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Abstract: The main objective of this paper is to study the free vibration of a Timoshenko–Ehrenfest
single-walled carbon nanotube based on the nonlocal theory and taking surface effects into account. To
model these effects on frequency response of nanotubes, we use Eringen’s nonlocal elastic theory and
surface elastic theory proposed by Gurtin and Murdoch to modify the governing equation. A modified
version of Timoshenko nonlocal elasticity theory—known as the nonlocal truncated Timoshenko
beam theory—is put forth to investigate the free vibration behavior of single-walled carbon nanotubes
(SWCNTs). Using Hamilton’s principle, the governing equations and the corresponding boundary
conditions are derived. Finally, to check the accuracy and validity of the proposed method, some
numerical examples are carried out. The impacts of the nonlocal coefficient, surface effects, and
nanotube length on the free vibration of single-walled carbon nanotubes (SWCNTs) are evaluated,
and the results are compared with those found in the literature. The findings indicate that the length
of the nanotube, the nonlocal parameter, and the surface effect all play important roles and should
not be disregarded in the vibrational analysis of nanotubes. Finally, the results show how effective
and successful the current formulation is at explaining the behavior of nanobeams.
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1. Introduction

Due to their exceptional mechanical, physical, and electrical properties, nanotubes
have attracted great attention from researchers and have a wide range of applications. As
a result, detailed studies on their mechanical properties have been conducted [1–3], and
static and dynamic behaviors of single-walled and multi-walled carbon nanotubes have
been proposed using Euler–Bernoulli and Timoshenko beam models [4–10]. Atomistic
and continuous modeling approaches were used to analyze the mechanical properties of
nanotubes, depending on the level of investigation. Although the atomistic approach is
more suitable for investigating nanometric structures [4], it has had little applicability as
it is more time-consuming. Continuous approaches, on the other hand, have received
more attention than the former and, among them, beam models have proven to be more
convenient. However, classical theories, such as the Euler–Bernoulli or Timoshenko beam
model [5–8], or even higher-order theories have proven to be inadequate because they
do not capture the influence of the nonlocal effect. To overcome this drawback, models
incorporating nonlocal effects have been proposed, based on the theory of nonlocal elas-
ticity [9–14] developed by Eringen (see, in particular, [15,16]). Numerous theoretical and
numerical methods have been developed to investigate the influence of nonlocal effects on
the free vibrations of structures and nanostructures. For a detailed discussion, the reader
can refer to the following works [17–24].
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Another important concept that has attracted the considerable attention of researchers
is the size-dependent mechanical behavior of nanobeams due to surface stress. Unlike the
classical continuum, in which the effect of surface energy is ignored because it is small
compared to the mass energy, for nanoscale materials and nanostructures, the surface effects
are significant due to the high surface-to-volume ratio. Consequently, by applying Euler–
Bernoulli and Timoshenko beam theories, several theories have been developed to account
for the effect of surfaces/interfaces on mechanical deformation [25–31]. For example, He
and Lilley [25] studied the surface effects on the elastic behavior of static bending nanowires
using the Euler–Bernoulli beam theory. By using the refined Timoshenko beam theory,
Wang and Feng [26] examined surface effects on the axial buckling and the transverse
vibration of nanowires and, in applying the nonlocal Timoshenko beam theory, Lee and
Chang [27] studied the natural frequency of nanotubes with a consideration of surface
effects. Gurtin and Murdoch developed a linearized theory of surface elasticity, called the
“Gurtin–Murdoch model” [32,33], that attracted considerable attention and was widely
used to study elastic behavior of solids at the nano scale.

This paper deals with the free vibration of a Timoshenko–Ehrenfest single-walled car-
bon nanotube based on the nonlocal theory and takes surface effects into account. To model
these effects on the frequency response of nanotubes, we use Eringen’s nonlocal elastic
theory and surface elastic theory to modify the governing equations. A modified version
of Timoshenko nonlocal elasticity theory—known as the nonlocal truncated Timoshenko
beam theory—is put forth to investigate the free vibration behavior of single-walled carbon
nanotubes (SWCNTs), as indicated in [10,34]. Using Hamilton’s principle, the governing
equations and the corresponding boundary conditions are derived.

There are several studies in the literature that address the topic of free vibrations
of nanotubes and nanostructures based on nonlocal and surface theory. The modeling
methods for nonlocal and surface effects are investigated separately in most cases. The aim
of this paper is the modeling of a single-walled carbon nanotube for analyzing the frequency
response of the nanotubes, the combined surface, and the nonlocal effects. Furthermore,
starting from the Timoshenko truncated theory for the beam model developed in [34], in
the present paper, the authors develop this theory for Timoshenko single-walled carbon
nanotubes using the geometric and variational approach. The novelty of the proposed
approach is that it shows a perfect analogy between variational and direct methods for
the dynamic analysis of beams. Similarly, the surface effect, which becomes dominant as
the surface-to-volume ratio increases in a submicron or nanoscale structure, is modeled
based on the surface elasticity theory as proposed by Gurtin and Murdoch [32,33]. Finally,
to check the accuracy and validity of the suggested method, some numerical examples are
carried out. The impacts of the nonlocal coefficient, surface effects, and nanotube length
on the free vibration of SWCNTs are evaluated, and the results are compared with those
found in the literature. The findings indicate that the length of the nanotube, the nonlocal
parameter, and the surface effect all play important roles and should not be disregarded in
the vibrational analysis of nanotubes.

This paper is structured as follows. In Section 2, Eringen nonlocal theory assumptions,
stress results in nonlocal theory, and surface theory for analyzing the frequency response of
the nanotubes are reported. Section 3 provides the derivation of the motion equations for
the nonlocal truncated Timoshenko beam theory by means of the direct and variational
approaches, and the equations of motion of single-walled carbon nanotubes are derived
by using the truncated Timoshenko–Ehrenfest beam theory. Finally, we solve the system
of differential equations of nonlocal truncated Timoshenko–Ehrenfest nanotubes, and the
case of simply-supported nanotube solution is analyzed. The influence that small-scale
parameters, surface effects, and nanotube length have on the first natural, dimensionless
frequency of SWCNTs is investigated in Section 4 in order to assess the accuracy and
validity of the proposed method. Finally, a summary of this investigation and the main
conclusions are provided in Section 5.
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2. Eringen Nonlocal Theory and Surface Theory for Nonlocal Timoshenko–Ehrenfest
Nanotube Analysis
2.1. Eringen Nonlocal Theory Assumptions and Stress Resultants in Nonlocal Theory

According to Eringen’s non local theory assumptions [15,16], the Cauchy stress state,
at a given reference point xxx, is a function of the strain field at all points of the body.
This observation is in accordance with the atomic theory of lattice dynamics and phonon
dispersion, and this effect decreases as the space between the particles increases.

For isotropic and homogeneous elastic beams, the constitutive relation in an integral
form for the nonlocal stress tensor at point xxx is expressed as:

σσσ =
∫

V
α(|x′ − xx′ − xx′ − x|, τ)ttt(x′x′x′)dx’x’x’, (1)

where t(x)t(x)t(x) is the conventional stress tensor at point xxx, which is related to the strain tensor εεε
by the following conventional constitutive relation:

ttt(xxx) = CCC(xxx)⊗ εεε(xxx), (2)

where CCC is the fourth-order elasticity tensor, and ⊗ denotes the “double-dot product”. The
following are also defined: α(|x′ − xx′ − xx′ − x|,τ) is the nonlocal coefficient introducing into the
constitutive equation the nonlocal effect at the reference point xxx produced by local strain
at the source x′x′x′; |x′ − x||x′ − x||x′ − x| is the Euclidean distance; and τ, which depends on the bulk’s
material, is a constant defined as the scale parameter that incorporates the small-scale
factor.

Since the integral form of Equation (1) is quite complicated, the following nonlocal
constitutive relations are often used:(

1− τ2le
2∇2

)
σσσ === ttt , τ =

e0li
le

, (3)

where e0 is a material constant determined experimentally, li, le are the internal and external
characteristic lengths, respectively, and ∇2 is the Laplace operator.

Applying Equation (3) and, according to nonlocal elasticity theory for homogeneous
and isotropic nanotubes, the constitutive relation of the Cauchy stress tensor takes the
following form:

σzz − µ2 ∂2σzz

∂z2 = Eezz , µ = (e0li) (4)

σzy − µ2 ∂2σzy

∂z2 = 2G ezy, (5)

where σzz and ezz are the normal stress and normal strain, respectively, E is the elasticity
modulus, µ is the small-scale parameter that incorporates the small-scale effect, and z is
the coordinate measured from the mid-plane of the nanotube. Also, σzy and ezy are the
transverse shear stress and the transverse shear strain, respectively, G is the shear modulus,
and y is the longitudinal coordinate measured from the left end of the nanotube.

Using Equation (4), the moment–curvature relation can be expressed as:

M− µ2 ∂2M
∂z2 = EI

∂φ

∂z
, (6)

where M is the bending moment, I is the moment of inertia, and φ is the rotation due to
bending. Using Equation (5), the relation among the internal moment, internal shear force,
and the external applied loads can be expressed as:

Q− µ2 ∂2Q
∂z2 = GAκ

(
∂v
∂z

+ φ

)
, (7)
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where Q is the shear force, A is the area of the straight section, v is the transverse displace-
ment, and κ is the shear corrector factor.

2.2. Surface Effect Theory for Nanotube Analysis

In the present section, an analysis of the surface effects is considered to describe the
vibrational nonlocal analysis of nanotubes. Unlike the classical continuum, in nanoscale
materials and nanostructures, the surface effects are significant due to the high surface-
to-volume ratio, which results in higher elastic modulus and mechanical strength than
classical continuous. Therefore, the surface and induced surface forces cannot be ignored.

Consider a single-walled carbon nanotube (SWCNT) with length L. Figure 1 shows
a schematic of a nanotube with inner and outer thin surface layers and with a circular
cross-section with inner and outer radii Ri and Ro and thickness h. Additionally, the
constitutive properties E, G, and ρ are Young’s modulus, shear modulus, and mass density,
respectively. Finally, the following geometrical properties are defined: moment of inertia
I, cross-sectional area A, and transverse displacement v, which depends on the spatial
coordinate z and time t. The thicknesses of the internal and external surface thin layers are
assumed to be ti and to, respectively, and their surface elasticity modulus values are Ei and
E0, respectively.

Figure 1. (a) Structure of a nanotube covered by two internal and external thin layers. (b) Cross-
section view of the tube structure.

For circular cross-sections of a nanotube, the effective flexural rigidity EI∗, which
includes the surface bending elasticity of the nanotube and its flexural rigidity, is given by:

EI∗ = EI + πEs
(

R3
0 + R3

i

)
, (8)

where Es is the surface elastic modulus, which can be determined by experiments, is the
effective flexural rigidity, and Ri and Ro are inner and outer radii, respectively. For the
zero-thickness surface layers, an idealized model is used, represented by the properties
E0t0 and Eiti, which are of constant magnitude and equal to Es as a material property.

Let q(z) be the transverse distributed loading induced by residual surface tension of
surface layers:

q(z) = H
∂2v
∂z2 , (9)

where H is the constant parameter and is equal to:

H = 4τ(Ri + R0). (10)

It is determined by the residual surface tension and depends on the shape of the
cross-section.

In the following, we write the differential equations for a Timoshenko nanotube
with truncated theory in the presence of surface effects using both the geometric and
variational methods.
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3. Theoretical Formulation: Equations of Motion for Nonlocal Truncated
Timoshenko–Ehrenfest Beam Models for Nanotube Analysis
3.1. Equation of Motion for a Truncated Timoshenko–Ehrenfest Beam: Euler Method

Consider the ashlar nanotube element in Figure 2; according to the paper [10], the
equilibrium of the the applied loads at the abscissa z-axis is imposed: equilibrium to the
vertical translation and rotation around the center of the right section of all the forces
identified on the elementary ashlar, starting from its equilibrium.

Figure 2. Translational and rotational equilibrium of the elementary ashlar.

Separate contributions are provided for the translational fI1 and rotational m inertias,
taking into account the following formulas:

fI1 = −ρA
∂2v
∂t2 (11)

m = −ρI
∂2φb
∂t2 , (12)

where t denotes the time variable. Also, the rotational inertial term m depends only on
the flexural rotation φb = − ∂v

∂z , whereas the total rotation φ is connected to φb via the
following expression:

φ = φb + ψ = −∂v
∂z

+ ψ. (13)

The equation for the vertical translation equilibrium is:

∂Q
∂z

= ρA
∂2v
∂t2 − q(z), (14)

whose first derivative, when substituted in Equation (7), yields:

Q = GAκ

(
∂v
∂z

+ φ

)
+ µ2ρA

∂3v
∂t2∂z

− µ2 ∂q(z)
∂z

. (15)
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By substituting the value expressed by Equation (9) in place of q(z), Equation (15) can
be completed as follows:

ρA
∂2v
∂t2 − µ2ρA

∂4v
∂t2∂z2 + µ2H

∂4v
∂z4 −GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
− H

∂2v
∂z2 = 0. (16)

The equilibrium at rotation with respect to the center of gravity of the right face of the
elementary ashlar, on the other hand, is given by the following expression:

∂M
∂z

= Q− ρI
∂3v

∂t2∂z
, (17)

which, when derived once and substituted in Equation (6), leads to:

M = EI∗
∂φ

∂z
+ µ2

(
−ρI

∂4v
∂t2∂z2 + ρA

∂2v
∂t2 − q(z)

∂3v
∂t2∂z

)
. (18)

The equilibrium of motion Equation (17) can be written:

EI∗
∂2φ

∂z2 − µ2ρI
∂5v

∂t2∂z3 + ρI
∂3v

∂t2∂z
−GAκ

(
∂v
∂z

+ φ

)
= 0. (19)

Equations (16) and (19) constitute the system of differential equations of motion of
a Timoshenko–Ehrenfest nanotube model derived from the truncated Timoshenko beam
theory and surface theory.

3.2. Equations of Motion for a Truncated Timoshenko–Ehrenfest Beam: Variational Method

In this section, according to the Hamilton principle, the motion equations for a single-
walled carbon nanotube are derived.

For the local theory, the strain energy Πe is represented as follows:

Πe =
1
2

(∫ L

0
M

∂φ

∂z
dz +

∫ L

0
Q
(

∂v
∂z

+ φ

)
dz
)

. (20)

Equations (15) and (18), used to calculate the shear stress Q and bending moment M
for nonlocal elasticity, show that the terms defined here in addition to the local theory are
constant quantities that do not vary in terms of force; therefore, they do not contribute to
the strain energy but are rather potential energy of the loads P (see Ref. [21]).

The strain energy can be written as:

Π =
1
2

∫ L

0
EI∗
(

∂φ

∂z

)2
dz +

1
2

∫ L

0
GAκ

(
∂v
∂z

+ φ

)2
dz. (21)

As can be seen, only the local terms are present in the formulation of the strain energy.
The potential energy P is equal to the work performed by the forces of inertia, modified by
the sign, for the corresponding displacement, and is expressed as follows:

Pnl =
∫ L

0
µ2
(
−ρI

∂4v
∂t2∂z2 + ρA

∂2v
∂t2 − H

∂2v
∂z2

)
∂φ

∂z
dz+∫ L

0

(
µ2ρA

∂3v
∂t2∂z

− µ2H
∂3v
∂z3

)(
∂v
∂z

+ φ

)
dz. (22)

The rotational component of the forces of inertia in Equation (8), as with the Timo-
shenko beam in the truncated theory, is introduced as potential energy:

Pm = −
∫ L

0
m φ dz = −

∫ L

0
−ρI

∂2φb
∂t2 φ dz = −

∫ L

0
−ρI

∂2

∂t2

(
−∂v

∂z

)
φ dz. (23)
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Finally, the potential energy of the load q is:

PE = −
∫ L

0
q v dz = −

∫ L

0
H

∂2v
∂z2 v dz, (24)

and the kinetic energy T is:

T =
1
2

∫ L

0
ρA
(

∂v
∂t

)2
dz. (25)

3.3. Equations of Motion for Nonlocal Truncated Timoshenko–Ehrenfest Nanotubes

According to the Hamilton principle and the truncated Timoshenko–Ehrenfest theory,
the equations of motion for a single-walled carbon nanotube are computed.

Summing the strain energy Equation (21) and the potential energy Equations (22) and (23),
from which kinetic energy (24) is subtracted, we obtain:

∫ t2

t1

δ(Π + Pnl + Pm + PE − T)dt =∫ L

0
EI∗

∂φ

∂z
δ

(
∂φ

∂z

)
dz +

∫ L

0
GAκ

(
∂v
∂z

+ φ

)
δφ dz +

∫ L

0
GAκ

(
∂v
∂z

+ φ

)
δ

(
∂v
∂z

)
dz+∫ L

0
µ2
(

ρA
∂2v
∂t2 − ρI

∂4v
∂t2∂z2 − H

∂2v
∂z2

)
δ

(
∂φ

∂z

)
dz+ (26)∫ L

0

(
µ2
(

ρA
∂3v

∂t2∂z
− H

∂3v
∂z3

))
δφ dz +

∫ L

0

(
µ2
(

ρA
∂3v

∂t2∂z
− H

∂3v
∂z3

))
δ

(
∂v
∂z

)
dz+

−
∫ L

0
ρI

∂3v
∂z∂t2 δφ dz−

∫ L

0
H

∂2v
∂z2 δv dz−

∫ L

0
ρA

∂v
∂t

δ

(
∂v
∂t

)
dz = 0.

Integrating by parts and collecting all the terms in the previous equations allows us
to write:

ρA
∂2v
∂t2 − µ2ρA

∂4v
∂t2∂z2 + µ2H

∂4v
∂z4 −GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
− H

∂2v
∂z2 = 0 (27)

EI∗
∂2φ

∂z2 − µ2ρI
∂5v

∂t2∂z3 + ρI
∂3v

∂t2∂z
−GAκ

(
∂v
∂z

+ φ

)
= 0. (28)

As can be seen, Equations (27) and (28) have the same form as Equations (16) and (19)
found by the Euler method and represent the set of differential equations of motion for a
Timoshenko–Ehrenfest SWCNT.

Finally, the associated boundary conditions are given by:[(
µ2
(

ρA
∂2v
∂t2 − ρI

∂4v
∂t2∂z2 − H

∂2v
∂z2

)
+ EI∗

∂φ

∂z

))
δφ

]L

0
= 0 (29)

[((
µ2ρA

∂3v
∂t2∂z

− µ2H
∂3v
∂z3

)
+ GAκ

(
∂v
∂z

+ φ

))
δv
]L

0
= 0. (30)
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3.4. Solving the System of Differential Equations of Nonlocal Truncated Timoshenko–Ehrenfest
Nanotubes

In order to find the differential equation solutions for nonlocal truncated Timoshenko–
Ehrenfest nanotubes, we look for periodic solutions of the form:

v(z, t) = v(z)eiωt

φ(z, t) = φ(z)eiωt, (31)

where ω is the frequency of natural vibration. On substituting Equation (31) into
Equations (27) and (28), we have:

ρA ω2v− µ2ρA ω2 ∂2v
∂z2 + GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
− µ2H

∂4v
∂z4 + H

∂2v
∂z2 = 0 (32)

EI∗
∂2φ

∂z2 + µ2ρI ω2 ∂3v
∂z3 − ρI ω2 ∂v

∂z
−GAκ

(
∂v
∂z

+ φ

)
= 0. (33)

From Equation (32), the following expression is derived:

∂φ

∂z
=

µ2

GAκ
H

∂4v
∂z4 +

(
µ2ρA ω2

GAκ
− 1− H

GAκ

)
∂2v
∂z2 −

ρA ω2

GAκ
v, (34)

which, when derived twice and substituted into Equation (33) derived once, gives:

µ2EI∗

GAκ
H

∂6v
∂z6 +

(
−µ2H + µ2ρI ω2 + EI∗

(
−1− H

GAκ
+

µ2ρA ω2

GAκ

))
∂4v
∂z4 + (35)(

−EI∗
ρA ω2

GAκ
− µ2ρA ω2 − ρI ω2 + H

)
∂2v
∂z2 + ρA ω2v = 0.

Equation (35) represents the differential equation of motion for a Timoshenko–Ehrenfest
nanotube derived from the fourth-order truncated theory in v(z) and in the presence of
surface effects.

On introducing the following non-dimensional coefficients:

ζ =
z
L

; Ω2 =
ρAL4ω2

EI∗
; η2 =

µ2

L2 ; β2 =
EI∗

GAκL2 ; α2 =
I

AL2 ; (36)

u2 =
πEs(R3

i + R3
o
)

EI∗
; δ2 =

4τ(Ri + Ro)L2

EI∗
; h = (Ro − Ri),

with ζ ∈ [0, 1] being the dimensionless counterpart of z ∈ [0, L], Ω2 the frequency parameter,
η2 the scaling effect parameter, β2 the shear deformation parameter, α2 the slenderness
ratio, u2 the surface elasticity modulus, and δ2 the residual surface tension, the governing
Equation (35) may be rewritten as:

(
1 + u2

)
η2β2δ2 ∂6v

∂ζ6 +
((

1 + u2
)(
−1− β2δ2 + Ω2β2η2

)
+ Ω2η2α2 − η2δ2

)∂4v
∂ζ4 + (37)(

−
(

1 + u2
)

Ω2β2 −Ω2η2 −Ω2α2 + δ2
)∂2v

∂ζ2 + Ω2v = 0.

The system of differential Equations (32) and (33), by means of the dimensionless
coefficients, assumes the following form:

β2Ω2v− β2η2Ω2 ∂2v
∂ζ2 +

(
∂2v
∂ζ2 +

∂φ̄

∂ζ

)
− β2η2δ2 ∂4v

∂ζ4 + β2δ2 ∂2v
∂ζ2 = 0 (38)
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(
1 + u2

)∂2φ̄

∂ζ2 + η2α2Ω2 ∂3v
∂ζ3 −Ω2α2 ∂v

∂ζ
− 1

β2

(
∂v
∂ζ

+ φ̄

)
= 0. (39)

Setting φ̄ = φ L, it is possible to derive from Equation (39) the value of
_
φ as a function

of v(ζ):

φ̄ = β4η2δ2
(

1 + u2
)∂5v

∂ζ5 +
(

β2
(

1 + u2
)(

β2η2Ω2 − 1− β2δ2
)
+ β2η2α2Ω2

)∂3v
∂ζ3 +

−
(

β4
(

1 + u2
)

Ω2 + β2Ω2α2 + 1
)∂v

∂ζ
. (40)

Also, the dimensionless boundary conditions (29) and (30) are given by:[(
−η2Ω2v +

(
η2r2Ω2 − η2δ2

)∂2v
∂ζ2 +

(
1 + u2

)(∂φ̄

∂ζ

))
δφ̄

]1

0
= 0 (41)

[((
−η2Ω2 ∂v

∂ζ
− η2δ2 ∂3v

∂ζ3

)
+

1
β2

(
∂v
∂ζ

+ φ̄

))
δv
]1

0
= 0. (42)

The Case of the Simply Supported Nanotube

In what follows, the case of a simply supported Timoshenko–Ehrenfest nanotube
is analyzed.

Consider the dimensionless vibration modes associated with the nanotube of the
following form:

v(ζ) = Sin(mπζ), (43)

where m = 1, 2, 3, . . . is the m-th natural frequency of the transverse vibration of the
nanotube.

Substituting Equation (43), appropriately derived, into differential Equation (37),
one obtains:(

−m6π6
(

1 + u2
)

β2δ2η2 + Ω2 −m2π2
(

δ2 −
(

α2 +
(

1 + u2
)

β2 + η2
)

Ω2
)
+ (44)

m4π4
(
−δ2η2 + α2η2Ω2 +

(
1 + u2

)(
−1 + β2

(
−δ2 + η2Ω2

))))
= 0,

whose solution is:

Ωm =
π
√

m2(δ2 + m4π4(1 + u2)β2δ2η2 + m2π2(1 + β2δ2 + u2(1 + β2δ2) + δ2η2))√
(1 + m2π2(α2 + (1 + u2)β2))(1 + m2π2η2)

. (45)

From Equation (45), the dimensionless natural frequency is given by:

fm =
ωm

2π
=

1
2π(

π
√

L4m2δ2 + m6π4(1 + u2)β2δ2η2 + L2m4π2(1 + β2δ2 + u2(1 + β2δ2) + δ2η2)√
L2(L2 + m2π2(α2 + (1 + u2)β2))(L2 + m2π2η2)

√
EI

ρAL4

)
. (46)

On setting β = 0, α = 0 in Equation (44), the differential equation for the Euler–Bernoulli
nanotube is obtained:

m4π4
(
−1− u2 − δ2η2

)
+ Ω2 −m2π2

(
δ2 − η2Ω2

)
= 0, (47)
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whose solution is given by:

ΩEU
m =

π
√

m2(δ2 + m2π2(1 + u2 + δ2η2))√
1 + m2π2η2

. (48)

From Equation (48), the natural frequency of the Euler–Bernoulli nanotube is derived
as follows:

f EU
m =

ωEU
m

2π
=

1
2π

(√
π2(m4π2 + m4π2u2 + m2δ2 + m4π2δ2η2)

1 + m2π2η2

√
EI

ρAL4

)
. (49)

4. Numerical Results and Discussion

In order to evaluate the effects of the nonlocal parameter, surface effects, and length of
the nanotube on the natural frequency of nanotubes, the suggested analytical method is
validated in this section. A few numerical examples have been carried out, and the findings
are compared with those of previous works that have been published in the literature.
The numerical computations have been carried out using in-house software created in the
Mathematica language [33–36].

4.1. Effect of Surface and Nonlocal Parameters on the Frequency Ratio of Timoshenko–Ehrenfest
Nanotubes

As a first numerical example, let us consider the material properties of an anodic
alumina nanotube with crystallographic of (111) direction, as deduced in [28]: E = 70 GPa,
G = 27 GPa, ρ = 2700 m3, Es = 5.1882 N/m, τ = 0.9108 N/m, K = 5/6. Setting α = 0 and
β = 0, the case of the nanotube is analyzed, satisfying the boundary conditions between
the nanotube and its surfaces. To investigate the influence of considering the nonlocal and
surface effects, the first three natural frequencies of an alumina Timoshenko–Ehrenfest
nanotube, normalized with respect to the fundamental Euler–Bernoulli natural frequencies,
versus the aspect ratios, L/Ro , are plotted. The effect of varying the aspect ratio L/Ro for
the nonlocal and surface parameters on the free frequencies of the nanotube is investigated
for two cases of constant, Ro/h =2 and Ro/h = 6, and for the first three vibration modes.
The results are obtained for the simply supported (S-S) boundary condition.

In Figure 3a, the variations in the normalized natural frequency ratios with respect
to the aspect ratios of the nanotubes are plotted for two nonlocal parameter values equal
to η = 0, η = 0.2 and with a constant ratio value Ro/h = 2.

According to the plotted curves in Figure 3a, with the increase in local parameters, the
normalized natural frequency ratio increases, and the first non-dimensional frequency ratio
is more sensitive to the initial condition. The variations in the first frequency are more than
in the second and third ones and, for a constant value of aspect ratio L/R and by varying
the nonlocal effect η, it is revealed that the difference between the values of the first and
second modes slightly increases. On the other hand, for η = 0 and η = 0.2, one can see that
the values of the frequency ratio of the second and third shape mode decrease with respect
to the first natural frequencies.

Similar findings as those found in Figure 3a can be observed in Figure 3b for the
case of the nanotube with a constant ratio Ro /h = 6. It is observed from Figure 3b that,
for the constant ratio Ro /h of the nanotube with an increase in the aspect ratio, the
non-dimensional natural frequency ratio increases. Additionally, the figure illustrates
that increasing the nonlocal parameter causes an increase in the non-dimensional natural
frequency ratio. The results show that the shape of the modes does not significantly change
against the previous one in the first and second modes; however, it has a meaningful effect
on the configuration of the third mode. A comparison between the curves of Figure 3a
with those of Figure 3b, in fact, indicates that there are significant differences between the
results of the two cases, especially for short lengths. It is also shown that, by increasing the
nonlocal parameter, the second non-dimensional frequency ratio increases with respect to
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the first non-dimensional frequency ratio, whereas the third one decreases. It is obviously
inferred that the greater values of the nonlocal parameter have much more influence on the
higher mode shapes of the nanotube.

(a)

(b)

Figure 3. (a) Plot of normalized natural frequencies vs. aspect ratios, with Ro /h = 2 and two nonlocal
parameter values η = 0, η = 0.2; (b) Plot of normalized natural frequencies vs. aspect ratios, with Ro

/h = 6 and two nonlocal parameter values η = 0, η = 0.2.

In Figure 4, we calculate the relationship between the frequencies of the Timoshenko
and Euler–Bernoulli nanotubes by varying the ratio L/Ro in the range (6–36) and Ro /h in
the range (2–6). As can easily be seen in Figure 4, as the length of the nanotube increases,
the whole surface area tends to unity. This means that the greater the length of the nanotube,
the more the Timoshenko theory tends towards the Euler–Bernoulli theory, whatever the
ratio is between the internal radius R0 and the overall height of the nanotube h.
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Figure 4. Plot of normalized natural frequencies vs. aspect ratios, with Ro /h = 6 and two nonlocal
parameter values η = 0, η = 0.2.

4.2. Effect of Surface and Nonlocal Parameters on the Frequency Ratio of Timoshenko–Ehrenfest
Nanotubes by Varying the Constant Ratio Ro/h

In the second numerical example, the case of a single-walled carbon nanotube, with
L/Ro = 10 at different values of Ro/h and nonlocal parameters, is investigated. An example
is given to evaluate the effects of the nonlocal parameter, the surface parameter, and the
length of the nanotube on the free vibration frequency ratio of mode 1 of a Timoshenko
beam to a Bernoulli–Euler beam.

In Table 1, varying the ratio Ro/h = 0,10 and setting L/Ro = 10, the first natural
frequency of an alumina Timoshenko–Ehrenfest nanotube, normalized with respect to
the fundamental Euler–Bernoulli natural frequency, versus the constant ratio L/Ro = 10,
is calculated.

From Table 1, it can be seen that, for different values of the nonlocal parameter η, the
increase in the constant ratio Ro /h causes a decrease in the value of the natural frequency
ratio. Additionally, when the value of Ro /h is small, the ratio value is large because the
nanotube is stiff. In addition, it can be seen that increasing the nonlocal parameter increases
the frequency ratio. This is because the nonlocal effect is taken into account, which makes
the nanotube stiffer.

Table 1. First 10 non-dimensional natural frequency ratios of an S-S for different constant ratios Ro/h
and nonlocal parameter values, with L/Ro = 10.

R0/h η = 0 η = 0.2 η = 0.4

1 0.9574 0.9600 0.9657

2 0.9514 0.9553 0.9631

3 0.9459 0.9508 0.9601

4 0.9426 0.9483 0.9587

5 0.9405 0.9468 0.9579

6 0.9390 0.9457 0.9574

7 0.9377 0.9449 0.9571

8 0.9367 0.9442 0.9569

9 0.9357 0.9436 0.9567

10 0.9349 0.9431 0.9565
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5. Concluding Remarks

In the present study, the free vibration of a Timoshenko–Ehrenfest single-walled
carbon nanotube, based on the nonlocal theory and taking surface effects into account, has
been developed. A modified version of Timoshenko’s nonlocal elasticity theory—known
as the nonlocal truncated Timoshenko beam theory—is put forth to investigate the free
vibration behavior of single-walled carbon nanotubes, as indicated in [10,32]. Starting
from the Timoshenko truncated theory for the beam model and using the geometric and
variational approach, the truncated Timoshenko–Ehrenfest single-walled carbon nanotube
theory has been derived. Using Hamilton’s principle, the governing equations and the
corresponding boundary conditions have been derived.

As is well-known, it is not always possible to find analytical solutions for all sets of
boundary conditions and varied geometries. This circumstance has motivated the present
research. The novelty of the proposed approach has been devoted to finding solutions to
the eigenvalue problem of single-walled carbon nanotubes by employing the truncated
theory in those cases for which, to the authors’ knowledge, no analytical solutions have
been provided in the literature. Finally, a few numerical examples were proposed to show
the effectiveness of the proposed approach, including a comparison with results in the
literature. In particular, the results have shown that the present formulation is very efficient
and capable of satisfactorily describing the behavior of nanobeams. Finally, it was explained
how the nanotube length, surface effect, and nonlocal parameters influence the three initial
SWCNT frequencies.

The results shown in Figures 3a,b and 4 and in Table 1 allow the following consid-
erations to be made. The figures illustrate that increasing the nonlocal parameter causes
an increase in the natural frequency ratio; also, by increasing the nonlocal parameter, the
second frequency ratio increases with respect to the first non-dimensional frequency ratio,
whereas the third one decreases. Finally, for different values of nonlocal parameter η, the
increase in the constant ratio Ro/h causes a decrease in value of the natural frequency ratio.
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