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Abstract: A two-dimensional (2D) shearography with source displacement is proposed to measure
object contours. Using a dual-shear shearographic setup with two movable laser sources, the full-
field slopes along a pair of orthogonal shear directions were obtained. The contour was then
obtained by performing 2D integration of the surface slopes. Theoretical derivations and experimental
results are presented to demonstrate the performance of the proposed method. The experimental
results show that contour of objects with various types of surfaces, such as spherical and hyperbolic
paraboloid surfaces, can be effectively measured. The measurement of the contour aids in the
precision measurement of strain and the precision location of defects.
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1. Introduction

Composite materials are widely used in many industrial fields due to their high
strength and low weight. Non-destructive testing and strain measurement are of great
significance to the risk assessment of composite materials [1]. Digital shearography is an
optical technique for full-field measurement of displacement derivatives. It has been recog-
nized as one of the most effective methods for testing composite materials [2,3]. During
digital shearography measurement, phase maps are recorded before and after loading of
composite materials. Displacement derivatives are then calculated based on the relation-
ship between the phase difference and the displacement derivative. Finally, the strain
measurement and non-destructive testing are realized based on the obtained displacement
derivatives [4]. When strains of curved objects are measured by digital shearography, it
will produce significant errors due to the difference between the normal direction of the
object surface and the measurement direction of the digital shearography. In this case, the
object contour needs be used for strain correction, so simultaneous measurement of contour
and displacement derivative aids in the improvement of strain measurement accuracy [5].
In non-destructive testing of composite materials, simultaneous measurement of contour
and displacement derivative also helps to accurately determine the surface coordinates
of defects inside the materials. The contour of the object can be obtained using other
techniques such as structured light profilometry and digital image correlation, while the
displacement derivative is measured by digital shearography [6,7]. However, the combi-
nation of the two different techniques results in low measurement efficiency and complex
optical arrangement. Application of digital shearography to simultaneously measure the
contour and displacement derivative of objects is of great application value. Measuring the
displacement derivative with digital shearography has been well developed, but there are
challenges in measuring contour effectively with digital shearography.

Traditionally, digital shearography has been used to measure the surface slope of
objects [8]. Unlike measurement of the displacement derivative, slope measurement with
digital shearography is a single-state measurement. In this case, the interferometric phase of
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digital shearography is modulated by changing the optical path instead of loading the object.
The methods of optical path modulation mainly include refractive medium change [9],
dual-wavelength modulation [10], object rotation [11], and source displacement [12]. In
the refractive-medium-change method, the object is immersed in liquid medium. The use
of liquid medium makes this method less practical. In the dual-wavelength-modulation
technique, a tunable laser is generally used as a light source [10]. The laser wavelength
modulation reduces light-source quality, extends measurement time, and ultimately reduces
measurement performance. In the object-rotation method, the object is placed on a rotating
platform and two images are recorded before and after a small rotation of the platform [11].
This method is unsuitable for large objects. The source-displacement technique obtains
correlation fringe patterns or phase maps after the source moves along a direction that
is perpendicular to the illumination direction [12]. The displacement of the source can
be easily controlled by a displacement stage. The influences of parameters such as the
illumination angle and the magnitude of the source displacement on the slope have been
well discussed [13].

With the aforementioned methods, only the one-dimensional (1D) slope of the object
surface along the shear direction is measured. The slope orthogonal to the shear direction
is not determined [13,14]. In general, based on the 1D surface slope, the contour of a
rotationally symmetrical object, such as a spherical object, can be obtained by means
of integration, but the contours of widespread objects with arbitrary surfaces cannot be
determined [15–17]. To measure the contour of an object with an arbitrary surface, at least
two slopes along different directions should be provided. Dual-shear digital shearography
has been proposed to measure the displacement derivatives along two shear directions, but
they cannot be used to measure slopes directly [18–21]. Moreover, the use of multiple beam
splitters in their optical setups results in low light efficiency.

A two-dimensional (2D) digital shearography with source displacement is introduced
in this article. Two dual-source and dual-shear digital shearographic setups with source
displacement are proposed to measure the slopes of object surface along two perpendicular
shear directions during a single measurement. A 2D integration method is then used to
convert the slopes to the contour of object with arbitrary surface.

2. Methods
2.1. One-Dimensional Digital Shearography with Source Displacement

A schematic of surface slope measurement by shearography is illustrated in Figure 1.
The system is composed of a movable laser source, a Michelson-type device, a phase shifter,
and an imaging device. An object is illuminated by an expanded laser beam which is from
the movable laser source. The diffused reflection light enters into the beam splitter in the
Michelson-type device. The transmitted beam strikes the mirror M2 which is attached to
a piezoelectric transducer (PZT) which acts as the phase shifter, and the reflected beam
strikes the mirror M1 which has a small inclination angle with the optical axis. Through
the reflection of the two mirrors, a set of misaligned images is formed. The overlapping
parts of the two images form an interferogram at the detector plane of the imaging device.
Phase maps are then obtained by the phase-shift technique with which the PZT produces
precisely designed movements and introduces known phase shifts in the time series to
obtain phase information [2]. The displacement of the laser source lies in the same plane
with the illumination angle θ and is perpendicular to the illumination direction. P1 and
P2 represent the two positions before and after the displacement of the source. During the
measurement, the light source moves parallel from P1 to P2 and then the phase distribution
∆ is obtained by subtracting the phase corresponding to one position from the phase
corresponding to the other position.
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Figure 1. One-dimensional digital shearography with source displacement.

The relationship between the phase ∆ and optical path difference L is expressed as
follows:

∆ =
2π

λ
L (1)

where λ is the laser wavelength. The change of the optical path difference is caused by the
displacement of the light source, yielding phase maps ∆ that are expressed as follows [13]:

∆ =
2πδxΛx sin θ

λR
· ∂z

∂x
(2)

where δx is the shear amount in the X direction, Λx is the magnitude of source displacement
along the direction perpendicular to the illumination, R is the distance from the laser source
to the measured object, and ∂z/∂x is the surface slope along the X direction.

2.2. Two-Dimensional Digital Shearography with Source Displacement

The optical setup of the 2D digital shearography with source displacement is shown in
Figure 2. The laser sources S1 and S2 are in the XOZ plane and YOZ plane, respectively. The
two illumination angles are adjusted to be the same to simplify the subsequent calculations.
The displacements of the two light sources both lie in the same plane as their respective
illumination angle and are orthogonal to their respective illumination direction. Similar to
the 1D digital shearography, during the measurement, the two light sources move parallel
from the first position to the second position. The shearing setup of the system contains two
beam splitters BS1 and BS2, and three mirrors M1, M2, and M3 to introduce image shearing in
different shearing directions. The object is illuminated, in turn, by the two expanded laser
beams from the two laser sources. The scattered light from the object surface is divided into
two beams through the beam splitter BS1. The transmitted light is divided into two beams by
BS2, and then is reflected by the mirrors M1 and M2, respectively. The reflected light from
BS1 is reflected by the PZT-driven mirror M3. The balance of light intensity is achieved by
the specific beam-splitting ratio of BS1. Finally, interferograms are formed at the detector
plane. The mirrors M1 and M2 have a small angle of inclination in the XOZ and YOZ planes,
respectively. The shearing amount can be controlled by adjusting the inclination angles of M1
and M2. The optical path can be switched by shutters which are located in front of M1 and
M2, so the sheared images in different directions are generated in turn.
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Figure 2. Two-dimensional digital shearography with source displacement.

An alternative type of 2D digital shearography with source displacement is shown
in Figure 3. Two lasers with wavelengths of 532 nm and 660 nm act as the laser sources.
One laser source (named S1’) is in the XOZ plane and the other (named S2’) is in the YOZ
plane. Their illumination angles are the same size. The imaging device used here is a color
camera. The shearing device is composed of a beam splitter, two mirrors, and a dichroic
filter. The dichroic filter, which can transmit green light and reflect red light, is placed
between the beam splitter BS1′ and the mirror M2′. The filter is tilted in the X direction
to introduce a sheared image formed by the red light. The other sheared image is formed
by the green light which is reflected by the mirrors M1′ and M2′. The mirror M2′ has a
small inclination angle in the YOZ plane. The two images are captured simultaneously by
the color camera and recorded in the corresponding color channels. Consequently, the 2D
slopes are obtained simultaneously.

Figure 3. Two-dimensional color shearography with source displacement.

The displacements of light sources S1 and S2 (or S1’ and S2’) yield two phase maps
with which the slopes in both the X and Y directions are obtained after the calculations
described by Equation (2) and

∆y =
2πδyΛy sin ω

λR
· ∂z

∂y
(3)

where δy is the shear amount in the Y direction, Λy is the displacement magnitude of source
S2 or S2’, ω is the angle between the illumination direction and the viewing direction, and
∂z/∂y is the surface slope along the Y direction.

Compared with the two dual-shear shearographic setups in Refs. [18,19], the two
proposed optical setups have few beam splitters, so they are much simpler and more
robust, and the utilization efficiency of light energy is much higher. Moreover, the proposed
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dual-shear shearographic setups can be combined with the 2D source displacement method,
so it is possible to measure the surface slopes ∂z/∂x and ∂z/∂y, rather than measuring the
displacement gradients ∂w/∂x and ∂w/∂y, as described in the literature.

2.3. Reconstruction of the Contour by the 2D Integration

The numerical integration method is a common method to restore the surface contour.
Defining Z(x0,y0) as the initial point, then the object contour Z(x,y) is expressed as follows:

Z(x, y) = f (x) + g(y) + c (4)

where f (x) and g(x) are real value functions and c is a constant term. Integrating along the x
direction results in

Z(x, y) =
∫ x

x0

∂z
∂x

dx + Z(x0, y0) (5)

The real value function g(y) has not been determined when the integration is only
along the x direction. Another shearing interferogram in the y direction should be provided
to achieve the correct calculations.

Two-dimensional integration methods are widely applied to reconstruct the height or
wavefront from the measured gradient data in slope metrology [22,23]. The main idea of
the 2D integration method is to construct a grid mode based on the relationship between
each surface data point and the surrounding slope data points. Then the height at every
point will be solved by finite-difference-based least-squares integration methods. The
grid mode is shown in Figure 4. In the M × N network, the black dots are the estimating
shape data points. The horizontal arrows indicate measured slope in the x direction and
the vertical arrows represent measured slope in the y direction. The horizontal spacing
between adjacent measurement points is expressed as ∆X = x(m, n + 1)− x(m, n), and the
vertical spacing is expressed as ∆Y = y(m + 1, n)− y(m, n).

Figure 4. Grid model in 2D integration.

The relationships between the estimated points and the measured slopes can be
expressed as follows:

∂z
∂x m,n

=
Zm,n+1 − Zm,n

∆X
, m ∈ (1, M), n ∈ (1, N − 1) (6)

∂z
∂y

m,n

=
Zm+1,n − Zm,n

∆Y
, m ∈ (1, M− 1), n ∈ (1, N) (7)

The 2D slopes measured by the 2D digital shearography with source displacement
are used as input to the model described by Figure 4 and Equations (6) and (7). There are
M × N unknowns and M(N − 1) + (M− 1)N equations, so the solution requirements of
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Equations (6) and (7) are met. For convenience, Equations (6) and (7) are transformed to
matrix form:

Zm,n+1 − Zm,n =
∂z
∂x m,n

(Xm,n+1 − Xm,n), m ∈ (1, M), n ∈ (1, N − 1), (8)

Zm+1,n − Zm,n =
∂z
∂y

m,n

(Ym+1,n −Ym,n), m ∈ (1, M− 1), n ∈ (1, N). (9)

The estimated point matrix on the left side of Equations (8) and (9) can be expressed by
a coefficient matrix D and a matrix Z′ which is to be solved. The right side of the equations
is represented by a matrix G. The relationship between the matrices is expressed as follows:

DZ′ = G (10)

or
Z′ = D−1G (11)

where:

D =

(
Dx
Dy

)
,

Dx =


−1 0 · · · 0 1 0 · · · 0
0 −1 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 −1 0 0 · · · 1

; Dy =


−1 1 0 · · · · · · 0 · · · 0
0 −1 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
0 · · · · · · · · · 0 0 −1 1

;

Z′ =


Z1,1
Z2,1
···

Zm,n

; and G =



∂z
∂x 1,1(x1,2 − x1,1)

∂z
∂x 1,2(x1,3 − x1,2)

. . .
∂z
∂x m,n(xm,n − xm,n−1)

∂z
∂y 1,1

(y2,1 − y1,1)

∂z
∂y 2,1

(y3,1 − y2,1)

· · ·
∂z
∂y m,n

(ym,n − ym−1,n)



.

3. Results and Discussion
3.1. Contour Measurement

An experimental setup was built according to the optical setup depicted in Figure 2.
Sheared speckle interferograms were captured by a black-and-white industrial camera
with 2464 × 2056 pixels (CatchBEST Co., Ltd., Beijing, China, MU3S500M). The lasers
with a central wavelength of 532 nm and an output power of 200 mW (Changchun New
Industries Optoelectronics Tech. Co., Ltd., Changchun, China, MSL-FN-532) were used as
the illumination source. In our experiments, the laser illumination layout which is depicted
in Figure 2 was carried out because it led to ease of experimental system building and
simplicity of the mathematic model. The illumination angles of the laser beams were about
30◦. The shear amounts in the X and Y directions were both 10 mm. In the experiments, two
objects with a spherical surface and a hyperbolic paraboloid surface, as shown in Figure 5,
were measured by the proposed 2D digital shearography with source displacement and the
traditional 1D digital shearography, respectively.
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Figure 5. Two objects under test, including (a) a ball and (b,c) an object with a hyperbolic paraboloid
surface. The front view and side view of the hyperbolic paraboloid object are shown.

The first object to be measured was a ball with a diameter of 120 mm coated with reflec-
tive material. The displacement amounts of the light sources S1 and S2 were both 0.15 mm.
The phases of the sheared speckle interferograms were extracted by the phase-shift method.
The phase difference corresponding to the slope along the X direction, shown in Figure 6a,
was obtained by subtracting the phase difference distribution before the displacement of
the source S1 from it after the source displacement. The other phase difference distribution
in the Y direction is shown in Figure 6d. The noise on the raw phase maps was reduced
by the mean filter with a filter window of 3 × 3 after the sudden phase change of 2π on
the two raw phase maps was eliminated by performing sine and cosine transformation,
and then the wrapped phase maps were obtained by performing the arctangent operation.
The filtering process ran iteratively many times until a smooth wrapped phase map was
obtained. The filtered wrapped phase maps are shown in Figure 6b,e. Due to the off-axis
illuminations, shadows will appear in some areas of the phase maps. The overlapped area
in the two filtered phase maps was chosen for further processing. This area is identified
in Figure 6b,e with red circles with diameters of 95 mm. The phase maps of the region of
interest were unwrapped and the results are shown in Figure 6c,f, respectively.

Figure 6. The phase maps corresponding to the ball under test, including (a) the raw phase map,
(b) the filtered phase map, (c) the unwrapped phase map in the X direction, (d) the raw phase map,
(e) the filtered phase map, and (f) the unwrapped phase map in the Y direction. The overlapped area
in the phase maps is identified with red circles.

Based on the obtained phases, the surface contour was measured after the calculation
described by Equations (8) and (9). The result is shown in Figure 7a. Another result obtained
using the traditional 1D digital shearography is shown in Figure 7b for comparison. It can
be seen from Figure 7 that the two methods can both be used to correctly measure the ball,
a rotationally symmetrical object.
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Figure 7. The height maps of the ball contour obtained using (a) the proposed 2D digital shearography
with source displacement and (b) the traditional 1D digital shearography with source displacement.

The cross-sectional height distributions of contour along the X direction and through
the vertices of the height maps shown in Figure 7 are illustrated in Figure 8a. The dotted
black curve and solid blue curve represent the cross-sectional height distributions measured
by the traditional 1D digital shearography with source displacement and the proposed
approach, respectively. The shape of the ball was relatively perfect, so the theoretical
cross-sectional height distribution of the ball contour, represented by a red dashed line in
Figure 8a, could be used as a standard. As shown in Figure 8b, the maximum error of the
measurement results of the proposed method was 0.82 mm and the standard deviation
was 0.46 mm, while the maximum error of the traditional method was −0.97 mm and
the standard deviation was 0.76 mm. The measurement results obtained by the two
methods were both consistent with the theoretical results. However, the measurement
results obtained by the proposed method were closer to the theoretical results and the
corresponding curves were smoother than the results obtained by the traditional method.
This is because the numerical integration method needs to integrate according to the
integration path and thus causes error accumulation, while the 2D integration method does
not require an integration path but is only related to adjacent data points. In the proposed
method, the main error source is the miscalibration of the displacement of the light sources.
If the displacement of the light sources can be accurately calibrated, the accuracy of contour
measurement can be much improved.

Figure 8. Cross-sectional height distributions of contour and the measurement error. (a) Height
distributions of contour and (b) error distributions.

The tested object with a hyperbolic paraboloid surface was a resin sheet coated with
reflective material. The measurement area was 140 mm × 140 mm. The filtered and
unwrapped phase maps of raw phase maps are shown in Figure 9.
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Figure 9. The phase maps corresponding to the object with a hyperbolic paraboloid surface, including
(a) the filtered phase map, (b) the unwrapped phase map in the X direction, (c) the filtered phase
map, and (d) the unwrapped phase maps in the Y direction.

The contour of the object with a hyperbolic paraboloid surface was also measured
by the proposed method and by traditional 1D digital shearography. The result obtained
by the 2D digital shearography with source displacement is shown in Figure 10a and the
result obtained by the traditional 1D digital shearography is shown in Figure 10b. It can be
seen that the result obtained by the proposed method was correct but the result obtained
by the traditional method was totally wrong, because the traditional method does not have
the ability to measure the contours of objects with quadric surfaces.

Figure 10. The height maps of the contour of an object with a hyperbolic paraboloid surface obtained
using (a) the proposed 2D digital shearography with source displacement and (b) the traditional 1D
digital shearography with source displacement.

The measurement results obtained by the proposed method were compared with the
theoretical results. The cross-sectional height distribution of contour along the X direction and
through the midpoint of the Y-axis in Figure 10a is plotted in Figure 11a. It is represented by a
blue solid curve while the theoretical contour line is represented by a red dashed curve. The
difference between the experimental measurement result and the theoretical result, called the
measurement error, is shown in Figure 11b. The maximum error of the measurement results of
the proposed method was 1.1 mm and the standard deviation was 0.52 mm. The experimental
measurement results are basically consistent with the theoretical results. Figure 12 shows the
full-field distribution of the measurement error.

Figure 11. Comparison of outputs obtained by experiment and calculation: (a) height distributions of
contour and (b) error distributions.
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Figure 12. The full-field distribution of the measurement error.

The sticking point of shearography measurement is to obtain clear and high-quality
fringe patterns in the phase map. According to Equations (2) and (3), there is a linear
relationship between the phase and the displacement of the light source. When the dis-
placement of the source increases, the fringes in the phase maps become denser. Since
the filtering of phase map is based on pixels, denser fringes will cause large phase errors
during the filtering. Therefore, when the surface slope of the object is large, a relatively
small amount of source displacement should be carried out to keep the fringe density
appropriate. Otherwise, a camera with more pixels should be used for image acquisition.

3.2. Non-Destructive Testing Applications

There were three prefabricated defects in the object with a hyperbolic paraboloid
surface, shown in Figure 13. Coordinate values of these defects in a Cartesian coordinate
system were determined directly by the digital shearography when the object was subjected
to a thermal load and the laser source kept stationary. However, in practical applications,
the surface distance of the defect from a particular location, rather than its coordinates, is
used to locate the defect. Therefore, if the object has a curved surface, the coordinates of the
defects should be converted to the surface distances to particular locations in conjunction
with the contour information based on the expressions:

Px =
N
∑

n=1

√
(xn − xn−1)

2 + (Zn − Zn−1)
2

Py =
M
∑

m=1

√
(ym − ym−1)

2 + (Zm − Zm−1)
2

(12)

where Px and Py are the distances of the defect to particular locations along the X and Y
directions, respectively, and xn and ym are the coordinates of the defect.

Figure 13. Three defects in the object with a hyperbolic paraboloid surface.
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Combining the contour shown in Figure 10a with the coordinates of the defects, the
curvilinear distances of the defect from the edge of the object were determined. The
distances of the three defects to the left and right sides are shown in Figure 14. The
maximum horizontal and vertical positioning error was 1.2 mm.

Figure 14. The surface distances of the defects to the edges.

At present, the location of defects using the traditional digital shearography is mostly
aimed at planar objects [24–26]. When curved objects are inspected, the precise location
of defects is difficult. Using the proposed method, the contour of the object is obtained
simultaneously, thus the defects can be easily located.

4. Conclusions

A 2D digital shearography with source displacement for contour measurement is
presented. The method can be used to measure both surface displacement derivatives
and surface contours of various objects. When the displacement derivative is measured,
the object under test should be loaded but the laser source of the shearography should
be kept stationary. When the contour is measured, the object is not loaded but the laser
source should be moved during the measurement. In strain measurements and non-
destructive testing on composite materials, the displacement derivatives and contours
can be determined by the proposed 2D digital shearography. Based on the displacement
derivatives and contours, the strain can be measured more accurately and the locations of
defects inside the materials are expressed in a more appropriate form.

The proposed method solves the problem of the traditional method being only able
to measure the surface contour of rotationally symmetrical objects. It greatly expands the
scope of application of contour measurement. For objects commonly found in engineering,
this method is capable of making efficient measurements. However, for objects with
completely discontinuous surfaces, the measurement of their contour is still difficult due to
the blocking of the path of phase unwrapping. It is necessary to change the way the phase
is unwrapped and the way the light source moves, so that the contour measurement of the
surface discontinuous object can be achieved. In the experiments, the objects were coated
with reflective material to increase reflectivity. These reflection coatings are not necessary
when the output power of the lasers is large enough. Digital shearography is suitable for a
variety of objects with diffuse reflective surfaces, which makes the method proposed in this
article widely applicable.
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