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Abstract: Mechanical structural systems are subject to multiple dynamic disturbances during service.
While several possible scenarios can be examined to determine their design loading conditions, only
a relatively small set of such scenarios is considered critical. Therefore, only such particular deter-
ministic set of critical load cases is commonly employed for the structural design and optimization.
Nevertheless, during the design and optimization stages, the mass and stiffness distributions of
such assemblies vary, and, in consequence, their dynamic response also varies. Thus, it is important
to consider the variations in the dynamic loading conditions during the design-and-optimization
cycles. This paper studies the modal participation factors at length and proposes an alternative to the
current point-wise treatment of the dynamic equations of motion of flexible bodies during design
optimization. First, the most relevant-to-structural-dynamics definitions available in the literature are
reviewed in depth. Second, the analysis of those definitions that have the potential to be adopted as
point-wise constraint equations during structural optimization is extended. Finally, a proof of concept
is presented to demonstrate the usability of each definition, followed by a case study in which the
potential advantages of the proposed extended analysis are shown.

Keywords: modal contribution factor; modal participation factors; static modal decomposition;
design optimization; response tracking; point-wise constraint

1. Introduction

Complex mechanical systems often encounter dynamic disturbances that can affect
their performance. These disturbances, whether random or systematic, must be considered
at various stages of the design process to ensure the structure’s safety and efficiency.
During structural optimization, changes to mass and stiffness distributions can alter the
dynamic response of the system. Therefore, to optimize a structure effectively, designers
must account for variations in the dynamic loads throughout the design and optimization
process. Various dynamic optimization techniques have been developed for specific design
and structural applications. For example, in seismic design, a method called the sum
of modal compliances (SMC) [1] is used for high-rise structures. SMC involves solving
design-independent optimization problems and periodically updating load vectors based
on modal analysis.

The estimation of design loads can become both costly and time-intensive, depending
on the complexity of the numerical model and the number of simulations needed for
the design exploration. In such cases, it may be necessary to conduct load estimation
independently of the overall optimization process. Even when dealing with a single
scenario, simplifying the time-dependent constraint equations (dynamic equations of
motion) becomes crucial, achieved either through point-wise constraints or by transforming
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them into a single equivalent functional equation [2,3]. In large-scale system analyses
involving frequency sweeps, the interpolatory model order reduction technique [4] has
been demonstrated to be effective. It approximates response functions, reducing the
substantial computational workload in applications like vibro-acoustics and large-scale
structural dynamics. Additionally, several iterative sub-structuring methods [5] have been
devised to assess the influence of higher modes in the reduced eigenvalue equation. These
approaches enable the calculation of eigenvalues and their derivatives with computational
efficiency, maintaining numerical precision compared to global structural analysis.

In one of the above-mentioned approaches, developed to reduce computational ex-
pense, the point-wise treatment of the equations of motion in flexible bodies is thoroughly
considered. The idea is to replace the time dependency by identifying the worst-case point
(i.e., the time step and the magnitude) of the solution. However, one of the challenges
posed by this treatment is that the time step at which the maximum dynamic response
occurs during an iteration will change in the subsequent iteration [6–9]. To solve this
issue, a simpler but more expensive approach is to consider a coarser time grid for the
solution of the equation of motion [10–13]. Therefore, the development of a point-wise
methodology that allows the fast and accurate re-analysis of the worst-case point could
lead to significant computational savings and an improved overall optimization cycle. This
is especially significant when transient loads play a fundamental role in the design of a
mechanical assembly.

A search within the open literature shows that the concept of the “modal participation
factor” is somewhat ambiguous, as several variants exist for various applications; each
variant is used to identify specific metrics that are convenient to each discipline. For
example, in the context of electrical engineering, the term “modal participation” refers to
the product of the right and the left eigenvectors to measure the sensitivities of voltage to
reactive power variations [14–18].

Considering various spheres of study, such as mechanical structural response, vi-
brational analysis, and structural dynamics, several definitions of modal participation
factors have been developed. They are described below. In mechanical engineering, further
examples of the usage of the term “modal participation factor” can be found. For example,
Wallrapp and Wiedemann [19] used a quasi-static solution, from which they derived a
modal participation factor to assess the importance of a mode within that solution. Like-
wise, Chung-Band and Bahng [20] used the concept of modal strain energy to define a
modal participation factor and identify dominant modes. A similar study was carried out
by Zhou [21,22] for laminated thin composite plates in aerospace applications involving
severe dynamic loading conditions, in which modal participation factors were utilized as
influential parameters in the stress modal analysis (SMA) and evaluation of the critical
modes in the numerical finite element (FE) study. The reliability of modal participation
factors in the field of structural health monitoring, using guided waves, has also been
validated [23] via a semi-analytical finite element method, in which modal control was
studied in excitation and sensing distributions of waveguides for composites of an irregular
cross-section.

The use of the term “modal participation factor” is also a common topic in exper-
imental modal analysis, in which different definitions have been proposed [24,25]. For
example, Van Lagenhove and Brughmans [26] used the concept to identify the optimal
location for sensors [27] to correlate experimental and numerical data. Using modal partic-
ipation factors, the free response for the free vibration of a multilayered beam structure
was investigated [28], and the influence of hole configuration parameters, such as the array,
geometry, and filling ratio, was analyzed using numerical FE methods. These steps formed
an integral part of the design-optimization scheme for perforated beam configuration and
allowed the design decision-making process to be more focused and objective-oriented.

A comparative study of vibration modal analysis was also carried out [29] for various
constituent materials, such as Kevlar and carbon-based composites, to characterize me-
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chanical properties such as stiffness, storage modulus, and tensile strength for applications
in the dental field.

Within the context of structural dynamics, the term usually refers to the effective
modal mass participation factor, where the physical solution is recovered by the number of
modes [30–32]. Within the same context, some studies have utilized the same definition to
determine the eigenvector matrix [33,34], whereas, in other instances, researchers defined
a more convenient mathematical form and made an indistinct use of the term [35–40].
However, it is to be noted that the definition of modal participation has an associated
dichotomy [17] with it, especially in time-invariant linear systems, where it is observed
that there is interchangeability between the measurement of participation of the state in
modes [41] and that of participation of modes in states. This is solved using an averaging
technique of the initial conditions [17] with a symmetric uncertainty. A similar approach
was applied to nonlinear systems [41], where a similar dichotomy was expected and
provided a precise definition for the modal participation factors for an autonomous stem
with a smooth nonlinear nature.

In the field of civil engineering, an interesting formal definition, from a structural
dynamics perspective, is the static modal participation factor (SMPF) definition [10,42–49].
According to the conventional definition, the steady-state dynamic response of simple
numerical models can be recovered without directly solving the differential equation of
motion. This idea was later extended to the case of a cantilevered wing modeled using
finite elements [50]. A modal participation factor-based procedure has also been developed
and verified for the model updating technique for the computational model [42] of beam
structures. The model accuracy was improved by analyzing the error functions compared
to the experimental measurements and the contribution of modes for analyzing structural
response in both static and dynamic loading conditions.

In this paper, the concept of modal participation factors is investigated as a com-
putationally inexpensive alternative to the current point-wise treatment of the dynamic
equations of motion of flexible bodies. Taking into account the variety of definitions listed
above, proposing a unified concept and a simple classification of the different definitions
relevant to structural dynamics which can be found in the open literature seems convenient.
A proof of concept is demonstrated by applying the developed concept to a simple system
with 5 degrees of freedom (DoFs). Each selected definition explains the interpretation of
the results obtained. We further extend the analysis of those definitions that can potentially
replace the differential equations of motion of flexible bodies as point-wise constraint
equations during structural optimization. Finally, a case study involving an aircraft wing
structure is presented to demonstrate the capabilities of the developed analysis framework.

2. A Unified Concept

A unified concept for the definitions of modal participation and the modal contribution
factors can be established. A modal participation factor quantifies the contribution of a
mode to the structural response without the requirement of solving the dynamic equations
of motion. On the other hand, a modal contribution factor indicates the percentage of
the response contributed by the i-th mode to the n-th degree of freedom in the time-
domain solution.

An essential difference between these two concepts is that to estimate the modal
contribution, it is necessary to solve the equations of motion in the domains of space
and time. In contrast, modal participation factors can be estimated without solving the
equations of motion. Another important difference is that the modal contribution has a
single mathematical definition. In contrast, various mathematical definitions exist that
fall in the proposed concept of the modal participation factor. Below, the mathematical
formulations of both concepts are presented.
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2.1. Modal Contribution

The classical expression for the dynamic response of an undamped n-DoF system is
given below:

M
..
u(t) + Ku(t) = fp(t) (1)

where K and M are the stiffness and mass matrices of size n× n; n is the total number of
degrees of freedom (DoFs) in the system;

..
u(t) and u(t) are the vectors of nodal accelerations

and displacements of size n× 1; f is the nodal external force vector of size n× 1; and p(t) is
the time-domain function of the external force.

To uncouple the system of equations, the following change of variable is introduced:

u(t) = Φq(t) (2)

where q(t) is the vector of simple harmonic responses of size N × 1, herein referred to as
modal responses, and Φ is the matrix of eigenvectors of size n× N. N is the total number
of mode shapes retained in the system.

Substituting Equation (2) into Equation (1) results in the undamped free-vibration
equation of motion under the assumption of simple harmonic motion, which yields the
characteristic equation

(K− λM)Φ = 0 (3)

where λ is a diagonal matrix of the square of the natural frequencies, ωn, of the system.
In this context, the natural frequencies, ωn, are those values that satisfy the condition of
simple harmonic motion while the matrix of eigenvectors, Φ, provides the relationship
between the amplitudes of the modal responses, q(t), for each DoF.

Equation (2) is in a compact form and can be expressed alternatively in component
form as

un(t) =
N

∑
i=1

ϕn,i qi(t) = ϕn,1 q1(t) + ϕn,2 q2(t) + · · ·+ ϕn,N qN(t) (4)

where i is the mode number.
γni, indicating the modal contribution, can be mathematically defined, from Equation (4),

as follows [51–54]:
γn,i(t) = ϕn,iqi(t) (5)

2.2. Modal Participation Factors

Though many definitions of modal participation factors exist in the literature [10–39],
these can be generally classified based on their application into two classes, namely, static
modal participation factors (SMPFs) and modal relative effectiveness factors (MREFs). The
former aims to approximate the system modal response, qi(t), while the latter utilizes the
eigenvector matrix, Φ, to obtain an assessment of the system behavior without necessarily
quantifying that response.

The SMPF class can potentially be used as point-wise constraint equations during
design optimization. They are capable of determining the peak modal response and
subsequently approximating the solution in the physical domain (as shown in Equation (5))
without the need for a numerical solution of the equation of motion.

The second class of modal participation factors has a more restricted use. However,
for the sake of completeness, the most widely used mathematical definitions in this classifi-
cation are also presented below.

2.2.1. Class I: Static Modal Participation Factors (SMPFs)

In the modal response, the amplitude is indicated as the product of a time-dependent
term, di(t) [44,50,53,54], and a constant term, Γi.

qi(t) = Γi di(t) (6)
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In compact notation, each Γi constant is a component of the diagonal matrix Γ of size
N × N, which is defined as

Γ ≡ diag
(

ΦTf
)

(7)

while di(t) is the dynamic response of the i-th mode for a unitary forcing function, as given
by Equation (8), and a component of the vector d(t) of size N × 1 in the compact notation.

..
di(t) + ω2

ni
di(t) = p(t) (8)

For structural design and optimization, the focus is on the peak magnitude of the
response, denoted by u0, rather than in its time history u(t). Introducing Equation (6) in its
compact form into Equation (2) yields Equation (9), where it is evident that the vector of
peak nodal responses is directly proportional to the peak value of each entry of the vector
d(t), namely, d0.

u0 = ΦΓd0 (9)

Depending on the form of the unitary excitation p(t), a specific method can be selected
to find an analytical expression for each component of the vector d0, namely d0

i , without
the need to solve Equation (8) numerically for each i mode.

The Steady-State Participation Factor

The peak amplitude of the modal response, d0
i for a unitary forcing function, can be

expressed as the product of a static response dst
i and a dynamic amplification factor vi [42]:

d0
i = dst

i vi (10)

d0
i =

1(
ω2

ni

(
ω2

ni
−ω2

)) (11)

To compare this expression with other discussed definitions, we define a steady-state
modal participation fraction as the ratio between the absolute value of the steady-state
response of the i-th mode and the sum of all the absolute peak modal responses:

Lst
i =

∣∣Γid0
i

∣∣
∑N

i=1
∣∣Γid0

i

∣∣ =
∣∣∣∣ Γi
(ω2

ni (ω2
ni−ω2))

∣∣∣∣
∑N

i=1

∣∣∣∣ Γi
(ω2

ni (ω2
ni−ω2))

∣∣∣∣ (12)

The Transient I Participation Factor: Maximum Modal Response

Evaluating the steady participation factors does not consider the transient components
of the time-domain solution. An alternative to approximating the peak nodal response is to
consider the peak modal responses:

dmax
i = max(di(t)) (13)

Solving Equation (13) requires a closed-form solution or an optimization method to
locate the global maximum. However, classical gradient-based algorithms struggle to locate
the global maxima because Equation (8) is inherently multimodal.

A transient modal participation fraction, LtsI
i , is determined as the ratio between the

absolute magnitude of the peak modal response estimated using dmax
i and the sum of

the absolute magnitude of the peak modal responses. This is analogous to the steady
participation fraction discussed earlier.

LtsI
i =

∣∣Γidmax
i

∣∣
∑N

i=1
∣∣Γidmax

i

∣∣ (14)
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The Transient II Participation Factor: Time-Consistent Modal Response

It should be noted that Equation (13) makes an implicit assumption: the maximum
response in the physical domain occurs when all the modes act in phase. This assumption
is not always valid, and as a result, Equation (13) may tend to under- or overestimate the
peak nodal response.

To address these limitations, we introduce a definition for the modal participation
factor based on time consistency. If a mode’s contribution significantly outweighs that
of the remaining modes, that mode effectively “dominates” the solution in the physical
domain. Consequently, the response in the physical domain closely aligns with the behavior
of its dominant mode.

Continuing from the previous discussion, to approximate the peak nodal response,
we simply need to identify the time instant, tmax

dm , when the dominant mode exhibits
its peak response and estimate the values of the remaining modes at that specific time.
Mathematically, the peak nodal response can be expressed as

dtsI I
i = di(tmax

dom) (15)

Similar to Equations (12) and (14), a transient modal participation fraction, LtsI I
i , is

then defined as

LtsII
i =

∣∣ΓidtsI I
i

∣∣
∑N

i
∣∣ΓidtsI I

i

∣∣ (16)

Internal Load Participation Factor

The time-dependent elemental internal loads, le(t), induced in the structure by the
dynamic response are described by the following equation, in compact notation:

le(t) = CTKeue(t) = CTKeΦeΓd(t) (17)

where Ke and ue(t) are the element stiffness matrix and the vector of nodal displacements
associated with the element in the global coordinate system, respectively, and CT is the
transformation matrix used to translate the internal forces to the element coordinate system.

If the term ue(t) is further expanded into its modal components, it becomes evident
that four of its components CT, Ke, Φe, and Γ are time-invariant. Among these, Ke, Φe,
and Γ are strongly dependent on the mass and stiffness distribution of the structures. The
product Σe = CTKeΦe determines the impact of the i-th mode on the r-th component of the
load for each element, where rε{1 : 6} and Γd(t) determines the amplitude at which the
i-th mode oscillates.

To compare this definition to the second class of participation factors, we introduce
the following modal participation fraction:

Lload
r,i =

|Σer,iΓidi|
∑N

i=1|Σer,iΓidi|
(18)

The term di is written without an upper index in Equation (18) to indicate that any
mathematical form used to solve for di may be employed. It should be noted that the
purpose behind defining the modal participation fractions is to compare the outcomes of
various mathematical formulations of “modal participation factors”.

2.2.2. Class II: Modal Relative Effectiveness Factors (MREFs)

The second class of modal participation factors aims to identify mode shapes that are
easily excited. Many of these factors employ equations to determine a constant parameter
that offers insight into the system’s behavior without the need to solve any differential
equations of motion.

The modal effective mass participation factor, a prominent member of the second-class
classification, plays a crucial role in selecting the optimal number of modes needed to
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represent the physical domain [31,55]. Various approaches have been proposed to define
these factors, as discussed in the literature. For instance, Wilson [38] introduced a modal
participation factor akin to Equation (7) to identify influential modes for advanced analyses.

The effective mass participation factor has found applications in diverse fields, in-
cluding the study of vibration control in air thrusters [56]. In one application, a cantilever
beam was analyzed using a finite element model (FEM), with model reduction via the
mode displacement method for continuous control assessment [57]. The versatility of FEM
techniques has been demonstrated in numerous mechanical analysis studies. For instance,
it was applied to investigate CNT-reinforced composite plate and shell structures, encom-
passing both static [58] and dynamic [59] analyses with a director FEM model approach.
These structures exhibited various functional gradations, and the accuracy of results was
validated against literature values.

Additionally, a similar model based on nonlinear director FEM was developed for
studying nonlinear bending [60,61] and large deflection [62] in CNT- and graphene-
reinforced nanocomposite shell structures. Parametric studies were conducted to explore
the design aspects of reinforcements and their influence on structural responses across
various case studies, including beams, panels, and shells.

Modal Effective Mass Participation Factor

In the initial stages, the modal effective mass was calculated for a single-DoF system
subjected to a base acceleration. It was observed that the effective mass of the system varies
directly with the reaction force, s. Thus, it can be inferred that a significant inertial force is
present when a forced acceleration

..
a acts on a modal effective mass of considerable magnitude.

A Craig–Brampton transformation [55,63] can be utilized to extend the above theory
to multi-DoF systems which produce Equation (19) in compact notation.

s = Meff

[
1 +

(
ω

ωn

)2
H
(

ω

ωn

)]
..
a (19)

where a transfer function parameter is represented by H
(

ω
ωn

)
and Meff represents the

matrix of the modal effective masses. Each component of the matrix Meff is found using
the following expression:

me f f
p,i =

Γmm
p,i × Γmm

i,p

mqi
(20)

This quantity represents the effective mass of an elastic mode when coupled with a
rigid-body mode. The mass of each rigid-body degree of freedom, denoted as p, is equal to
the sum of masses associated with each elastic mode, i, for that rigid-body mode, p.

The constant Γmm denotes the matrix of modal effective mass participation factors
of size (N − p) × p (elastic-modes × rigid-modes), and mqi is the modal mass of the
i-th eigenvector in Equation (20). The former relates the rigid-body modes Φr of size
n × p (nodes × rigid-modes) with the matrix Φe indicating elastic modes and of size
n× (N − p) (nodes × elastic-modes) in compact notation as follows:

ΓmmT = ΦrTMΦe (21)

An important consideration in defining the modal effective mass, even in a free–free
multi-DoF system, is to examine the elastic degrees of freedom in relation to a specific
degree of freedom (DoF) known as the boundary DoF. The analysis requires constraining
this boundary DoF, a vital step in determining the modal characteristics of the system.
Ignoring this aspect can lead to inaccurate results when using Equation (20) because, for
free–free systems, the contribution of elastic DoFs tends to approach zero.

Within the context of the Craig–Bampton transformation, this important point is
intricately connected. For more details, readers are referred to [31,55]. Lastly, the effective
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modal mass fraction is defined as the ratio of the effective modal mass to the total system
mass, expressed in component form, as follows:

Lmm
p,i =

me f f
p,i

∑n
j=1 mn

(22)

Free–Free Modal Participation Factors

Based on the concept of effective interface mass (EIM), Kammer et al. [64] recently intro-
duced a new definition to assess the relative importance of each mode for free–free systems.

By introducing the variable change as per Equation (2) into Equation (1) in compact
notation and solving for the physical acceleration, the following expression is obtained:

..
u(t) = Φ

..
q(t) = ΦΦTfp(t)−Φλq(t) (23)

The product ΦΦT is conventionally considered as the connection between the response
of the j-th node when the n-th node is exposed to an excitation in structural dynamics. By
taking into account the product ΦΦTf, this interpretation can be strengthened, and as a
result, it is anticipated that the modes that are excited by the external force vector will
significantly add to the response of the system.

The trace of the product between two eigenvectors and the free–free modal partic-
ipation factor assumes the shape of Equation (24) in component form to evaluate the
above-discussed interactive contribution [64].

Γ
f ree

i = tr
(

ϕiϕi
T
)

(24)

A free–free modal participation fraction is the ratio between the free–free participa-
tion factors and the trace of the elastic degrees of freedom, Γelas, which is defined using
the output of Equation (24) and aids in forming a comparative analysis with the other
formulations discussed.

L f ree
i =

Γ
f ree

i
Γelas =

tr
(
ϕiϕi

T)
tr
(
ΦeΦeT) (25)

Modal Strain Energy Participation Factor

Here, Equation (26) is the widely adopted formula for strain energy SE(t).

SE(t) =
1
2

u(t)TKu(t) (26)

The term Kq, which denotes the matrix of modal stiffnesses, emerges when the strain
energy time history is decomposed into its modal components. The diagonal eigenvalue
matrix and the modal stiffness matrix are identical if the eigenvectors are mass-normalized.
A matrix of peak strain energies SEmax, of dimension n× N, may be constructed as follows,
assuming that the peak value is the object of interest:

SEmax =
1
2

qmaxTΦTKΦqmax =
1
2

qmaxTKqqmax (27)

Since the highest magnitude of the harmonic modal responses must be solved, the
strain energy matrix in Equation (27) can be complex and expensive to assess. Instead,
several researchers [20,65,66], and have suggested using the element modal strain energy
MSEji as a criterion for evaluation. The global coordinate system is used to describe and
make up the global stiffness matrix K, and the MSEji assesses the participation of each
mode in each element j stiffness submatrix Kej ,

MSEji =
1
2

ϕT
i Kejϕi (28)
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According to [67], a modal strain participation fraction, LMSE
ji , can be described as the

relationship between kinetic energy and strain energy when a system is in free oscillation.
Thus, the following relationship can be deduced:

LMSE
ji =

ϕT
i Kejϕi

ϕT
i Mϕiω2

ni

(29)

A high value of LMSE
ji for the i-th mode in the j-th element would indicate that any

variation in the i-th mode shape would produce a significant change in the value of the
elemental internal load.

3. Sensitivity of Load via Static Modal Participation Factors

In structural optimization, the dynamic behavior of a system is governed by vari-
ous parameters. To achieve minimum weight and maximum performance in functional
structures, these parameters are often adjusted. Gradient-based optimization methods,
commonly used, require the computation of costly derivatives for cost and constraint
functions. Typically, finite difference methods [68] are employed for this purpose, but this
approach can limit the practical application of optimizers.

Alternatively, the variation in dynamic loads can be approximated using the SMPF
method, as discussed in earlier sections. Various finite element models (FEMs) and
numerical methods [69,70] have also been developed for applications demanding high-
performance design parameters with a flexible structural modeling strategy.

Complex scenarios, such as the mechanical buckling behavior of fractionally graded
reinforcement in nanocomposites in the form of curved panels and plates, have been
analyzed [71]. This analysis includes determining influential parameters using a discrete
finite element shell model, which defines a displacement field and considers the effect of
transverse shear deformation. The same model has been extended to include a first-order
shear deformation theory for post-buckling analysis of functionally graded nanocomposite
cylindrical shells and plates under mechanical [72] and thermo-mechanical [73] load cases.

Techniques like hybrid structural modeling and the momentum-based approach
known as direct matrix input at a grid point (DMIG) are efficient methods for load re-
covery in load-bearing structures. These methods differ from the deformation approach
used in this study and have been shown to yield lower values of modal truncation errors
compared to deformation-based approaches and other load recovery methods.

Considering the time-invariant system as given by Equation (9), a small perturbation
∆ can be introduced into expression 17 in compact notation, yielding

l0
e + ∆l0

e = CT(Ke + ∆Ke)(Φe + ∆Φe )
(

Γ + ∆Γ)
(

d0 + ∆d0
)

(30)

Assuming that the optimizer-induced changes are parametric and sufficiently small,
we can disregard higher-order terms, resulting in Equation (31). This straightforward
expression relates the change in the magnitude of the maximum incremental dynamic load
∆l0

e due to small perturbations in the stiffness matrix ∆Ke, the eigenvectors ∆Φe, and the
peak dynamic response of the i-th mode for the unitary forcing function ∆d0.

∆l0
e = CT(Ke∆Φe + ∆KeΦe) diag

(
ΦTf

)
d0+

CTKeΦe

(
diag

(
ΦTf

)
∆d0 + diag

(
∆ΦTf

)
d0
) (31)

Since Equation (31) allows the quick estimation of the incremental load, this expression
can be used directly in the finite difference equation. By neglecting the contribution of
higher-order terms of the Taylor series expansion, the following expression is obtained:

l0
e

’
=

l0
e(z0 + ∆z)− l0

e(z0)

∆z
=

∆l0
e

∆z
(32)
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where z0 represents an initial design variable and ∆z is its corresponding incremental value.

4. Proof of Concept

A proof of concept is demonstrated using a cantilever beam model with 5 degrees of
freedom (DoFs), as illustrated in Figure 1. This example aims to help readers understand
the outcomes of each definition discussed in the paper and facilitate comparative analysis.
The model is subjected to a periodic dynamic load, p(t), applied to its free end, as defined
by Equation (33), where ω represents the forcing frequency and t denotes time.

p(t) = sin(ωt) (33)
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Figure 1. Proof of concept: cantilever beam with 5 degrees of freedom subjected to dynamic excitation
at its free end.

The modal response of the system, subjected to a load as described in Equation (3)
and assuming an under-damping damping ratio, ξ, of 5% for each mode, is numerically
computed using the fourth-order Runge–Kutta method [74]. The resulting time history is
presented in Figure 2a, clearly demonstrating the dominance of the first harmonic mode.
In Figure 2b, 2c, and 2d, we illustrate the modal contributions to the physical response at
degrees of freedom 1, 3, and 5, respectively, as calculated based on Equation (3). These
figures also include the superimposed total nodal response. It is important to note that the
contribution of the i-th mode varies for each j-th nodal response.

To estimate the modal participation fraction of the system at hand using
Equations (14) and (16), an appropriate expression for di(t) must be derived. This can
be easily accomplished by the classic method of undetermined parameters, where the
resulting expression becomes

di(t) =
1[

ω4
ni
−ω4 + (2ξωni ω)2

]
e−ξωni t

[
2ξωni ωCos(ωdt)− ω

ωd

(
ω2

ni
− 2ξ2ωni + ω2

)
Sin(ωdt)

]
+
(

ω2
ni
+ ω2

)
Sin(ωt)− 2ξωni ωCos(ωt)

 (34)

where ωd is the damped frequency and is expressed as

ωd = ωni

√
|ξ2 − 1| (35)

To determine the peak amplitude of di, the saddle points of Equation (34) are located
by satisfying the first-order necessary condition [75], which yields the following expression:

e−ξωni t
[

ξωni
ωd

Sin(ωdt)
(

ω2
ni
−2ξ2ωni + ω2−2ω2

d

)
+Cos(ωdt)

(
2ξ2ωni −ω2 −ω2

ni

(
1 + 2ξ2))]

= . . . . . .
(

ω2
ni
+ ω2

)
Cos(ωt)−2ξωni ω Sin(ωt)

(36)
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Figure 2. (a) Solution of the modal coordinates for cantilever beam subjected to a periodic forcing
function at its free end. (b) Modal contributions of the physical response at DoF 1. (c) Modal
contributions of the physical response at DoF 3. (d) Modal contributions of the physical response at
DoF 5.
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The peak amplitude of the multimodal Equation (34) can be determined by locating
the roots of Equation (36). It is worth noting that the peak response occurs during the
transient period, so only the roots within this period are relevant. Finally, by applying
Equations (14) and (16) in conjunction with Equations (34)–(36), the participation fraction
contribution associated with each mode during the transient period can be computed.

The estimated modal participation fractions using modes 12, 14, 16, 22, and 25 are
presented in Table 1. The steady-state Lst

i , the transition LtsI
i , and the time-consistent LtsI I

i
participation fractions are estimates of the amplitude of the modal response. As Figure 2a
illustrates, these percentages of participation align well with the observed trend: the first
mode exhibits a significantly larger amplitude compared to the fifth mode at the given
excitation frequency.

Table 1. Participation factors for an under-damped system subjected to a sinusoidal forcing function.

Mode Lst
i (12) LtsI

i (14) LtsII
i (16) Lmm

i (22) Lfree
i (25)

1 0.8558 0.8627 0.8658 0.8819 0.1993
2 0.0934 0.0890 0.0872 0.0851 0.1996
3 0.0318 0.0302 0.0294 0.0225 0.2029
4 0.0136 0.0129 0.0126 0.0088 0.1987
5 0.0054 0.0051 0.0050 0.0016 0.1995

The results in Figure 2a also align with the modal effective mass participation factor.
A high modal effective mass indicates that a particular mode possesses a substantial modal
inertial component, rendering it susceptible to excitation. However, it is worth noting
that this metric remains constant for a given system and is independent of the excitation
frequency. Consequently, while the modal effective mass is informative, it may not be
the most suitable indicator for assessing modal response values, as these responses are
influenced by the ratio of natural to excitation frequencies.

The various free–free participation fractions discussed differ from the remainder of the
computed participation factors simply because the results imply that the contribution of all
the modes is similar. This is because the modal residue is comparable to the trace product
of the two equal eigenvectors. In other words, it depicts the reaction of the j-th node to an
applied force on the r-th node. As a result, this definition does not offer a true evaluation of
a mode’s relevance but instead evaluates the reaction in a node, j, when a force is applied.

The maximum value of the elemental shear force can be calculated based on Equation (17)
and the prior values of the steady-state Lst

i , the transition LtsI
i , and the time-consistent LtsII

i
participation percentages. Table 2 presents the findings of the analysis, where the most
accurate results were recorded using the time-consistent LtsI I

i .

Table 2. Estimation of the peak shear force for an under-damped system subjected to a sinusoidal
forcing function.

Element Actual
Peak Load (N) Load Lst

i (N) % Error Load LtsI
i (N) % Error Load LtsII

i (N) % Error

1 53.1225 48.9718 −7.8134% 57.9858 9.1550% 53.0976 −0.0467%
2 53.7885 49.9985 −7.0461% 45.8251 −14.8049% 53.8574 0.1282%
3 51.5479 48.6080 −5.7032% 49.1496 −4.6525% 51.5973 0.0959%
4 51.3453 49.3883 −3.8114% 65.4091 27.3906% 51.3164 −0.0563%
5 51.2290 50.5989 −1.2300% 38.6055 −24.6413% 51.0221 −0.4039%

The error in the calculation of Lst
i is owing to the exclusion of the transient components,

and in a real scenario, the load recovered corresponds to only the actual steady-state shear
force. The error value related to LtsI

i on the other hand, was observed to be much higher.
There is an over/underestimation in the calculation of the maximum response value, and
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therefore, the peak load is due to some fundamental assumptions such as the assumption
that the modes are in phase.

Finally, by combining Equation (18) with Equations (11), (13) and (15), we computed
the participation fractions associated with individual modes in response to the internal load.
Additionally, Equation (29) was employed to calculate the modal strain energy. To facilitate
comparison, all datasets were normalized relative to their largest magnitude component.
The results are presented in Figure 3.
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Figure 3. Element force normalized modal participation fractions for (a) element 1, (b) element 2,
(c) element 3, (d) element 4, and (e) element 5 and modes 1 to 5.

Figure 3 displays the normalized load participation factors for elements 1–5 of the
cantilever beam, as shown in Figure 3a–e, respectively. These results confirm that
the estimated participation factors obtained using various approaches described in
Equations (11), (13) and (15) in conjunction with Equation (18) exhibit excellent agree-
ment. However, it is noteworthy that the mode participation calculated through the modal
strain energy method exhibits considerable variation.
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Equation (17) is a product of two terms: first, Γi di is a measure of the amplitude of
the modal response; second, Σer,i reflects the difference in the magnitude of the relative
amplitudes of the nodes associated with a certain mode. The smaller the disparity in
relative amplitudes, the less the mode contribution to the entire spectrum. To illustrate
this, examine the load distribution in element 1, as shown in Figure 3, which is influenced
by both the first and second modes. In contrast, element 5 still exhibits the dominance
of the first mode, albeit to a lesser extent, while other modes become more influential.
Consequently, any structural modification that impacts the behavior of the first mode will
exert a substantial influence on the load experienced by element 1, but its effect on element
5 will be comparatively smaller.

In Figure 3, we observe the modal strain energy, which indicates that higher-order
modes make more substantial contributions to the overall response. It is important to note
that the definition in Equation (29) represents the ratio of elemental modal strain energy to
the modal kinetic energy of the system. As a result, a lower value implies that the kinetic
energy, representing the inertial component, has a greater impact on the response compared
to the quasi-static elemental modal strain energy.

For example, element 5 contains a significant third-mode modal strain energy. Conse-
quently, any change to the third mode shape (ϕ3) would significantly affect the response of
element 5. Conversely, any change to the shape of the first mode (ϕ1) would not record a
significant influence on its response. However, this would not be the case if a variation was
made to the natural frequency (ωn1); a substantial change in the system’s kinetic energy
and, therefore, an effect on the load-acting element 5 can be predicted.

Approximate Derivative of Element Internal Load via SMPF

A series of mass and stiffness parametric variations were performed on the 5-DoF
model. The loads were recovered after each modification using the classical solution
method (i.e., solving the differential equations of motion in the modal domain) and the
SMPF method with the time-consistent LtsI I

i approach.
The partial derivative of the peak load concerning the variation in the first eigen-

value was estimated using the traditional finite difference equation with truncated error.
Alternatively, it was computed using Equation (32) in conjunction with Equation (15).

The numerical results are presented in Table 3 for all five elements, where good agreement
is found between the two methods. The error associated with the use of Equation (32) in
combination with Equation (15) is due, firstly, to the accumulated error of the approximated
peak response using LtsI I

i and, secondly, to the assumption that the changes in the mass and
stiffness distribution are sufficiently small to truncate higher-order terms of Equation (30).

Table 3. Comparison of the partial derivatives obtained using the traditional finite difference equation
versus those computed via SMPF.

It

Element 1 Element 2 Element 3 Element 4 Element 5

Finite
Diff lmax

e
’ Error Finite

Diff lmax
e

’ Error Finite
Diff lmax

e
’ Error Finite

Diff lmax
e

’ Error Finite
Diff lmax

e
’ Error

1 −1.730 −1.730 0.000 −2.820 −2.820 0.000 −1.627 −1.627 0.000 −2.662 −2.662 0.000 −1.646 −1.646 0.000
2 −1.616 −1.730 0.114 −2.880 −2.820 −0.060 −1.692 −1.627 −0.065 −2.685 −2.662 −0.022 −1.888 −1.646 −0.242
3 −1.853 −1.734 −0.119 −2.645 −2.846 0.201 −1.683 −1.627 −0.056 −2.566 −2.684 0.118 −1.889 −1.644 −0.245
4 −1.873 −1.734 −0.139 −3.116 −2.869 −0.247 −1.630 −1.624 −0.006 −2.963 −2.703 −0.260 −1.894 −1.641 −0.253
5 −1.403 −1.731 0.328 −2.763 −2.891 0.128 −1.332 −1.619 0.287 −2.806 −2.721 −0.086 −1.944 −1.636 −0.308

5. Case Study

As demonstrated in the initial proof of concept, the second class of participation factors
can be employed to rapidly assess the relative modal contributions within the solution.
Additionally, the SMPF method could serve as a re-analysis technique for approximating
the peak physical response without the need to solve differential equations.

Therefore, to further exploit the latter concept, parametric mass and stiffness variations
were performed in an airframe stick model [76], and the after-modification critical loading
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conditions were found via the SMPF method. In total, 26 parametric variations were
considered, and only the time-consistent LtsI I

i participation fractions were used due to
their previously proven accuracy. The reduced-order stick models are already proven to be
consistent with the results of full-order finite element (FE) in several structural load cases
for analyzing the responses of specialized cases such as self-elevating units (SEUs) [77].
Several studies have demonstrated techniques in practical multidisciplinary design [4] for
networks of aircraft components, including an automated load process with a two-level
load approach, including aeroelastic analysis and sensitivity studies of the influential
parameters. In certain advanced studies, a discrete director-based finite element (FE)
formulation was also shown to be robust for free vibration analysis of various carbon
nanotube (CNT)-reinforced structures such as composite shells, cylindrical panels, and
plates [78], including cases of functional grading for material distribution and thermal
effects [79].

For simplicity, the dynamic excitation vector, f, is represented as a linearly distributed
force over the wing span, as seen in Figure 4, starting with an applied force of 1000 N at
the wing root node (located at a normalized distance y = 0.0) and finishing with a force of
480 N at the wing tip node (located at a normalized distance y = 1.0). The time history, p(t),
of the dynamic excitation is given by Equation (37), which in the context of aeronautics, is
representative of a wind gust [80].

p(t) =
{

1− cos(ωt) 0 ≤ t ≤ 2π
ω

0 t ≥ 2π
ω

(37)
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Figure 4. Case study: stick model with a symmetrically distributed force over the wing.

The model was subjected to a family of “gusts” with various wavelengths, ranging
from 12.5 to 31.5 radians, from which the resulting dynamic peak loads had to be identified.
In particular, these loads were the peak out-of-plane bending moment (OPB moment), the
peak out-of-plane shear force (OPS force), and the peak torsion moment at four monitored
elements located at wing spans of y = 0.00, y = 0.33, y = 0.66, and y = 1.00.

To approximate the structures’ peak dynamic response, an appropriate expression for
di(t) was derived via the impulse response function, which yields the following equation:

di(t) =


1

ω2
ni
(1− cos(ωni t))− 2

ω2−ω2
ni

sin
(

ω+ωni
2 t

)
sin
(

ω+ωni
2 t

)
0 ≤ t ≤ 2π

ω

1
ω2

ni
(cos(ωni (t− τ))− cos(ωni t)) +

2
2ωni (ω−ωni )

(cos((ω−ωni )τ+ωni t)− cos(ωni t))− . . .

. . . 2
2ωni (ω+ωni )

(cos((ω+ωni )τ−ωni t)− cos(ωni t)) t ≥ 2π
ω

(38)

The saddle points of the above equation are located when the first-order necessary
condition is satisfied, which provides the following expression:
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0 =


sin(ωni t)−

(
ωni
ω

)
sin(ωt)

2
ωni

cos
(
ωni

(
t− π

ω

))
sin
(

ωni
ω π

)
+

(
1

(ω−ωni )

)
cos
(

1+ωni

(
t− 1

ω

))
sin
(

ωni
ω π − 1

)
− . . .

. . .
(

1
(ω+ωni )

)
sin
(

ωni t + π
(

1+
ωni
ω

))
cos
(

π
(

1+
ωni
ω

)) t ≥ 2π
ω

(39)

To estimate the peak amplitude of di(t), the roots of Equation (39) are found for the
dominant mode. Expression (38) is evaluated to find tmax

dom , and the magnitude of remaining
modes retained is estimated using Equation (38) at tmax

dom . Finally, Equation (17) is used to
recover the element peak loads in the physical domain.

The normalized magnitude of various peak loads obtained using the improved SMPF
method is shown in Figures 5–8 and compared to results obtained using Nastran’s solution
112. Again, excellent agreement is found between the two numerical results.
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Figure 5. Comparison of the normalized magnitude of the peak (a) out-of-plane bending moment
(OPB), (b) out-of-plane shear force (OPS), and (c) torsion moment at the wing root (y = 0.00) obtained
using SMPF (blue scatter points) versus those obtained using Nastran solution 112 (black scatter
points). The corresponding RMS percentage error is shown at the bottom of each subplot.

The root mean square (RMS) error of the torsional moment at the wing root is notably
the highest, at a magnitude of 2.99 percent, primarily due to the significant contribution
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of high-order modes. It is worth noting that Equation (15) assumes that the peak physical
response occurs at tmax

dom (i.e., the time instant where the peak of the single dominant mode
occurs). However, when higher-order modes start to play a more substantial role, the peak
physical response may occur close to but not exactly at tmax

dom . Consequently, this assumption
may fail to accurately capture the maximum physical response in cases where two or more
modes are equally dominant in the solution.
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corresponding RMS percentage error is shown at the bottom of each subplot.
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more modes are equally dominant in the solution. 

  

Figure 8. Comparison of the normalized magnitude of the peak (a) out-of-plane bending moment
(OPB), (b) out-of-plane shear force (OPS), and (c) torsion moment at y = 1.00 obtained using SMPF
(blue scatter points) versus those obtained using Nastran solution 112 (black scatter points). The
corresponding RMS percentage error is shown at the bottom of each subplot.

Approximate Derivative of Element Internal Load via SMPF

The approximated sensitivity of the OPB moment, the OPS force, and the torsion
moment with respect to the variation in the first eigenvalue are presented in Figures 9–12
for the four elements of interest. The RMS error of each plot is presented as a legend at the
bottom of each figure. The torsion moment exhibits the highest error among them.
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Figure 10. Approximated sensitivity derivative of (a) the OPB moment, (b) the OPS force, and (c) 
the torsion moment with respect to the variation in the first eigenvalue at 𝑦 = 0.33. 
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Figure 11. Approximated sensitivity derivative of (a) the OPB moment, (b) the OPS force, and (c) 
the torsion moment with respect to the variation in the first eigenvalue at 𝑦 = 0.66. 
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Figure 12. Approximated sensitivity derivative of (a) the OPB moment, (b) the OPS force, and (c) 
the torsion moment with respect to the variation in the first eigenvalue at 𝑦 = 1.00. 
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While some outliers are noticeable, there is generally good agreement between the
finite difference method and Equation (32). These outliers are likely caused by the omission
of higher-order terms in Equation (31) leading to a loss of information.

6. Conclusions

In this paper, the concept of modal participation factors (MPFs) is proposed as an
alternative to the current point-wise treatment of the dynamic equations of motion of
flexible structures. An in-depth literature review was conducted to determine the MPFs
that are most relevant to structural dynamics and can be employed as point-wise con-
straint equations during structural design. It was found that though the second class of
participation factors can be used to evaluate the relative contribution of a mode within
the solution inexpensively, it is the SMPF method (which was discussed under the first
class of participation factors) that can potentially be utilized in the point-wise constraint
equations during the numerical optimization of dynamic systems. The advantage of the
method lies in the existence of a closed-form solution and the dominance of a single mode.
However, in cases where two or more modes are equally relevant in the solution, each of
their contributions must be accounted for before determining the time step at which the
peak response (i.e., maximum or minimum) occurs.

The sensitivities of the peak transient loads can be approximated using the SMPF
method without the need to solve any differential equations, thus reducing the computa-
tional expense. However, the associated truncated higher-order error terms may introduce
inaccuracies in the approximation. This error compounds the well-known inaccuracies of
the finite difference method when the step size (the mass and stiffness variations, in this
case) is not sufficiently small.

Finally, the second class of modal participation factors, especially the modal strain
energy, can be considered as a useful pre-analysis tool. These metrics can assist decision
making in traditional structural sizing, relying on the engineer’s judgment. During multi-
objective optimization cycles, the development of model updating techniques can also be
invaluable for analyzing the fluctuations in error within the dynamic characteristics of the
studied structure. This approach holds promise, particularly when supported by resources
like supercomputing, for analyzing large-scale structures with a substantial number of
degrees of freedom and complex computational models.
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Nomenclature

Matrices

C
Transformation matrix used to translate the internal forces to the element
coordinate system

H
(

ω
ωn

)
Matrix of transfer functions of the system

K Stiffness matrix
Ke Element stiffness matrix
Kq Modal stiffness matrix
M Mass matrix
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Meff Matrix of modal effective masses
SEmax Matrix of peak strain energies
Φ Matrix of eigenvectors
Φe Partition of the matrix of eigenvectors associated with the nodes of element e
Φe Partition of the matrix of eigenvectors associated with the elastic modes
Φr Partition of the matrix of eigenvectors associated with the rigid-body modes
λ Diagonal matrix of square natural frequencies
Γ Diagonal matrix
Γmm Matrix of modal effective mass participation factors of size N × p
Σe Matrix equal to the product of CTKeΦe
Vectors
..
a Vector of enforced acceleration
d(t) Vector of dynamic responses for a unitary forcing function
d0 Vector of peak dynamic responses for a unitary forcing function
f External force vector
le(t) Time-dependent element internal load vector
q(t) Vector of time-dependent harmonic responses
s Vector of nodal reaction forces
u(t) Vector of time-dependent nodal displacements
u0 Vector of peak nodal displacements
..
u(t) Vector of time-dependent nodal acceleration
ϕi Eigenvector associated with the i-th mode
Scalars
Lst

i Steady-state modal participation fraction
LtsI

i Transient modal participation fraction
LtsI I

i Transient modal participation fraction II
Lload

r,i Load participation fraction
Lmm

p,i Modal effective mass fraction
LMSE

ji Modal strain energy participation fraction
MSEji Modal strain energy of the i-th mode at the j-th element
N Total number of modes retained
SE(t) Time-dependent strain energy
i Subindex indicating a mode
di(t) Dynamic response of the i-th mode for a unitary forcing function.
d0

i Component of vector d0

dst
i Static response of the i-th mode to a unitary forcing function

dmax
i Peak modal response of the i-th mode to a unitary forcing function

dtsI I
i Response of the i-th mode to a unitary forcing function at the time instant tmax

dm
mn Nodal mass
me f f

p,i Components of the matrix of modal effective masses

mqi Modal mass of the i-th eigenvector
n Number of nodes
p(t) Time domain function of the external force
p Total number of rigid-body modes
qi(t) Scalar function of the i-th harmonic mode Component of the harmonic response vector
r r-th component of the load ( rε{1 : 6})
t Time
tmax
dm Time instant at which the peak response of the dominant mode occurs

un(t)
Scalar time-dependent function of the displacement of the n-th nodeComponent
of the vector of nodal displacements u(t)

vi Dynamic amplification factor of the i-th mode
ωni Natural frequency of the i-th mode

ω Forcing frequency
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ϕn,i Component of the eigenvector matrix located at row n, column i
γn,i(t) Scalar time-dependent function of the modal contribution of the i-th mode atthe n-th node
Σer,i Component of the matrix Σe
Γi Component of the diagonal matrix Γ

Γmm
p,i Component of the modal effective mass participation factor matrix of size N × p

Γ
f ree

i Free–free participation factor of the i-th mode
Γelas Trace of the elastic degrees of freedom
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