence spectrum covers a
broad range from 400 to 900 nm. In the spectrum, we see five prominent bands attributing
to Dy3+ emission. The observed broad band, covering the whole range, corresponds to the
earlier reported photoluminescence spectra of Ag-nanoclusters dispersed in oxyfluoride
glasses [14,16]. The comprehensive research using Optical and Electron Spin Resonance
Spectroscopy, Transmission Electron Microscopy and Time-Dependent Differential Func-
tional Theory calculations showed that the rhombic Ag2+

4 nanoclusters were dispersed
across fluorite lattice in the glass host giving quite similar broad emission in the respective
range [14,16,31,32]. In the chemical composition of the glasses, lead fluoride constitutes
43 mole %. We believe that silver, being a highly mobile ion, homogeneously occupies all
possible sites in the fluorite lattice that do not condense into large metallic droplets. The
excitation spectra of Ag and Dy3+ co-doped oxyfluoride glass are shown in Figure 1b, ex-
hibiting Dy3+ excitation bands detected at 486, 575 and 665, and Ag nanoclusters excitation
bands detected at 530 (18,868 cm−1) and 620 (16,129 cm−1) nm. These detected excitation
spectra conclude that Dy3+ ions and Ag nanoclusters were excited simultaneously and
independently without any energy or electron transfers.

Figure 1c shows the photoluminescence excitation and emission spectra of Tm and
Dy co-doped oxyfluoride glass. The emission spectrum contains three aforementioned
Dy3+ emission bands and one Tm3+ emission band giving additional blue color to the
emission. The Tm3+ emission band corresponds to the radiative transition between 1D2
and 3F4 excited states [3]. The excitation spectra were detected at 450, 486, 575 and 665 nm.
The former corresponds to the excitation of Tm3+ ions from the 3H6 ground state to the 1D2
excited state. The latter three correspond to the aforementioned absorption transitions in
Dy3+ ions.
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The emission color of the prepared glasses is characterized by a CIE chromaticity
diagram, where the (x, y) coordinates for each glass was calculated using the approach
cited in [18]. The chromaticity coordinates and correlated color temperature (CCT) are
summarized in Table 1. The CCT was calculated with the McCamy formula [33]. The CIE
chromaticity diagram of Dy-doped, Ag and Dy co-doped, and Tm and Dy co-doped glasses
are shown in Figure 1d. The black body point at 6667 K is placed at the center of the CIE
diagram in the white light emission gamut. As seen from the figure, the Dy-doped glass
(violet rhomb) and Ag and Dy co-doped glass (orange square) emit white and yellowish
light, respectively, with small tint variation under excitation in the UV range. The emission
color of Tm and Dy co-doped glass (colored triangles) significantly varies with a change
of excitation wavelength covering almost the whole white gamut. The CCT values range
from ~2900 to more than 10,000 K, favoring warm and cold emissions. Of note, there was
no photobleaching of the glasses upon excitation with UV.

Table 1. The chromaticity coordinates and correlated color temperatures for the prepared glasses.

Glass Doped with Excitation Wavelength, nm Chromaticity Coordinate CCT

Dy 350–390 (~0.41, ~0.43) 3676
Ag, Dy 350–390 (~0.47, ~0.46) 2918
Tm, Dy 350 (0.34, 0.38) 5238
Tm, Dy 360 (0.27, 0.25) >10,000
Tm, Dy 365 (0.32, 0.35) 6035
Tm, Dy 390 (0.36, 0.42) 4745

4. Discussion

The energy level diagram of the Agn nanoclusters an Tm3+ and Dy3+ ions with the
respective absorption and emission transitions are shown in Figure 2. The Agn energy level
diagram depicts a series of nanoclusters with overlapping or quite close energies of the
excited states. The ground (GS) and excited (ES1-3) state energies of the Agn nanoclusters
were deduced from the experimental photoluminescence excitation and emission spectra.
Upon excitation with UV, ES2 and ES3 levels get populated with electrons, followed by
non-radiative de-excitation to the ES1 level. The ES1 level (hatched box) represents a
number of the emitting excited states. The obtained excitation spectra were deconvoluted
with a sum of two gaussian functions giving ES2 and ES3 excited levels with energies
~26,278 (381 nm) and ~29,923 (334 nm) cm−1, respectively. This deconvolution indicates
the presence of at least two different Agn nanoclusters in the glass host.
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The energy levels of Dy3+ and Tm3+ ions were taken from a Dieke diagram. Upon
excitation with UV, highly excited levels of the Dy3+ ion (black and violet up-headed
arrows) and the 1D2 levels of Tm3+ ion (violet, up-headed arrow) became populated with
electrons. The radiative transition from the 1D2 to 3F4 levels (blue, down-headed arrow)
occurs, giving a blueish emission. The electrons from highly excited states of Dy3+ ions
non-radiatively de-excited to 4F9/2 followed by radiative transitions to 6H11/2, 6H13/2 and
6H15/2 depicted with red, yellow, and blue down-headed arrows in Figure 2. As can be
seen from the excitation spectra in Figure 1b,c, no energy transfer occurred between the Ag
nanoclusters and Dy3+ ions and between the Dy3+ and Tm3+ ions, as reported in [19,34].
However, the small excitation band in the range from 300 to 340 nm in Figure 1c points out
an energy transfer from the glass host to the Tm3+ ions. This band is not associated with
the Dy3+ ions because of its maximum mismatch with Dy3+ excited levels and similar band
observation in Tm3+-doped oxyfluoride glasses [3].

Tm3+ ions are only effectively excited with wavelengths from 340 to 370 nm due to
the strong optical absorption bringing the electrons from 3H6 ground to 1D2 excited level.
At longer wavelengths, the excitation seems impossible, as we did not observe an efficient
energy transfer from Dy high excited states to the 1D2 state of Tm3+ ion accompanied with
the de-excitation to 1G4 excited state. The population of a 1G4-excited state with subsequent
optical transitions might have brought about a photoluminescence emission band peaking
around 450–475 nm [35–37]. However, the intensity ratios of the 575 and 486 nm peaks
did not differ significantly upon excitation at 360 and 390 nm, corresponding to ~1.76 and
~1.89, respectively. This allows us to conclude that Tm3+ ion emission does not contribute
to the 486 nm peak from the Dy ions due to its efficient multiple phonon non-radiative
transition [38].

In this work, we prepared the glasses emitting white light with fixed and variable
tints under excitation with UV light. Compared to our previous works [3,16,17], the glasses
contained lanthanide ions in much lower concentrations. The quantum yield of the glasses
was about 5% for excitation in the UV-blue ranges, as demonstrated by the measurements
for similar glass compositions. The CCT covered a very wide range from ~3500 up to
>10,000 K providing emissions suitable for various people’s tastes. We did not expect good
values of the color-rendering index (CRI) for solely the lanthanide-doped glasses compared
to the Ag and Dy co-doped glasses, as those spectra did not cover the full visible range.
However, the glasses still contained large amounts of lead, raising some concerns about
their recyclability and environmental friendliness [39].

In the continuation of this work, we might consider the preparation of lead-free glass
ceramics or ceramics containing low amounts of lanthanide ions with improved CRI for
a white light generation [40,41]. Contemporary machine or deep-learning methods can
facilitate our search for optimal chemical compositions [42,43].

5. Conclusions

Dy3+-doped, Ag and Dy3+-co-doped, and Tm3+ and Dy3+ co-doped oxyfluoride
glasses have been prepared by conventional melt-quenching method at 1000 ◦C melted for
5 min in Pt crucible. The chemical composition of the oxyfluoride glass host was SiO2-PbF2-
AlO1.5. The prepared glasses emitted white light under excitation in the range from 300 to
410 nm with fixed and varied tint. The observed photoluminescence was associated with
simultaneous independent excitation of Ag nanoclusters, Tm3+ and Dy3+ ions. A small
band hinting energy transfer from the glass host to Tm3+ ions was observed. The glasses
were found to be promising for outdoor lighting. In particular, the prepared glasses can be
used as white-light-emitting layers combined with UV-emitting LEDs in the luminescent
lamps. The main limitations of the prepared glasses are the high content of lead and
low quantum yield. The former limitation can be resolved by substituting lead fluoride
with lanthanum or yttrium fluoride. The latter could be resolved by dissolving silver and
lanthanides in larger quantities in the glasses. Both limitations might require modifications
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in the glass preparation method, as rare-earth fluoride dissolution is restricted in binary
silica-lead fluoride glasses in high quantities under cooling.
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