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Abstract: Natural circulation loops are thermohydraulic circuits used to transport heat from a source
to a sink in the absence of a pump, using the forces induced by the thermal expansion of a working
fluid to circulate it. Natural circulation loops have a wide range of engineering applications such as
in nuclear power plants, solar systems, and geothermic and electronic cooling. The Lattice Boltzmann
Method was applied to the simulation of this thermohydraulic system. This numerical method has
several interesting features for engineering applications, such as parallelization capabilities or direct
temporal convergence. A 2D model of a single-phase natural circulation mini-loop with a small
inner diameter was implemented and tested under different operation conditions following a double
distribution function approach (coupling a lattice for the fluid and a secondary lattice for the thermal
field). An analytical relationship between the Reynolds number and the modified Grashof number
was used to validate the numerical model. Two regimes were found for the circulation, a laminar
regime for low Reynolds numbers and a non-laminar regime characterized by a traveling vortex
near the heater and cooler’s walls. Both regimes did not present flux inversion and are considered
stable. The recirculation of the fluid can explain some of the heat transfer characteristics in each
regime. Changing the Prandtl number to a higher value affects the transient response, increasing the
temperature and velocity oscillations before reaching the steady state.
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1. Introduction

Natural circulation loops (NCLs) are engineering systems used to transport heat from
a source to a sink by the motion of a working fluid induced by the thermal expansion. It is
interesting because this kind of thermal circuit can work without a pump or a recirculation
system [1]. NCLs find application in several fields such as electronic cooling, geothermic
cooling, solar systems, and nuclear power plants [2]. The working fluid can be in a single
phase (e.g., water in the liquid phase or air in the gas phase) or have two phases. In the rest
of this work, the focus will be on a single-phase NCL.

Some analytical relationships can predict the flow characteristics of the loops under
selected operational parameters such as geometric dimension, fluid properties, source,
and sink characteristics for laminar regimes [3] and transition or turbulent regimes [4].
These relationships have been validated by comparison with experimental data from
laboratories around the world. The stability of an NCL is a primordial problem because,
under some operational parameters and loop geometries, the flow direction can be inverted,
and the system flow can become chaotic [5], an undesirable situation for critical engineering
applications that require predictable heat flux removal. In recent years, experimental works
have found that localized pressure losses can stabilize the loops [6], and it was also found
that an NCL with a small inner diameter is stable and can work connected in parallel [7,8]
with small disturbances even if the power provided to one parallel loop changes.
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Previous works have evaluated the performance of rectangular-shaped, single-phase
NCLs with end heat exchangers mainly by developing analytical models, simulations, or
experiments. One early computational work used a one-dimensional model (Rao, 2002 [9]).
This model considers the temperature profiles along the end heat exchangers, which work
in counterflow (heater and heat sink). Later, finite element method simulations were
developed by Rao et al., 2005 [10]. They developed a one-dimensional model (including
equations for the end heat exchangers) to test the effect of different thermal excitation
functions on the time to reach the steady state. They found that the maximum and minimum
temperature values during the transient response are equal, but there was a delay in
the circuit response, this delay changes for each excitation simulated (ramp, step, and
exponential). This one-dimensional approach allows for the calculation of a longitudinal
temperature profile along the NCL pipes. Additional studies focused on dynamic and total
pressure variation (Rao et al., 2008) [11]. A single-phase CO2 NCL with end heat exchangers
has been investigated in a steady state using finite differences and the one-dimensional
model developed by Kumar and Gopal in 2009 [12], who validated their approach by
comparing the results with analytic expressions for the temperature and volume flow rate.

Yadav et al., 2012 [13], simulated a rectangular NCL with end heat exchangers using
a CFD model. They propose a nondimensional correlation for the Reynolds number
and the modified Grashof number in the turbulent regime (7000 < Re < 360,000). Later,
Yadav et al., in 2014 [14], performed a simulation with different tilt angles and found that
the tilt angle increases the mass flow rate and decreases the heat exchange. Moreover,
they also found that a higher operating pressure reduces the time to reach the steady
state. They corroborated the Swapnalee and Vijayan empirical correlation for the turbulent
regime [3] as well as the previously proposed computational correlation [15] (valid from
27,000 < Re < 180,000). Both correlations have small changes but take the same functional
form. Cheng et al., in 2018 [16], using a 3D CFD model, simulated the transient response
of a single-phase NCL, evaluating the mass flow rate and energy generation. They used
Vijayan’s correlation [3,17] for the laminar regime (originally proposed for imposed heat
flux at the heater) with a good fit for the tested Reynolds numbers (lower than 100). The
simulation showed a temperature gradient on the heat exchanger walls, generating an
asymmetric condition. Recently, a study on the jump in the heat transfer coefficient by
tilting the square NCL (single and coupled) was conducted using 2D and 3D numerical
models, with a simplified geometrical model (Dass and Gedupudi, 2021) [18].

In the above papers, the numerical simulation employed the classic techniques of CFD. In
this paper, to study a single-phase NCL, the Lattice Boltzmann Method (LBM) was adopted.

The LBM is a numerical method characterized by a mesoscopic approach [19,20], a
middle point between the macroscopical approach of Navier–Stokes-based models (e.g.,
finite element methods) and a microscopic approach (e.g., molecular dynamics methods).
The LBM considers the evolution of the probability density function by discretizing the
Boltzmann equation. Macroscopic variables (local density, momentum, and temperature)
are calculated by integrating the density function over the discretized velocity space. This
method is highly parallelizable via its local algorithmic rules. It can handle multi-physics
simulations by considering different lattices simultaneously, i.e., one lattice for the fluid
density and momentum and a second lattice for the temperature field, and some other
lattices if phenomena such as neutral particle transport or chemical species transport are of
interest [21]. The simplest LBM, called Bhatnagar–Gross–Krook (BGK), is characterized
by a single-relaxation-time collision operator [22] and can reproduce the Navier–Stokes
equation for semi-incompressible flows at low Mach numbers, but the model is limited to
isothermal flows.

Different upgrades of the LBM have been developed to account for thermal effects, as
was presented in the recent review by Sharma et al., 2020 [23]. Various approaches exist for
simulating heat transfer with LBM, including multispeed models, double distribution function
(DDF) models, and hybrid models that combine LBM for solving the Navier–Stokes equation
and another method (like finite differences) for solving the energy equation. Multispeed
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models involve an expanded velocity base, allowing for the direct calculation of internal
energy as the third-order moment of the density distribution function. On the other hand, the
DDF approach employs two lattices to describe the density and the thermal field. Internal
energy conservation is achieved by introducing a second distribution with its corresponding
Boltzmann transport equation. This approach offers the advantage of preserving the local
characteristic of the algorithm (thereby enabling parallelization capabilities). DDF addresses
stability issues and maintains the simplicity of the BGK collision scheme, although more
complex collision models, like multiple relaxation time (MRT) or entropic models, can also be
implemented. A comparison between hybrid and DDF methods was presented by Feng et al.
in 2018 [24].

Shan presented one of the earliest works utilizing LBM to simulate Rayleigh–Bernard
convection in 1997 [25]. This work adopted a DDF approach involving a passive advection–
diffusion equation for the thermal field. Notably, this thermal component does not contribute
to the momentum equation but is influenced by a body force, modeled using Boussinesq
approximation. However, this approach does not consider effects like viscous heat or com-
pression work. The model was validated with theoretical and experimental results. Guo et al.,
2002 [26], proposed a DDF model based on a simplified Shan and Shen approach, specifically
focusing on natural convection in a cavity. D’Orazio and Succi, 2004 [27], simulated natural
convection within a 2D channel using a DDF approach for the thermal energy density. They
introduced a term directly into the Boltzmann equation to account for viscous heating and
new thermal boundary conditions. The model proved to be applicable for scenarios involving
significant temperature differences. In 2010, Mohamad and Kuzmin [28] analyzed three strate-
gies for incorporating the force term into LBM-BGK. They test these strategies in the context
of natural convection within a cavity and found that all three schemes yielded comparable
results. Huang et al., in 2011 [29], demonstrated that different thermal field lattices (D2Q4,
D2Q5, and D2Q9) can provide similar outcomes in simulating natural convection. Similarly,
in complex boundary scenarios, Li et al. in 2017 [30] showcased the advantageous behavior of
the D2Q5 lattice, which even outperformed the D2Q9 scheme. This advantage is particularly
evident in cases involving curved geometries.

The LBM approach can simulate variable transport coefficients (viscosity and thermal
diffusivity) in natural convection [31]. By implementing a regularization scheme for the
advection–diffusion process of the thermal field (i.e., where non-equilibrium higher-order
moments are filtered, retaining only the first-order non-equilibrium moment to contribute
to diffusion) it becomes feasible to mitigate numerical noise and enhance the robustness of
the DDF-LBM [32]. Choi and Kim present a comparative study of diverse LBM methods
for studying natural convection in a cavity [33]. DDF has proven effective in various
applications, including modeling the natural circulation of nanofluids within a cavity with
curved boundaries [34], simulating the natural convection of ferrofluids within a linear
heated cavity [35], studying natural circulation driven by active blocks [36], analyzing
turbulent Rayleigh–Bernard convection within a channel [37], and investigating natural
circulation in a cavity using a low-Prandtl-number fluid [38].

Almost all the cited works have primarily concentrated on bidimensional models.
However, the scope should extend to implementing three-dimensional models based on
DDF-MRT for natural convection, as showcased by Li et al. [39]. While this is not an ex-
haustive overview of thermal LBM variants, we offer a selection of examples underscoring
the practicality of the thermal LBM based on a DDF approach. A complete review of
the thermal LBM can be found in [23,40,41]. Although this method has found successful
applications in simulating natural circulation in cavities and channels, only a few prior
studies from our research group have approached the NCL simulation using LBM. Previous
investigations have examined the effect of distinct heater–cooler configurations on the time
required to reach the steady state [42] and have explored the effects that emerged from
varying the fluid Prandtl number [43]. The latter study observed a divergence between
simulations and the analytical model for laminar flow for high Reynolds numbers. In the
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present work, we first endeavored to characterize the thermohydraulic behavior of the
NCL and delved into the study of the loop under different flow regimes.

This work aimed to present a single-phase NCL characterized by a small diameter,
simulated using the LBM, and to investigate its thermo-hydrodynamic characteristics under
various operational conditions. Furthermore, the model’s validity was established through
a comparison with the analytical model proposed by Cheng et al. [4] for the temperature
distribution along the loop and the relationship between the Reynolds number at steady
state and the modified Grashof number. The empirical correlation between the Nusselt and
Reynolds numbers was also employed to validate the simulated heat transfer performance.
Our findings reveal the presence of at least two thermohydraulic regimes. The transition
regime initiates at Reynolds numbers exceeding 320. While this value might appear low in
comparison to the conventional turbulent transition Reynolds number, it aligns with the
analysis made by Swapnalee and Vijayan [3]. They highlighted that closed NCLs exhibit
the transition regime at lower Reynolds numbers than those for straight pipes.

2. Materials and Methods

Figure 1 shows a schematic representation of the simulated loop and the main ge-
ometrical parameters considered. The width (W) and height (H) of the loop are set to
the same value (0.250 m), while the internal tube diameter (D) is 0.010 m. The numerical
model considers a square mini-loop with imposed heater and cooler temperatures (TH and
TC, respectively). The geometric proportions are similar to the experimental mini-loops
researched in [4,7,8]. The heater and the heat sink are located in a horizontal configura-
tion; this type of NCL is known as an HHHC (horizontal heater, horizontal cooler). The
HHHC configuration is interesting because it is symmetric, both flow directions are possible
(clockwise and anti-clockwise), and analytical expressions to validate the model results are
available in the literature. Details about the LBM implementation are given in Section 2.1.
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Figure 1. Simulated setup sketch.

The Rayleigh number (Ra) was varied from 103 to 107 to observe the thermohydraulic
behavior of the loop considering the velocity of the fluid into the channel (Reynolds num-
ber), the heat transfer characteristics (Nusselt number), and the thermal field (characterized
by the temperature difference between the two vertical legs and the modified Grashof
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number). Even if the bulk results consider a computational fluid with a Prandtl number
equal to one, some runs were made to observe the effect of changing the Prandtl number of
the fluid.

2.1. Numerical Model Thermal Lattice Boltzmann Method

The geometry described in Figure 1 is modeled using a uniform square lattice. Multi-
block allocation strategy is used to optimize memory usage, dividing the loop into four
domains: heater, cooler, and the two adiabatic vertical legs A and B, i.e., the empty central
nodes are excluded. The diameter is considered uniform along the two vertical legs, and
cooler and heater sections. A bidimensional model of the HHHC single-phase NCL is
implemented using the DDF approach proposed by He and Luo [44]. Figure 2 represents a
D2Q9 lattice for the density and momentum field and a D2Q5 lattice for the temperature
field. To obtain the target temperature field, it is enough to use the D2Q5 lattice, i.e.,
D2Q4 and D2Q9 give similar results, but the D2Q5 lattice is more stable [29]. In particu-
lar, the equilibrium distribution for both populations (density distribution functions) is
Maxwellian and truncated to a second-order distribution (Taylor expansion), reproducing
the conservation rules of mass, momentum, and thermal energy.
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Figure 2. Representation of the two lattices composed of interconnected nodes; every single node has
some vectors representing the populations of the two density functions. (left) D2Q9 Hydrodynamic
lattice for fi populations; (right) D2Q5 thermal lattice for gi populations. The blue vectors represent the
discrete velocity base ci, and the numbers between parenthesis represent the associated weights wi.

An alternative approach to thermal LBM simulations can be attempted by using a
single multispeed lattice with a higher-order velocity discretization (e.g., D2Q17) that
allows the calculation of higher-order moments. Note that the D2Q9 lattice is limited to
second-order moments, and the third-order moment is necessary to obtain the energy
field. Including additional velocity vectors adds complexity to the computational scheme;
moreover, it breaks the algorithm’s local calculation property and degrades the LBM par-
allelism (one of the main advantages of using LBM). However, the multispeed approach
can be suitable for Rayleigh Bernard’s natural convection simulations, including “viscous
heating, heat conduction, and linear and non-linear acoustic effects” [45]. A second al-
ternative for thermal LBM simulations is based on regularized schemes (i.e., equilibrium
distribution function expanded to third-order) and non-Boussinesq approximations; this
alternative has been recently developed [24] and tested with large temperature differences
and Rayleigh numbers.
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The general physical equations for the fluid are the Navier–Stokes equation, Equation (1),
the continuity equation, Equation (2), and the temperature advection–diffusion or energy
equation, Equation (3). In these equations u represents the macroscopical velocity, g the
body-force term, γ the kinematic viscosity, k the thermal conductivity, ρ the fluid density, T
the temperature, and t the time.

∂u
∂t

+ (u·∇)u = γ∇2u +
1
ρ
∇p + g (1)

∂ρ

∂t
+∇·ρu = 0 (2)

∂T
∂t

+ u·∇T = ∇·(k∇T) (3)

Instead of directly discretizing and simulating those equations, the LBM uses the discretized
Lattice Boltzmann Equation (LBE) for the corresponding populations of the two lattices (local
probability density functions fi and gi). The LBE is presented in Equation (4) for the density-
momentum, and Equation (5) for the energy field. The LBE represents a balance between the
transport and collision processes between statistical distributions of the fluid molecules; the
LBM is not a pure microscopic method (like simulating the dynamic of every single molecule) or
a macroscopic method (considering the bulk fluid dynamics), and it is denoted as a mesoscopic
method. Solving the LBE mesoscopic equations (Equations (4) and (5)) is analogous to solving
the macroscopic fluid, Equations (1)–(3).

fi(r + ci∆t, t + ∆t)− fi(r, t) = − 1
τ

(
fi(r, t)− f eq

i (r, t)
)
+ ∆t Fi (4)

gi(r + ci∆t, t + ∆t)− gi(r, t) = − 1
τg

(
gi(r, t)− geq

i (r, t)
)

(5)

The LBE solution algorithm is divided into streaming and collision steps. The left-hand
side of Equations (4) and (5), used for the streaming step, represents the transport of the
populations between the nodes of the lattice at position r and r+ ci∆t after each timestep ∆t.
The right-hand side of these equations, used for the collision step, represents the collision
process, which in this case, uses the BGK approximation that relaxes the population ( fi or gi)
to an equilibrium population ( f eq

i or geq
i , respectively). The collision process is characterized

by a relaxation time τ linked to the viscosity (Equation (6)) and a relaxation time τg linked
to thermal diffusivity (Equation (7)). Additionally, the external force is included in the term
Fi and in our case represents the buoyancy force due to the thermal expansion of the fluid,
meaning that this term is used to couple the two LBE equations.

γ =
1
3
(τ − 0.5) (6)

α =
1
3
(
τg − 0.5

)
(7)

The equilibrium function for the hydrodynamic field f eq
i and the thermal field geq

i are
presented in Equations (8) and Equation (9), respectively. The sound speed of each lattice is
a propagation constant; cs

2 = 1/3 for D2Q9 and D2Q5. Note that D2Q5 was selected to
simulate the advection–diffusion of the thermal field due to its demonstrated robustness
and accuracy compared to D2Q9 [30]. The velocity base ci and the corresponding weights
wi for each lattice are presented in Figure 2.

f eq
i (r, t) = wiρ

(
1 +

ci·u
cs2 +

(ci·u)2

2cs4 −
u·u
cs2

)
(8)
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geq
i (r, t) = wiT

(
1 +

ci·u
cs2 +

(ci·u)2

2cs4 −
u·u
cs2

)
(9)

For the thermal field, the equilibrium function couples with the hydrodynamic field
through the velocity field u. For a complete two-way physical coupling, the thermal field
affects the hydrodynamic field by the force term Fi in Equation (10). The Boussinesq
hypothesis is used to model the force term (Equation (10)); a small change in the density
has only an effect on the buoyancy force term, and thus it is possible to use a force term
proportional to the temperature and control the strength of this effect by a proportional
constant [25].

Fi = −βρ0g(T− T0) (10)

Macroscopic quantities are calculated using the integral moments of the density
functions fi and gi. For the calculus of the density and momentum, the zero-order moment
(Equation (11)) and first-order moments (Equation (12)) of fi are used, respectively. The
temperature corresponds to the zero-order moment of gi (Equation (13)). The velocity
field u calculated from fi (Equation (12)) entered into Equation (9), and thus affecting
the temperature distribution. On the other hand, the temperature affects the flux by
calculating Fi as presented in Equation (10) using the zero-order moment of gi previously
used (Equation (13)) to calculate the thermal field T; through this interaction between both
fields, the model can be considered two-way coupled. On the other hand, a single-way
coupling can be used to simulate chemical species transport, i.e., the passive field (chemical
species concentration) does not affect the flux.

ρ(r, t) =
∫

f (r, c, t)d3c = ∑y
i=1 fi(r, t) (11)

u(r, t) =
1
ρ

∫
c f (r, c, t)d3c =

1
ρ∑y

i=1 ci fi(r, t) (12)

T(r, t) =
∫

g(r, c, t)d3c = ∑y
i=1 gi(r, t) (13)

The described model is suitable for low-Reynolds-number thermal flow simulations.
Under some conditions, such as reducing the Prandtl number, the Reynolds number can
be over 1000, generating convergence issues. However, considering the validation data
and relationships reported by [3], the range of interest for this work remains in the low-
Reynolds-number zone, and viscosity filters or other turbulence models are not necessary.

2.2. Boundary Conditions

A non-slip boundary condition (bounce-back) was implemented along all the loop
walls for the hydrodynamic distribution. This boundary condition simulates a wall halfway
between the wet and solid nodes. The implementation is simple, and the algorithm reflects
the upcoming populations to the wall [46]. The behavior of this kind of BC induces the
parabolic Poiseuille velocity profile at a low Reynolds number—a laminar regime.

The boundary conditions for the temperature field are composed of adiabatic walls
at the vertical legs and fixed temperature walls at the heater and heat sink. The adiabatic
condition is achieved by extrapolating the temperature in the neighbor nodes to remove
the temperature gradient at the wall. The constant temperature boundary condition at
the cooler and heater constitutes a Dirichlet-type boundary condition for the secondary
(or thermal) distribution. The Dirichlet boundary condition was used to impose a fixed
temperature on the corresponding walls of the simulation domain. Specifically, it ensures
that the sum of the distribution functions (g1 + g2 + g3 + g4 + g5) equals the desired
temperature (T). Depending on node positions, certain values of the probability density
function could be determined during the streaming step. Subsequently, the remaining
population values can be calculated using the equilibrium distributions by applying flux
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conservation principles. For further information on this implementation, we refer readers
to [28,47] for more comprehensive details and insights. Some other possible schemes
have been recently proposed to implement such boundary conditions using a single-node
approach for the treatment of curved boundaries [48]; however, evaluating the accuracy or
stability of these alternative boundary condition is beyond the scope of this study.

2.3. Initial Condition

A uniform density was established for all the computational domains. The LBM operates
under the assumption of small density variations within the incompressible regime.

The initial velocity field can be established as zero, and after some time, the symmetry
breaks, and the fluid starts to flow in one direction (either clockwise or counterclockwise).
Alternatively, an initial low-velocity field can establish a flow direction and accelerate the
convergence to the steady state.

The initial temperature field can be established using various approaches:

• Set the cooler temperature for all the domains.
• Set a temperature average (TH + TC)/2 for all domains.
• Set the heater temperature for the heater pipe, the cooler temperature for the cooler

pipe, and a gradient field in the vertical legs.

The first two options are useful for testing the thermal boundary conditions at the
cooler and heater; meanwhile, the third option reduces the convergence time to a steady
state. The second condition was selected to perform the simulations. The thermohydraulic
behavior at the steady state under the three listed initial conditions is analogous. Eventually,
all the conditions converge to the same steady state. Consequently, the choice of the initial
condition exerted minimal influence on the overall findings presented in this study.

To control the main fluid flow direction, three distinct strategies can be implemented:

• Introduce a slight offset in positioning the heater (or cooler) to disrupt loop symmetry.
• Create an initial temperature difference between the vertical legs.
• Impose a small initial velocity in a specific direction.

The third condition was adopted to conduct the numerical experiments. All three
strategies were tested, successfully establishing a preferred flow direction. However, it is
interesting to note that the third strategy does not alter the loop symmetry. Indeed, both
flow directions remain possible. In particular, for high Rayleigh numbers, circulation occurs
in both directions due to the initial fluid circulation complexity. The modest initial velocity
does not necessarily fix the flow direction.

2.4. Units

The correspondence between computational units, also named Lattice Units (LU), and
physical units in LBM is not straightforward. The difficulty in establishing a correspondence
is because the computational length and time scales are linked through the relaxation
parameter, including an additional free parameter into the unit conversion; conversion
factors between the lattice units and the physical units must be carefully adopted. A
different approach, based on normalized quantities and dimensionless groups, was adopted;
in this way, the LBM results and the physical units are directly comparable [49].

The following quantities were considered in the physical analysis: The temperature
normalization is implemented using TH = 1 for the heater and TC = 0 for the heat sink [50].
A given Prandtl (Pr) number characterizes the fluid in the loop. The ratio between the
momentum (Equation (6)) and thermal diffusivity (Equation (7)) in the implemented LBM
can be expressed as shown in Equation (14) to define Pr.

Pr =
γ

α
=

τ − 0.5
τg − 0.5

(14)
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The Reynolds number at steady state Ress, Equation (15), is referenced to the pipe
diameter D and a representative velocity of the fluid in the loop named urms (representing
the root mean square velocity in the cross-section of the pipes).

Ress =
urms D

γ
(15)

Rayleigh number (Ra), Equation (16), is referred to the temperature difference between
the heat source and the heat sink TH − TC, the vertical height of the loop H, the gravity
g, and the thermophysical properties of the fluid (β coefficient of expansion, k thermal
conductivity, and γ fluid viscosity). Ra is an input parameter that is fixed before the
simulation starts.

Ra = Gr Pr =
gβ (TH − TC)H3

k γ
(16)

Modified Grashof number Grm is defined in Equation (17). Note that this number
differs from the Grashof number Gr defined in Equation (16) because it considers the
average temperature difference between the hot and cold legs (∆Tavg) as the thermal
gradient that determines the thermohydraulic behavior and considers the pipe diameter
D as a relevant characteristic dimension. However, this number cannot be determined a
priori but can be determined after the steady state is reached, performing an average on
the thermal field of each vertical leg.

Grm =
gβ∆TavgD2H

υ2 (17)

The local Nusselt number Nu, Equation (18), and average Nusselt number Nu,
Equation (19), can be evaluated utilizing the gradient of the thermal field.

Nu =
∂T
∂y

(18)

Nu = 1/M∑M
k=1

∂T
∂y

(19)

Considering M, the number of lattice nodes in the heater direction, the wall temper-
ature TW , the neighbor nodes temperature TW+1 and TW+2, and N number of cells in the
perpendicular direction y. Nu is calculated by a first-order finite difference scheme FD1
(Equation (20)) or a more accurate second-order scheme FD2 approximation (Equation (21)).

Nu ≈ 1/M∑M
k=1

TW − TW+1

∆y
N (20)

Nu ≈ 1/M∑M
k=1

3 TW − 4 TW+1 + TW+2

2 ∆y
N (21)

2.5. Stability and Convergence

The convergence of the system to the steady state is determined by calculating when
the relative standard deviation of the Nusselt number is below a given threshold (up
to 10−16). When this condition is reached, the simulation is finished. Additionally, the
convergence of the temperature difference between the hot and cold legs (∆Tavg) and
Reynolds number was studied. In the laminar regime, these quantities converge. The
simulations do not present computational instabilities or divergences in the tested Rayleigh
number range.

The resolution effects on flow conditions were investigated, calculating Ress under
the same operation conditions. The following spatial resolution values were tested: 500
(diverge), 1000, 2000, 4000, 8000, and 10,000 grid points per meter. It was noted that Re
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converges for a resolution up to 4000; thus, 40 mesh points per pipe diameter were used in
the simulations, i.e., 1000 × 1000 lattice.

During the simulations, the relaxation time of each lattice (fluid and thermal) were
adjusted to obtain the desired Prandtl number. Some important parameters are listed in
Table 1, including imposed global Rayleigh number ( Ra), the imposed temperature differ-
ence between heater and heat sink (∆T), geometric ratios such as diameter to total loop
length (L/D) and width to height ratio (W/H), viscosity (γ) and thermal diffusivity (α),
reference velocity (u), and Prandtl number; these values were adjusted to obtain feasible
results and ensure convergency and stability. It is important to note that the optimal param-
eter selection may vary depending on the specific flow scenario and research objectives. A
combination of physical insights, numerical stability considerations, and validation against
experimental or analytical results is typically employed to ensure accurate and reliable
simulations [46,47,49]. The main considerations that provide a framework for selecting
parameters in Lattice Boltzmann simulations are based on the physical considerations (to
simulate a desired phenomenon adequately), grid resolution (to resolve relevant length
scales), lattice model, relaxation time (to adjust the velocity of the distribution function to
approximate the equilibrium distribution), boundary conditions (such as non-slip walls or
adiabatic or thermal walls), time step (small enough to capture flow features), and finally,
the validation method (contrasting the simulations with experimental or analytical results).

Table 1. Main simulation parameters.

Parameter Range Parameter Range

Ra, - 10,000 to 20,000,000 γ, LU 0.0000632456 to 0.0126491

∆T, LU 1.0 α, LU 0.000632456 to 0.126491

D/L, - 1/100 u, LU 0.001

W/H, - 1 Pr, - 0.1 to 7.0

2.6. Computational Considerations

The NCL model was implemented in C++ using the parallel Lattice Boltzmann library
PALABOS [51]. The routine was tested in an Intel® Xeon® Platinum 8260 CPU, 2.40 GHz,
workstation, using an MPI (message passing interface) protocol for the parallel running
on 48 cores. The maximum calculus velocity was approximately 250 MSUPS (Mega Site
Updates Per Second) for a resolution of 10,000 grid points/m and 200 MSUPS for the
simulations with 4000 grid points/m.

3. Results
3.1. Laminar Regime

The convergence to the steady state of the circuit is illustrated in Figure 3a. This
figure presents the normalized temperature difference between the adiabatic vertical legs
at different time step iterations. For higher Ra (and Ress) values, the time from the rest state
to the onset of natural convection was shorter, and the achieved normalized temperature
difference between the legs decreased. The transient stage exhibits fewer oscillations for
low Ra (and Ress) due to the slower fluid motion, allowing the heater and cooler to more
effectively alter the fluid temperature during its circulation. This pattern aligns with the
findings of Cheng et al. [4], even though their work presents an “absolute” increment
of ∆Tavg. Moreover, the transient behavior aligns with previous findings by Garibaldi
and Misale [52] for mini loops with small inner diameters: the amplitude of oscillations
increases with higher heating power. As highlighted in [8], the efficiency decreases with
an increase in the Rayleigh number. Figure 3b presents a phase diagram comparing the
simultaneous convergence of the temperature difference and velocity. Notably, an increase
in the phase difference between velocity and temperature oscillations was observed for
higher Reynolds numbers.
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Figure 4a depicts the characteristic behavior of the NCL at a low Reynolds number 
(𝑅𝑒 < 100). The cross-sectional velocity field was characterized by a parabolic profile, 
devoid of vorticity. The temperature field presented in Figure 4b exhibited minimal tem-
perature variation along the vertical legs. As was expected, the fluid temperature in-
creased in the heater and decreased in the heat sink. 
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Figure 3. Transient response of the NCL simulated by LBM for different Reynolds numbers and a Prandtl
number of 1.0. (a) ∆Tavg vs. time; (b) phase diagram of normalized velocity vs. normalized ∆Tavg.

Figure 4a depicts the characteristic behavior of the NCL at a low Reynolds number
(Ress < 100). The cross-sectional velocity field was characterized by a parabolic profile,
devoid of vorticity. The temperature field presented in Figure 4b exhibited minimal tem-
perature variation along the vertical legs. As was expected, the fluid temperature increased
in the heater and decreased in the heat sink.
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The current LBM approach is validated using the model proposed by Cheng et al. [4]
for a single-phase NCL with fixed temperatures at the heat sink and heat source. This
Cheng et al. model has been experimentally corroborated for Reynolds numbers below
100 (Ress < 100) [4]. Built on a one-dimensional analysis of the loop in the laminar regime,
the model employs the Boussinesq approximation to account for buoyancy effects arising
from the fluid’s thermal expansion. It does not incorporate axial heat conduction, viscous
dissipation, or changes in fluid physical properties due to temperature effects. Both heat
source and heat sink temperatures are held constant. Under these premises, they derived
the relationship presented in Equation (22) for the Reynolds number at steady state Ress
and the modified Grashof number Grm (Equation (17)) and the dimensionless geometrical
factor NG that accounts for frictional effects, as outlined in Equation (23). Importantly, it is
possible to show that this model is equivalent to the model proposed in [3,17] in an NCL
with a heat flux boundary condition at the heater.

Ress =

√
Grm

NG
(22)

The geometrical parameter NG accounts for local and concentrated losses considering
the frictional coefficient (calculated using f = 64/Re) and the local resistance coefficient K.

NG =
1
2∑i

(
f

Li
D

+ K
)

(23)

The LBM results reproduced the theoretical model for low Reynolds numbers [43].
The LBM results for high Reynolds numbers show a small deviation from Equation (22).

The analytical model allows for temperature calculations for each section of the circuit.
Figure 5 displays a comparison between the one-dimensional theoretical model and the
LBM results, focusing on low Reynolds numbers indicative of the laminar regime. It
is important to observe that Figure 5 delineates four distinct sections correlating with
the normalized loop position axis, specifically the vertical leg A (from 0 to 0.25), heater
(from 0.25 to 0.50), vertical leg B (from 0.50 to 0.75), and cooler (from 0.75 to 1). Figure 5a
showcases the average temperature of each cross-section, while Figure 5b illustrates the
temperature at the center of the tube. Both the one-dimensional and LBM outcomes
exhibit a similar shape, yet certain differences arise, particularly when evaluating the
average temperature of each cross-section, i.e., these differences were less pronounced
when the temperature at the center of the tube was considered. The contrast between the
center temperature and the cross-sectional average indicates the significance of the axial
temperature distribution, predominantly in the initial portion of each pipe. The diffusion
of the temperature field contributes to a more uniform temperature profile, with a smaller
effect on the longitudinal temperature profile. The theoretical model results depicted in
Figure 5 were presented in detail in [4], where dimensionless temperature distributions
were derived based on the governing equations for the heater, pipes, and cooler under
steady state conditions. The temperature distribution within the vertical legs follows an
exponential form.

The Nusselt (Nu) number is used to describe convective heat transfer characteristics of
the system. The computation of the average Nusselt number along the heater through LBM
involves the utilization of Equation (20) (FD) or Equation (21) (FD2). Figure 6 provides
a comparative analysis between the computed average Nusselt number along the heater
and the empirical correlation proposed by Cheng et al. as outlined in Equation (24) [4].
Clearly, the commonly accepted simplistic expression Nu = 3.66 for the heat transfer of a
developed (laminar) flow in a pipe fails to capture the heat transfer characteristics along
the loop. Both the empirical equation and the simulations underscore that the heat transfer
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exhibits lower Nu values (below 3.66) within the laminar regime, which subsequently
amplifies with the Reynolds number while showcasing a non-linear dependency.

Nu = 0.2072 Ress
0.4713 (24)
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Figure 5. Dimensionless temperature distribution along the NCL Ress = 100. (a) Temperature
average over the cross-sections; (b) temperature at the tube center.
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Figure 6. LBM Nusselt number for the heater vs. Reynolds number at steady state, calculated by
finite differences, FD Equation (20) and FD2 Equation (21), compared with the empirical correlation
Equation (24).

The observed discrepancy between Equation (24) and the numerical outcomes under-
scores the pronounced influence of the fluid dynamic regime on convective heat transfer;
note the sudden increase in the Nusselt number for a Ress ≈ 320. While Equation (24) is
based on empirical data derived from laminar flow conditions, it might not comprehen-
sively capture the convective heat transfer trends observed in our numerical simulations
where the fluid flow potentially undergoes a transition to a turbulent regime. In turbulent
flow, recirculation and complex flow patterns enhance convective heat transfer due to
increased fluid mixing and motion, resulting in higher heat transfer rates compared to
laminar flow. Future investigations will focus on incorporating turbulence models and
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conducting experimental studies to validate the numerical results under transition and
turbulent flow conditions and gain deeper insights into the distinct flow regimes.

The LBM results align with Equation (24) for Reynolds numbers below 200. From
this threshold up to the critical Reynolds number that determines the transition to non-
laminar flow (Ress around 320), the exponent of Equation (24) experienced a decline.
Subsequently, a distinct Nusselt number correlation emerged, characterized by a more
substantial increase.

3.2. Transition to a Non-Laminar Regime

The applicability of the theoretical model (Equation (22)) is confined to the laminar
regime. However, our investigation revealed the emergence of a non-laminar flow pattern
for values of Grm around 105, equivalent to a steady state Reynolds number (Ress) of
around 320. This transition is evident in the logarithmic chart depicted in Figure 7, where
there was a noticeable alteration in the slope close to this threshold (Ress ≈ 320). It is
important to observe that this change in slope correlates with the sudden increase in the
Nusselt number exhibited in Figure 6.
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Figure 7. Description of the thermohydraulic behavior of the NCL by the relationship between Ress

and Grm/Ng, including Equation (22) by Cheng et al. [4] and Equation (25) for the transition regime
proposed by Swapnalee and Vijayan [3].

The transitions region in closed loops with the HHHC configuration is expected to
occur at Reynolds number values lower than the accepted threshold for straight pipes,
as noted by various authors, including Creveling et al. [53] (Re = 1500), Hallinan and
Viskanta [54] (Re = 340), and Swapnalee and Vijayan [3] (Re = 898). These latter scholars
proposed an alternative friction factor, characterized by f = 0.316/ Re0.25 for the turbulent
regime, and f = 1.2063 /Re0.416 for the transition regime. Incorporating this friction law
leads to a change in the exponent within Equation (22), as demonstrated in Equation (25).
The rationale underlying the adoption of this friction law for the transition regime is shown
in Figure 7.

Ress =

(
Grm

NG
′

)0.364
(25)

The transition in the flow regime becomes evident in the velocity and thermal fields,
as illustrated in Figure 8. This transition was characterized by vortices forming near the
walls, which enhances convective heat transfer by facilitating fluid recirculation along the
heater and heat sink pipes. These vortices traveled in the same direction as the mean flux
and remained near the walls. Additionally, a discernible alteration was observed in the
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transient response of the circuit. Figure 9 depicts an example of the transient temperature
response near the threshold of the transition regime (Ress = 324) and the non-laminar
regime (Ress = 510). During the temperature oscillations near the transition regime
threshold, certain eddies became visible; however, the system eventually reached a steady
state characterized by laminar flow after a certain period.
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Conversely, for higher Reynolds numbers, the system did not reach a true steady state
condition; instead, temperature oscillations persisted around a central value, as shown
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in Figure 9. A detail of this pseudo-steady state behavior is provided in the figure. The
flow and thermal pattern remained consistent with those depicted in Figure 8. Lastly, the
phase diagrams in Figure 9b detail these two examples. In the case of Ress = 324, the
system experienced an abrupt change in dynamics after a series of oscillations, eventually
converging to a steady state. In contrast, at Ress = 510, the slight oscillations around the
pseudo-steady state temperature induced corresponding fluctuations in the velocity flow.

The presence of vorticity significantly influenced the temperature distribution along
the circuit, particularly in the non-laminar regime near the walls of the heater and heat
sink, as well as in the initial section of the vertical legs (see Figure 10). The temperature
profile at the center of the tube exhibited substantial oscillations. Notably, the temper-
ature profile predicted by the one-dimensional model only loosely resembled the LBM
results. This discrepancy might be attributed to vorticity, a three-dimensional phenomenon
that cannot be adequately captured within the constraints of a one-dimensional model.
Our 2D approach, as observed, effectively captured the principal characteristics of the
one-dimensional model proposed in [4], particularly under steady state conditions and
laminar flow. The transition to non-laminar flow triggered a noticeable alteration in the
friction factor, as suggested in [3]. This agreement between our simulation outcomes and
the established one-dimensional model reaffirms the accuracy and reliability of our 2D
approach in replicating the fundamental traits of the system in laminar flow conditions.
This underscores the robustness of our computational methodology in modeling the ther-
mohydraulic behavior of the single-phase NCL. However, we acknowledge the necessity
for further investigation and refinements to address the limitations, including aspects like
fluid selection and 3D modeling, to more accurately represent real-world scenarios and
explore the transition to turbulent flow.
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proximation that attest to the presence of a laminar flow limit and the existence of a tran-
sition regime. Future studies should incorporate three-dimensional models, coupled with 
adaptive LBM stencil strategies near the walls, incorporation of turbulence models, and 
experimentation with different fluids to reproduce the transition regime in the laboratory. 
The need to refine the LBM numerical approach emerges from the previous considera-
tions, with the imperative for accurate three-dimensional models featuring a high mesh 
resolution to capture minute turbulences. Of course, the computational load increases 
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Figure 10. Dimensionless temperature distribution along the NCL. Temperature at the tube center
Ress = 510, Pr = 1.0.

The occurrence of this non-laminar regime at a relatively low Reynolds number, which
is below the conventionally accepted critical values of 2000 for transition and 2300 for
the turbulent regime, remains unknown, and more research is necessary to probe if it is a
physical phenomenon or is solely a numerical artifact. Nevertheless, several hypotheses
that potentially elucidate this behavior include the following:

1. The presence of acute bends and corners in the geometry could introduce flow obsta-
cles that trigger the observed deviations from laminar behavior.

2. The simplified geometrical model might induce local pipe diameter changes at corners,
potentially causing fluid expansion and contraction and consequently influencing the
flow pattern.
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3. Fluid acceleration induced by the Boussinesq force, particularly at the heater and heat
sink, could contribute to altering the flow characteristics.

4. Furthermore, the presence of vorticity, a fundamentally three-dimensional phenomenon,
might be roughly approximated using the bidimensional model employed in this study.

Addressing the underlying causes of this non-laminar regime deserves further in-
vestigation and may shed light on whether these hypothesized factors contribute to the
observed behavior or if other mechanisms are at play.

The number of mesh points used in the simulations (40 along the pipe diameter) may
prove insufficient to fully capture the boundary layer, particularly during the transition
regime for high Reynolds numbers. Nevertheless, for the laminar regime, the convergence
of the results with this mesh resolution was observed, and the cross-sectional velocity
profile exhibited a parabolic profile, indicating a developed flow with a boundary layer
near half the pipe diameter. However, the results for the transition region, where turbulence
was observed, may be under-resolved. It is well-known that turbulence is inherently a
three-dimensional phenomenon that two-dimensional or one-dimensional models do not
adequately describe. Hence, our findings should be considered as an initial numerical
approximation that attest to the presence of a laminar flow limit and the existence of a
transition regime. Future studies should incorporate three-dimensional models, coupled
with adaptive LBM stencil strategies near the walls, incorporation of turbulence models, and
experimentation with different fluids to reproduce the transition regime in the laboratory.
The need to refine the LBM numerical approach emerges from the previous considerations,
with the imperative for accurate three-dimensional models featuring a high mesh resolution
to capture minute turbulences. Of course, the computational load increases considerably
with those LBM upgrades.

It is necessary to consider that the presence of eddies does not inherently indicate a
fully turbulent regime, with the subsequent energy cascade from the large eddies to the
small ones. Indeed, our results do not invalidate the applicability ranges of Equation (22).
Instead, our results underline the importance of conducting experiments at higher Reynolds
values. This presents a challenge, as reaching and maintaining single-phase conditions at
high Rayleigh numbers is intricate. Selecting an adequate working fluid, characterized by
a low Prandtl number, might be a viable strategy to overcome this hurdle and extend the
exploration into higher Reynolds regimes. A notable limitation of this study involves the
selection and modeling of the working fluids. In most cases, a Prandtl value of Pr = 1.0
was employed, which is indeed close to the value of air (Pr = 0.71) and may not be
representative of practical applications scenarios. To address this concern, we have included
supplementary outcomes using Pr = 7.0 to investigate the impact of a higher Prandtl
number. As a result, the selected values encompass fluids of interest, such as water or
molten salts. However, further studies should explore a broader range of Prandtl number
values relevant to specific applications. The limitations associated with fluid selection and
the use of fixed thermophysical properties are acknowledged, emphasizing the importance
of considering more comprehensive fluid models and varying Prandtl numbers to enhance
the applicability of the results. This study will pave the way for future research exploring a
wider range of Prandtl numbers for greater realism and applicability.

Utilizing the LBM in this study provides valuable contributions and insights that
complement previous research on NCLs. Its parallelization capabilities, direct temporal
convergence, ability to handle coupled fluid flow and heat transfer, and capturing complex
flow phenomena all contribute to a more comprehensive understanding of the system’s
behavior. The study of this kind of system using LBM enhances the existing knowledge
in the field and offers a unique perspective on the thermohydraulic behavior of NCLs.
Moreover, future studies could benefit from implementing a multi-physics LBM simulation
that includes, in addition to the present model, a coupled lattice representing a secondary
species dispersal (i.e., nanoparticles) and possible sedimentation during the NCL operation.

The practical relevance of this research lies in developing valuable simulation tools
to analyze and predict the behavior of single-phase NCLs under various operational
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conditions. The accurate representation of the thermohydraulic characteristics of NCLs
through our 2D approach can be a useful tool for engineers and researchers in the field. By
simulating the fluid dynamics and heat transfer phenomena within the loop, our model
enables the evaluation of different operating scenarios and optimizing system performance
without the need for costly and time-consuming experimental setups. Moreover, our results
open avenues for further research that could enhance the practical applications of NCLs.
Future studies may explore complex geometries, different working fluids, or even the
inclusion of nanoparticle dispersions for advanced heat transfer applications.

4. Conclusions

In this study, a bi-dimensional Lattice Boltzmann Model based on double distribution
functions was developed to simulate a square single-phase natural circulation loop with fixed
temperatures at the heater and heat sink in a horizontal heater horizontal cooler configuration.
This numerical approach is of significant interest due to the limitations of commonly applied
one-dimensional models and experimental techniques, which provide limited insights into
velocity profiles and temperature fields in these thermohydraulic circuits.

By validating the model using a theoretical approach and an empirical relationship for
heat transfer, we observed that the predicted thermohydraulic behavior during laminar
flow is consistent with that of the theoretical model and empirical data.

The Lattice Boltzmann Model employed in this study demonstrates that the modified
Grashof number serves as a key parameter controlling the thermohydraulic regime at
steady state. Unlike Rayleigh–Bernard natural circulation simulations, where the Rayleigh
and Grashof number are predetermined, the modified Grashof number in our simulations
is dependent on the temperature difference between the vertical legs after achieving a
steady state.

Some key points that summarize the observed NCL behavior in the simulations are as
follows:

• A higher modified Grashof number implies a higher flow rate and a higher Reynolds
number at a steady state (Ress). An extensive simulation campaign corroborated the
non-linear relationship between these quantities predicted by the theory, and a validity
threshold limit for the laminar relationships was found (approximately, Ress < 300).

• Higher values of the Reynolds number can be reached with a lower Prandtl number fluid.
• The non-laminar regime can be simulated directly without turbulence models (such as

LES) for Reynolds numbers below 1000.
• More oscillations in the temperature field and a longer convergence time were ob-

served for a higher Prandtl number fluid.
• The one-dimensional analytical model roughly describes the temperature distribution

along the loop. On the other hand, the one-dimensional model oversimplifies the
system and does not consider complex flow patterns or heat conduction in the trans-
verse direction or corner effects. We found slight deviations from the one-dimensional
model predictions, mainly at the beginning of each pipe section.

• Heat transfer characteristics can be obtained by calculating local and average Nusselt
numbers using the temperature field at the heater (or cooler). The average Nusselt
numbers are similar and comparable with the empirical relationship for Reynolds
numbers below 200.

Interestingly, our simulations revealed the existence of a non-laminar flow regime with
heat transfer characteristics differing from those predicted by the theoretical model and
empirical data. The transition to this regime was observed at a Reynolds number near 300.
Traveling vorticities near the walls of the heater and heat sink were observed during the
simulations. Considering that the data presented in the literature (used for validation) are
limited to steady state Reynold numbers below 100, the transition regime was not observed
experimentally or expected for mini-loops. However, the observed deviations from the
laminar behavior (modeled by Cheng et al. [4]) can be described by applying the modified
friction factor proposed for the transient regime by Swapnalee and Vijayan [3].
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Future studies should address the open problem of incorporating more details in the
NCL geometry and changes in the physical properties during the simulations. For instance,
exploring the optimal geometric configuration that enhances heat transfer would be of great
value. Extending the model to include three-dimensional geometries and more complex
circuits would allow capturing further complexities of natural circulation loop behavior.

In summary, the developed Lattice Boltzmann Model provides a detailed understand-
ing of (single-phase) natural circulation loop thermohydraulic behavior. The findings
from this study contribute to advancing natural circulation loop simulations and establish
a foundation for future research aimed at optimizing heat transfer and exploring more
complex configurations.
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