

Article Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Truncated Timoshenko-Ehrenfest Beam Theory

Maria Anna De Rosa¹, Maria Lippiello^{2,*}, Antonella Onorato¹ and Isaac Elishakoff³

- ¹ School of Engineering, University of Basilicata, 85100 Potenza, Italy; maria.derosa@unibas.it (M.A.D.R.); antonella.onorato@studenti.unibas.it (A.O.)
- ² Department of Structures for Engineering and Architecture, University of Naples "Federico II", Via Forno Vecchio n°36, 80134 Naples, Italy
- ³ Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431-0991, USA; elishako@fau.edu
- * Correspondence: maria.lippiello@unina.it; Tel.: +39-081-2538985 (ext. 80132)

Abstract: Carbon nanotubes with their outstanding mechanical, physical and electrical properties have stimulated a significant amount of scientific and technological research due to their uniqueness compared to conventional materials. As a result, an extensive study on their mechanical properties has been conducted, and the static and dynamic behavior of single- walled and multi-walled carbon nanotubes has been examined using Euler-Bernoulli and Timoshenko beam models. The main objective of this paper is to study the free vibration behaviour of single-walled carbon nanotubes (SWCNT) using the nonlocal truncated Timoshenko beam theory. According to the Hamilton principle, the equation of motion of Timoshenko single-walled carbon nanotubes is calculated taking into account the truncated theory; and the general corresponding boundary conditions are derived. Finally, some numerical examples are performed to evaluate the effects of the nonlocal coefficient and the length of the nanotube. The obtained results are validated by comparing them with those found in the literature, and they show the accuracy and efficiency of the developed model. Particularly, the results demonstrate that the present formulation is highly efficient and capable of satisfactorily describing the behavior of nanobeams.

Keywords: truncated Timoshenko nanotubes; vibration; analytical modelling; computational modelling

1. Introduction

Carbon nanotubes, with their outstanding mechanical, physical and electrical properties have stimulated extensive research activities in the field of science and technology due to their uniqueness compared to conventional materials. As a result, extensive studies have been conducted to investigate their mechanical properties [1–3] and the static and dynamic behavior of single- and multi-walled carbon nanotubes have been carried out.

In the literature, the main existing approaches to study the behavior of nanostructures can be divided into two classes: One at the atomistic level, and the other at the continuous level. Although the molecular dynamics approach can be considered more suitable for the analysis of nano-sized structures, the complexity of the computational process and the time-consuming calculations [4] have attracted little attention compared to continuum models. Among continuum approaches, beam models have proven to be cost-effective. Using the classical Euler-Bernoulli and Timoshenko beam models, extensive studies have been conducted to investigate the mechanical properties of CNTs and elastic beam models have been used to evaluate static and dynamic problems of carbon nanotubes [5–10].

An important aspect of nanotube modeling is the scale-effect. Although classical continuum approaches are efficient in the mechanical analysis of CNTs, their applicability in identifying small-scale effects on the mechanical behavior of carbon nanotubes is

Citation: De Rosa, M.A.; Lippiello, M.; Onorato, A.; Elishakoff, I. Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Truncated Timoshenko-Ehrenfest Beam Theory. *Appl. Mech.* **2023**, *4*, 699–714. https://doi.org/10.3390/ applmech4020035

Received: 27 February 2023 Revised: 25 April 2023 Accepted: 26 April 2023 Published: 12 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). questionable. Numerous studies have underlined the importance of the scale-effect and have shown that non-local elastic continuum models are more suitable for predicting the structural behavior of nanotubes.

The origins of non-local elasticity theory go back to pioneering works by Eringen [11,12] and Reddy [13]. Using non-local constitutive differential equations, Reddy gives a thorough development of the traditional beam and shear deformation theories in [13] and derives the solutions for, bending, buckling and natural frequency problems for simply-supported beams. Further applications of the nonlocal elasticity theory have been used in the study of the buckling problem and vibration problems in CNTs by applying Euler-Bernoulli beam, plate and shell theories and Timoshenko beam theory [14–27]. The wave dispersion response of elastic nano-sized beams was analytically addressed and the closed-form solution of the phase velocity was determined in [28]. Still based on the nonlocal elasticity beam theory, the effects of the spatial variation of the nonlocal parameter on free frequencies of nanoplates were discussed in [29]. Using nonlocal first-order shear deformation theory with variable nonlocal parameters, the free vibration of the functionally graded doubly curved nanoshells was studied in [30].

The present paper deals with the nonlocal vibrational analysis of the single-walled carbon nanotube (SWCNT). Using the nonlocal elasticity theory, a novel theory for the free vibration analysis of Timoshenko nanotubes is proposed. The main objective of this paper is to investigate the free vibration behaviour of single-walled carbon nanotubes using the nonlocal truncated Timoshenko beam theory. According to Hamilton principle, the equation of motion of Timoshenko single-walled carbon nanotube are calculated and the general corresponding boundary conditions are derived.

The mathematical modeling of CNTs and their solutions play an important role in the field of nanotechnology. As is well-know, it is not always possible to find analytical solutions for all sets of boundary conditions and different geometries. This circumstance has motivated the present research. In addition, since in the literature there are no free vibration solutions for nanotubes with the simplified approach, the authors have chosen to briefly present the key findings and challenges and direct light to possible future research. This paper does not intersect with recent relevant reviews, which reflects its significance to readers.

Recently, a variational model leading to a simplified theory of the dynamic analysis of the Timoshenko beam theory has been proposed, called the *truncated Timoshenko theory* [31]. Starting from the truncated Timoshenko beam theory, the authors in the present paper have developed a similar theory for Timoshenko nanotubes using geometrical and variational methods. Comparing the classical Timoshenko theory with the truncated theory, a significant simplification of the differential equation can be observed. The novelty of the proposed approach is that it shows a perfect analogy between variational and direct methods for the dynamic analysis of beams. The aim of the proposed formulations is to find the truncated Timoshenko equations and the corresponding boundary conditions, used to solve the dynamic problem of the local and nonlocal truncated Timoshenko equations via the variational formulation, have the same form as those obtained via the direct method. In addition, it is shown that the equation is both simpler and more consistent than the appropriate classical Timoshenko equations extended to include nonlocal stress effects.

Finally, the impacts of the nonlocal coefficient and the length of the nanotube are then assessed using a few numerical examples. By comparing the obtained results with those found in the literature, the findings are validated. Moreover, the outcomes demonstrate how effective the simplified approach is at accurately describing the behavior of nanotubes.

2. Theoretical Formulation: Equations of Motion for Nonlocal Timoshenko Beams Model

Eringen Nonlocal Theory Assumptions and Stress Resultants in Nonlocal Theory

According to Eringen [11,12], the nonlocal elasticity theory assumes that the Cauchy stress state, at a given reference point \mathbf{x} , does not depend only on the strain field at this point, but is considered as a function of the strain field at all points of the body. This assumption leads us to the assertion that, in nonlocal elasticity theory, the stress at a point is determined both by the stress at that point and by its spatial derivatives. Eringen attributed this fact to the atomic theory of lattice dynamics and experimental observations on phonon dispersion. For an elastic and isotropic homogeneous body, the nonlocal constitutive behavior is expressed by the following relations:

$$\boldsymbol{\sigma} = \int_{V} \alpha(|\boldsymbol{x'} - \boldsymbol{x}|, \tau) \boldsymbol{t}(\boldsymbol{x'}) d\boldsymbol{x'}$$
(1)

$$\boldsymbol{t}(\boldsymbol{x}) = \boldsymbol{C}(\boldsymbol{x}) \otimes \boldsymbol{\epsilon}(\boldsymbol{x}) \tag{2}$$

$$\left(1 - \tau^2 l_e^2 \nabla^2\right) \boldsymbol{\sigma} = \boldsymbol{t} , \quad \tau = \frac{e_0 l_i}{l_e}$$
(3)

where σ is the nonlocal stress tensor at point **x**, **t**(**x**) is the conventional stress tensor at point **x**, $\alpha(|\mathbf{x}' - \mathbf{x}|, \tau)$ is the nonlocal coefficient introducing into the constitutive equation the nonlocal effect at the reference point **x** produced by local strain at the source **x'**. The Euclidean distance is $|\mathbf{x}' - \mathbf{x}|, \tau$ is defined as the scale coefficient that incorporates the small-scale factor, where e_0 is a material constant determined experimentally. In addition, l_i and l_e are the internal and external characteristic lengths, respectively. Finally, **t** at a point **x** is related to the strain $\boldsymbol{\epsilon}$ at the point by the fourth-order elasticity tensor **C** and \otimes denotes the "double-dot product".

Using Equation (3) we can express the resulting stresses in terms of strains. In contrast to the local theory, the nonlocal constitutive relations lead to differential relationship between resulting stresses and strains. In the following, the nonlocal constitutive relations for isotropic and homogeneous beam are described. In particular, for beams the nonlocal constitutive relations in Equation (3) take the following special form:

$$\sigma_{zz} - \mu^2 \frac{\partial^2 \sigma_{zz}}{\partial z^2} = E e_{zz} , \quad \mu = (e_0 l_i)$$
(4)

where σ_{zz} and e_{zz} are the normal stress and normal strain, respectively, *E* is elasticity modulus, μ is the small scale parameter that incorporates the small scale effect and z is the coordinate measured from the mid-plane of the nanotube.

$$\sigma_{zy} - \mu^2 \frac{\partial^2 \sigma_{zy}}{\partial z^2} = 2G \ e_{zy} \tag{5}$$

where σ_{zy} and e_{zy} are the transverse shear stress and the transverse shear strain, respectively, *G* is shear modulus and y is the longitudinal coordinate measured from the left-end of the nanotube.

Multiplying Equation (4) by *y* and integrating the result over the area A yields:

$$\int_{A} y \sigma_{zz} dA - \mu^{2} \int_{A} \frac{\partial^{2} (y \sigma_{zz})}{\partial z^{2}} dA = E \int_{A} y^{2} \frac{\partial \phi}{\partial z} dA$$
(6)

The integrals with the first member indicate the bending moment, whereas the integral with the second member defines the second moment of area I of the straight section. As a result:

$$M - \mu^2 \frac{\partial^2 M}{\partial z^2} = \text{EI} \frac{\partial \phi}{\partial z}$$
(7)

where *M* is the bending moment and ϕ is the rotation due to bending. In addition, by integrating Equation (5) over the area, one gets:

$$Q - \mu^2 \frac{\partial^2 Q}{\partial z^2} = \mathbf{GA}\kappa \left(\frac{\partial v}{\partial z} + \phi\right) \tag{8}$$

where *Q* is the shear force, A is the area of the straight section, *v* the transverse displacement and κ the shear factor.

3. Timoshenko's Non-Local Truncated Theory: Dynamic Analysis

3.1. Equation of Motion for a Truncated Timoshenko Beam: Euler Method

This section presents the equilibrium of the nanotube element using the Timoshenko-Ehrenfest beam model. For example, if we examine the nanotube element in Figure 1, we should impose the equilibrium of the applied loads at the abscissa *z*: equilibrium at the vertical translation and at the rotation around the center of the right-hand section of all the forces identified on the elementary ashlar, beginning from its equilibrium.

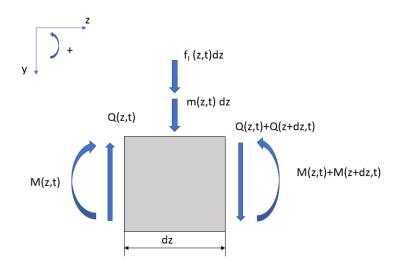


Figure 1. Translational and rotational equilibrium of the elementary ashlar.

The contributions for rotational m and translational inertia f_I are made separately and considering that

$$f_I = -\rho A \frac{\partial^2 v}{\partial t^2} \tag{9}$$

$$m = -\rho I \frac{\partial^2 \phi_b}{\partial t^2} \tag{10}$$

where ρ denotes mass density, *t* denotes the time variable, the rotational inertial term *m* is independent of the total rotation ϕ and exclusively depends on the flexural rotation $\phi_b = -\frac{\partial v}{\partial z}$:

$$\phi = \phi_b + \psi = -\frac{\partial v}{\partial z} + \psi \tag{11}$$

The equation for the vertical translation equilibrium is:

$$\frac{\partial Q}{\partial z} = \rho \mathbf{A} \frac{\partial^2 v}{\partial t^2} \tag{12}$$

whose first derivative, when substituted in Equation (8), yields:

$$Q = \mathbf{G}\mathbf{A}\kappa \left(\frac{\partial v}{\partial z} + \phi\right) + \mu^2 \rho \mathbf{A} \frac{\partial^3 v}{\partial t^2 \partial z}$$
(13)

hence, Equation (12) can be completed and expressed as follows:

$$\rho A \frac{\partial^2 v}{\partial t^2} - \mu^2 \rho A \frac{\partial^4 v}{\partial t^2 \partial z^2} - GA\kappa \left(\frac{\partial^2 v}{\partial z^2} + \frac{\partial \phi}{\partial z}\right) = 0$$
(14)

On the other hand, the rotation's equilibrium with respect to the center of gravity elementary ashlar's right face is written:

$$\frac{\partial M}{\partial z} = Q - \rho I \frac{\partial^3 v}{\partial t^2 \partial z}$$
(15)

whose first derivative, when replaced in Equation (7), gives:

$$M = \mathrm{EI}\frac{\partial\phi}{\partial z} + \mu^2 \left(-\rho \mathrm{I}\frac{\partial^4 v}{\partial t^2 \partial z^2} + \rho \mathrm{A}\frac{\partial^2 v}{\partial t^2}\right)$$
(16)

The rotation's equilibrium Equation (15) can be written:

$$\mathrm{EI}\frac{\partial^{2}\phi}{\partial z^{2}} - \mu^{2}\rho\mathrm{I}\frac{\partial^{5}v}{\partial t^{2}\partial z^{3}} + \rho\mathrm{I}\frac{\partial^{3}v}{\partial z\partial t^{2}} - \mathrm{GA}\kappa\left(\frac{\partial v}{\partial z} + \phi\right) = 0 \tag{17}$$

Equations (14) and (17) constitute the set of differential equations of motion for a Timoshenko SWCNT that were obtained from the Timoshenko beam's truncated theory.

3.2. Equations of Motion for a Truncated Timoshenko Beam: Variational Method

In this section, according to the Hamilton principle, the motion equations for a beam system are derived.

For the local theory, the strain energy Π can be expressed as follows:

$$\Pi = \frac{1}{2} \left(\int_0^L M \frac{\partial \phi}{\partial z} dz + \int_0^L Q \left(\frac{\partial v}{\partial z} + \phi \right) dz \right)$$
(18)

It is evident from Equations (13) and (16), which are used to determine the shear stress Q and the bending moment M in the case of non-local elasticity, that the terms, defined in this context as additional to the local theory, are constant quantities that do not change with respect to the force; this means that these additional terms do not contribute to the strain energy but instead become the potential energy of the loads P (see Ref. [23]).

The strain energy Π assumes the following form:

$$\Pi = \frac{1}{2} \int_0^L \operatorname{EI}\left(\frac{\partial \phi}{\partial z}\right)^2 dz + \frac{1}{2} \int_0^L \operatorname{GA\kappa}\left(\frac{\partial v}{\partial z} + \phi\right)^2 dz \tag{19}$$

As can be seen, only the local terms are present in the formulation of the strain energy. The nonlocal potential energy P_d is equal to the work done with changed sign for the corresponding displacement of the inertial forces.

$$P_{\rm d} = \int_0^L \mu^2 \left(-\rho I \frac{\partial^4 v}{\partial t^2 \partial z^2} + \rho A \frac{\partial^2 v}{\partial t^2} \right) \frac{\partial \phi}{\partial z} + \mu^2 \rho A \frac{\partial^3 v}{\partial t^2 \partial z} \left(\frac{\partial v}{\partial z} + \phi \right) dz \tag{20}$$

As can be observed, only the moment and shear nonlocal contributions accurately reflect the nonlocal potential energy expression in contrast to the local theory.

Moreover, for the corresponding displacement ϕ , the rotational component P_t is expressed in terms of the work of the inertia forces *m*, with the sign changed:

$$P_t = -\int_0^L m\phi dz = -\int_0^L -\rho \mathbf{I} \frac{\partial^2 \phi_b}{\partial t^2} \phi dz = -\int_0^L -\rho \mathbf{I} \frac{\partial^2}{\partial t^2} \left(-\frac{\partial v}{\partial z}\right) \phi dz \tag{21}$$

Finally, the kinetic energy *T* is given by:

$$T = \frac{1}{2} \int_0^L \rho A \left(\frac{\partial v}{\partial t}\right)^2 dz$$
(22)

Equations of Motion for a Timoshenko SWCNT: Truncated Theory

According to the Hamilton principle, the equations of motion for a Timoshenko singlewalled carbon nanotube are computed using the truncated theory.

Summing the strain energy Equation (19) and the potential energies Equations (20) and (21) minus the kinetic energy Equation (22), we have:

$$(\Pi + P_{d} + P_{t} - T) = \frac{1}{2} \int_{0}^{L} \operatorname{EI} \frac{\partial \phi}{\partial z} \frac{\partial \phi}{\partial z} dz + \int_{0}^{L} \mu^{2} \left(\rho A \frac{\partial^{2} v}{\partial t^{2}} - \rho I \frac{\partial^{4} v}{\partial t^{2} \partial z^{2}} \right) \frac{\partial \phi}{\partial z} dz + \int_{0}^{L} \mu^{2} \left(\rho A \frac{\partial^{3} v}{\partial t^{2} \partial z} \right) \left(\phi + \frac{\partial v}{\partial z} \right) dz + \frac{1}{2} \int_{0}^{L} \operatorname{GA\kappa} \left(\phi + \frac{\partial v}{\partial z} \right) \left(\phi + \frac{\partial v}{\partial z} \right) dz - \frac{1}{2} \int_{0}^{L} \rho A \left(\frac{\partial v}{\partial t} \right)^{2} dz - \int_{0}^{L} \rho I \frac{\partial^{3} v}{\partial z \partial t^{2}} \phi dz$$
(23)

Applying the Hamilton principle, Equation (23) becomes:

$$\int_{t_{1}}^{t_{2}} \delta(\Pi + P_{d} + P_{t} - T) dt =$$

$$\int_{t_{1}}^{t_{2}} \left(\int_{0}^{L} EI \frac{\partial \phi}{\partial z} \delta\left(\frac{\partial \phi}{\partial z}\right) dz + \int_{0}^{L} \left(-\mu^{2} \rho I \frac{\partial^{4} v}{\partial t^{2} \partial z^{2}} + \mu^{2} \rho A \frac{\partial^{2} v}{\partial t^{2}} \right) \delta\left(\frac{\partial \phi}{\partial z}\right) dz +$$

$$\int_{0}^{L} \left(\left(\mu^{2} \rho A \frac{\partial^{3} v}{\partial t^{2} \partial z} \delta \phi + \mu^{2} \rho A \frac{\partial^{3} v}{\partial t^{2} \partial z} \right) \delta\left(\frac{\partial v}{\partial z}\right) + GA\kappa \left(\phi + \frac{\partial v}{\partial z}\right) \delta\phi +$$

$$GA\kappa \left(\phi + \frac{\partial v}{\partial z}\right) \delta\left(\frac{\partial v}{\partial z}\right) dz - \int_{0}^{L} \rho A \frac{\partial v}{\partial t} \delta\left(\frac{\partial v}{\partial t}\right) dz - \int_{0}^{L} \rho I \frac{\partial^{3} v}{\partial z \partial t^{2}} \delta\phi dz dt = 0 \quad (24)$$

performing integration by parts and collecting all the terms in the previous equations allows us to write:

$$\rho A \frac{\partial^2 v}{\partial t^2} - \mu^2 \rho A \frac{\partial^4 v}{\partial t^2 \partial z^2} - G A \kappa \left(\frac{\partial^2 v}{\partial z^2} + \frac{\partial \phi}{\partial z}\right) = 0$$
(25)

$$\mathrm{EI}\frac{\partial^{2}\phi}{\partial z^{2}} - \mu^{2}\rho\mathrm{I}\frac{\partial^{5}v}{\partial t^{2}\partial z^{3}} + \rho\mathrm{I}\frac{\partial^{3}v}{\partial z\partial t^{2}} - \mathrm{GA\kappa}\left(\frac{\partial v}{\partial z} + \phi\right) = 0$$
(26)

The Equations (25) and (26) represent the set of differential equations of motion for a Timoshenko SWCNT and, as can be seen, have the same form as the Equations (14) and (17) obtained by Euler method.

Finally, the corresponding boundary conditions are given by:

$$\left[\left(\mu^{2}\rho \mathbf{A}\frac{\partial^{2}v}{\partial t^{2}}-\mu^{2}\rho \mathbf{I}\frac{\partial^{4}v}{\partial t^{2}\partial z^{2}}+\mathrm{EI}\frac{\partial\phi}{\partial z}\right)\delta\phi\right]_{0}^{L}=0$$
(27)

$$\left[\left(\left(\mu^{2}\rho A\frac{\partial^{3}v}{\partial t^{2}\partial z}\right) + GA\kappa\left(\frac{\partial v}{\partial z} + \phi\right)\right)\delta \mathbf{v}\right]_{0}^{L} = 0$$
(28)

3.3. The Solution of Differential Equations System

In order to find a solution to the system of differential equations describing the dynamic behavior of the nanotube, we seek periodic solutions of the form:

$$v(z,t) = v(z)e^{i\omega t}$$

$$\phi(z,t) = \phi(z)e^{i\omega t}$$
(29)

where ω is the frequency of natural vibration. On substituting Equation (29) into Equations (25) and (26) we have:

$$\rho A \omega^2 v - \mu^2 \rho A \omega^2 \frac{\partial^2 v}{\partial z^2} + G A \kappa \left(\frac{\partial^2 v}{\partial z^2} + \frac{\partial \phi}{\partial z} \right) = 0$$
(30)

$$\mathrm{EI}\frac{\partial^{2}\phi}{\partial z^{2}} + \mu^{2}\rho\mathrm{I}\omega^{2}\frac{\partial^{3}v}{\partial z^{3}} - \rho\mathrm{I}\omega^{2}\frac{\partial v}{\partial z} - \mathrm{GA}\kappa\left(\frac{\partial v}{\partial z} + \phi\right) = 0$$
(31)

After obtaining $\frac{\partial \phi}{\partial z}$ from Equation (30) and properly substituting it in Equation (31), we arrive at:

$$\left(-\mathrm{EI} + \mu^{2}\rho\mathrm{I}\omega^{2} + \mathrm{EI}\frac{\mu^{2}\rho\mathrm{A}\omega^{2}}{\mathrm{GA}\kappa}\right)\frac{\partial^{4}v}{\partial z^{4}} + \left(-\mathrm{EI}\frac{\rho\mathrm{A}\omega^{2}}{\mathrm{GA}\kappa} - \mu^{2}\rho\mathrm{A}\omega^{2} - \rho\mathrm{I}\omega^{2}\right)\frac{\partial^{2}v}{\partial z^{2}} + \rho\mathrm{A}\omega^{2}v = 0$$
(32)

Equation (32) is the differential equation of motion for a Timoshenko nanotube derived from the fourth order truncated theory in v.

On introducing the following non-dimensional coefficients:

$$\zeta = \frac{z}{L}; \ \Omega^2 = \frac{\rho A L^4 \omega^2}{EI}; \ \eta^2 = \frac{\mu^2}{L^2}; \ \beta^2 = \frac{EI}{GA\kappa L^2}; \ \alpha^2 = \frac{I}{AL^2}$$
(33)

with $\zeta \in [0, 1]$ the dimensionless counterpart of $z \in [0, L]$, Ω^2 the frequency parameter, η^2 scaling effect parameter, β^2 shear deformation parameter and α^2 slenderness ratio, the governing Equation (32) may be rewritten as:

$$\left(1 - \Omega^2 \alpha^2 \eta^2 - \Omega^2 \beta^2 \eta^2\right) \frac{\partial^4 v}{\partial \zeta^4} + \left(\Omega^2 \beta^2 + \Omega^2 \eta^2 + \Omega^2 \alpha^2\right) \frac{\partial^2 v}{\partial \zeta^2} - \Omega^2 v = 0$$
(34)

The general solution for Equation (34) is given by:

$$v(\zeta) = A_1 \cos(a\zeta) + A_2 \sin(a\zeta) + A_3 \cosh(b\zeta) + A_4 \sinh(b\zeta)$$
(35)

where:

$$a = \sqrt{\frac{1}{2p}\left(q + \sqrt{q^2 + 4\mathrm{pr}}\right)}; \ b = \sqrt{\frac{1}{2p}\left(-q + \sqrt{q^2 + 4\mathrm{pr}}\right)}$$
(36)

$$p = \left(1 - \Omega^2 \alpha^2 \eta^2 - \Omega^2 \beta^2 \eta^2\right)$$
$$q = \left(\Omega^2 \beta^2 + \Omega^2 \eta^2 + \Omega^2 \alpha^2\right);$$
$$r = \Omega^2$$
(37)

with A_1 , A_2 , A_3 and A_4 being the integration constants, which are determined using the boundary conditions, and p, q and r are the coefficients of the characteristic polynomial associated with differential Equation (34).

The system of Equations (25) and (26) in dimensionless form is given by:

$$\left(\frac{1}{\beta^2} - \Omega^2 \eta^2\right) \frac{\partial^2 v}{\partial \zeta^2} + \Omega^2 v + \frac{1}{\beta^2} \frac{\partial(\phi L)}{\partial \zeta} = 0$$

$$\Omega^2 \alpha^2 \eta^2 \frac{\partial^3 v}{\partial \zeta^3} + \left(-\frac{1}{\beta^2} - \Omega^2 \alpha^2\right) \frac{\partial v}{\partial \zeta} + \frac{\partial^2(\phi L)}{\partial \zeta^2} - \frac{1}{\beta^2}(\phi L) = 0$$
(38)

It is possible to derive $\bar{\phi} = \phi L$

$$\bar{\phi}(\zeta) = \left(\Omega^2 \alpha^2 \eta^2 \beta^2 + \Omega^2 \beta^4 \eta^2 - \beta^2\right) \frac{\partial^3 v}{\partial \zeta^3} - \left(1 + \Omega^2 \alpha^2 \beta^2 + \Omega^2 \beta^4\right) \frac{\partial v}{\partial \zeta}$$
(39)

3.4. Boundary Conditions

The quantities defined by Equations (27) and (28) lead to the following boundary conditions in dimensionless form:

$$\left[\left(\left(-\frac{1}{\beta^2} + \Omega^2 \eta^2\right)\frac{\partial v}{\partial \zeta} - \frac{1}{\beta^2}\bar{\phi}\right)v(\zeta)\right]_0^1 = 0$$
$$\left[\left(-\frac{\partial\bar{\phi}}{\partial \zeta} - \Omega^2 \alpha^2 \eta^2 \frac{\partial^2 v}{\partial \zeta^2} + \Omega^2 \eta^2 v\right)\bar{\phi}(\zeta)\right]_0^1 = 0$$
(40)

By substituting the Equations (35) and (39), that were appropriately calculated, in the boundary conditions (40), we obtain a system of four equations in the four unknowns A_i . In order for the system to admit a solution other than the trivial one, the determinant of the coefficient matrix must be set to zero.

The infinite solutions of the transcendental equation obtained by solving the determinant provide the infinite free frequencies of vibration.

3.5. Comparison of the Two Methods

This section compares the boundary conditions and differential equations of motion for the two theories. In particular, we compare the boundary conditions and differential equations of motion for the classical theory (see Equation (18) to Reference [23]) with the truncated theory (see Equation (34) of the current paper).

As demonstrated in Reference [23], the differential equation's characteristic polynomial for a classical SWCNT has the following form:

$$p_C \lambda^4 + q_C \lambda^2 + r_C = 0 \tag{41}$$

with:

$$p_{C} = \left(1 - \Omega^{2} \alpha^{2} \eta^{2} - \Omega^{2} \beta^{2} \eta^{2} + \Omega^{4} \alpha^{2} \beta^{2} \eta^{4}\right);$$

$$q_{C} = \left(\Omega^{2} \beta^{2} + \Omega^{2} \eta^{2} + \Omega^{2} \alpha^{2} - 2\Omega^{4} \alpha^{2} \beta^{2} \eta^{2}\right);$$

$$r_{C} = \left(\Omega^{2} - \Omega^{4} \alpha^{2} \beta^{2} \eta^{2}\right)$$

$$(42)$$

where p_C , q_C and r_C are the coefficients of the differential equation's characteristic polynomial. As shown in the present paper, the characteristic polynomial associated with differential Equation (34) based on truncated Timoshenko's theory is represented by:

$$p\lambda^4 + q\lambda^2 - r = 0 \tag{43}$$

with:

$$p = \left(1 - \Omega^2 \alpha^2 \eta^2 - \Omega^2 \beta^2 \eta^2\right);$$

$$q = \left(\Omega^2 \beta^2 + \Omega^2 \eta^2 + \Omega^2 \alpha^2\right);$$

$$r = \Omega^2$$
(44)

The comparison of the two Equations (42) and (44) shows that the terms p_C and p differ by the amount $(\alpha^2 \beta^2 \eta^4 \Omega^4)$, q_C and q differ by the amount $(\alpha^2 2\beta^2 \eta^4 \Omega^4)$ and the terms r_C and r differ by the amount $(\beta^2 \eta^4 \Omega^4)$. As you can see, they are all terms multiplicative in $\frac{\partial^4 v}{\partial t^4}$.

By examining the free frequencies of vibration of a simply-supported beam at both ends, Timoshenko came to the conclusion that the final multiplicative term may be omitted because it would not affect the results, as was previously noted in Reference [32] in which Elishakoff obtained an equation both more consistent and simpler than the Bresse-Timoshenko equation given by the following expression:

$$\mathrm{EI}\frac{\partial^4 v}{\partial x_3^4} + \rho \mathrm{A}\frac{\partial^2 v}{\partial t^2} - \rho \mathrm{I}\left(1 + \frac{E}{G\chi}\right)\frac{\partial^4 v}{\partial x_3^2 \partial t^2} + \frac{\rho^2 I}{G\chi}\frac{\partial^4 v}{\partial t^4} = 0 \tag{45}$$

It can easily be seen from the comparison of the boundary conditions that those relating to displacements and shear remain constant while those relating to rotations and momentum change with respect to a single term. The following equations show how the classical theory and the nonlocal theory for a quantity differ from one another:

$$\left[\left(-\left(1-\Omega^2\eta^2\alpha^2\right)\frac{\partial\bar{\phi}}{\partial\zeta}+\Omega^2\eta^2v\right)\bar{\phi}(\zeta)\right]_0^1=0\tag{46}$$

Equation (46) is related to the classical theory, while the following equation relates to the nonlocal theory:

$$\left[\left(-\frac{\partial\bar{\phi}}{\partial\zeta} - \Omega^2 \alpha^2 \eta^2 \frac{\partial^2 v}{\partial\zeta^2} + \Omega^2 \eta^2 v\right)\bar{\phi}(\zeta)\right]_0^1 = 0$$
(47)

in which it can be noted that $-(\Omega^2 \eta^2 \alpha^2) \frac{\partial \bar{\phi}}{\partial \zeta}$ becomes $-\Omega^2 \alpha^2 \eta^2 \frac{\partial^2 v}{\partial \zeta^2}$.

4. Numerical Examples

In this section, the suggested analytical method is validated in order to assess the impacts of the nonlocal parameter and the length of the nanotube on the free frequencies of vibration. Some numerical examples have been carried out, and the obtained results have been compared with those of papers that have already been published in the literature. All the numerical computations have been performed through in-house software developed in the Mathematica language [33] and the same geometrical features have been used.

For this purpose, Table 1 shows physical and geometrical properties of nanotubes used in Reference [34], which will be used throughout this section. In addition, the following shear factor is introduced:

$$k = \frac{6(1+\nu)(1+c_r^2)^2}{(7+6\nu)(1+c_r^2)^2 + (20+12\nu)c_r^2}$$
(48)

where $c_r = (d - 2 h)/d$. The external diameter d depends directly on the height h in the ratio d/h, and the span L depends on d in the ratio L/d.

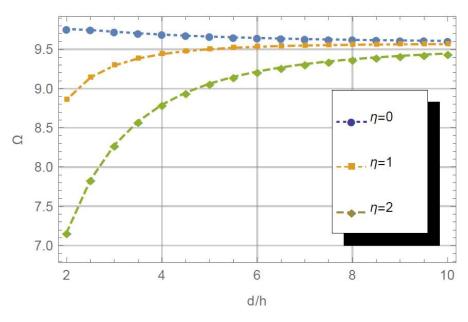
SWCNT Properties	Symbol	Value	Unit
Cross-sectional area	А	π (d – h) h	m ²
Thickness	h	$0.34 imes 10^{-9}$	m
Moment of inertia	I	$1/8 \ \pi \ ({\tt hd}^3 - 3{\tt h}^2{\tt d}^2 + 4{\tt h}^3{\tt d} - 2{\tt h}^4)$	m^4
Density	ρ	2300	kg/m ³
Young's modulus	E	1000	GPa
Poisson's ratio	ν	0.19	-
Shear modulus	G	$\frac{\mathbf{E}}{(2+2 u)}$	GPa

Table 1. Geometrical and material properties adopted in numerical experiments.

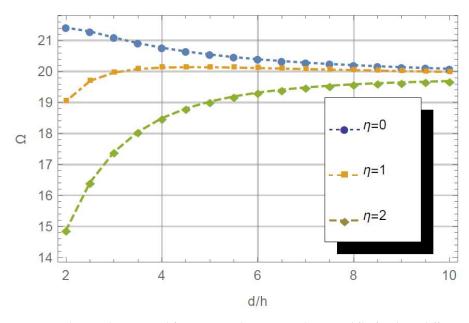
Numerical Comparison between the Two Theories: Conventional and Truncated Theories

A first numerical comparison has been made between the results of the present paper and those obtained by Wu and Lai in Ref. [34]. For different values of the non-dimensional small-scale coefficient $\eta \left[0, \sqrt{2}, 2 \right]$, the aspect ratio of L/d [5, 10, 25, 50, 100], with d/h = 3, and for various boundary conditions, the first three nondimensional frequencies Ω_i have been calculated. In Table 2 are quoted the corresponding values and a comparison between the present results with those obtained in [34] has been done. As can be easily observed, for L/d = [5, 10], the results of the classical theory and the truncated theory diverge, whereas they coincide for values higher than L/d = 10. Moreover, they demonstrate that with increasing the ratio L/d, the first three nondimensional frequencies increase and it can be seen that if the nonlocal effect η increases the three first nondimensional frequency value decreases. In particular, in order to assess the impact of the small scale parameter on the frequency parameter of the SWCNT, the frequency parameter ratio as $R(\eta) = \Omega(\eta)/\Omega(\eta = 0)$ is defined. For various boundary conditions the following remarks may be applicable:

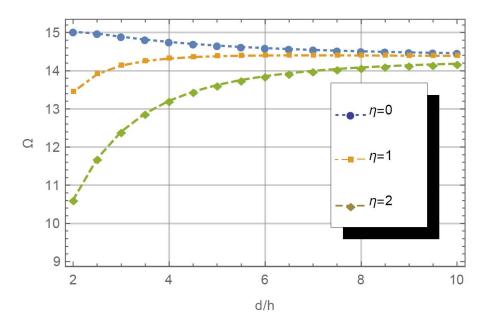
- For L/d = 5 and d/h = 3, the lowest frequency parameter ratio of the simply-supported SWCNT with $\eta = \sqrt{2}$, 2 are around 0.75 and 0.63, and they are 0.50, 0.36, and 0.36, 0.26 for the second and third modes, respectively. These findings demonstrate that the impact of the small-scale parameter on the frequency parameter of the SWCNT is greater for higher vibration modes than for lower modes.
- For L/d = 10 and d/h = 3, the nonlocal effect parameter $\eta = \sqrt{2}$ and for four boundary conditions (simply-supported (SS), clamped-clamped (CC), clamped-supported (CS) and clamped-free (CF) the frequency parameter ratios for the first vibration mode of the SWCNT are 0.75, 0.72, 0.73 and 1.03, respectively. According to the results, the SWCNT with SS,CC, and CS boundary conditions exhibit a small scale parameter effect on the frequency parameter that is more important than the SWCNT with CF boundary conditions.


In comparison to Table 3 of Ref. [34], the ratio L/d = 5 has been added and the dimensionless free vibration frequencies are calculated using the algorithm developed in Ref. [23] and referred to as additional constraint conditions other than the clamped-free. These values are crucial because, for larger L/d values, we move toward the Euler-Bernoulli theory, for which the classical Timoshenko and truncated Timoshenko theories will coincide; but for lower ratios, we approach Timoshenko's theory.

$ \sqrt{2} 3 3 2 3 3 3 3 3 3 3$	η[nm]	d/h	L/d	Ω_{i}	S	ss cc		C	S	C	CF	
$ \sqrt{2} \ 3 \ 5 \ 1 st \ 9.861 \ 9.3736 \ 42.3973 \ 41.9378 \ 47.664 \ 37.3703 \ 81.8675 \ 18.6627 \ 44.9335 \ 44.3155 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.3228 \ 45.348 \ 45.44$				-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	3	5	1st	9.3349	9.3254	18.3188	18.2653	13.6062	13.5807	3.4213	3.4208
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2nd	32.7567	32.4455	42.3973	41.9378	37.7664	37.3703	18.6875	18.6268
21 37.301 57.301 54.428 54.322 45.6670 21.028 21.0189 37 37 79.1305 78.8118 98.4624 98.4371 89.0947 88.6730 55.6261 35.5123 25 1st 9.8460 22.1535 22.1533 15.300 15.302 3.5120 3.5120 3.5120 30 86.9790 86.9659 16.3020 16.2720 10.12204 10.1200 60.5724 60.5679 50 1st 9.8637 9.8339 13.211 61.3208 49.7694 49.9769 21.9912 21.9911 100 1st 9.8681 9.8681 22.3593 15.4127 15.112 5.118 3.518 3.518 2nd 39.4547 15.843 61.5843 49.9157 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.9175 49.917				3rd	63.1739	61.5730	71.1007	69.5058	67.2925	65.6741	44.9335	44.3155
25 1st 9.8460 9.8461 82.153 22.1533 15.3303 15.3302 3.5120 3.5120 2nd 39.1056 0.30165 60.3992 49.1981 49.1957 21.8628 21.8628 50 1st 9.8637 22.1377 23.177 15.3961 15.150 3.5120 2nd 39.1054 60.3026 116.2720 101.2204 101.2000 60.572 60.5679 50 1st 9.8637 22.3573 22.3573 15.4604 49.7692 21.9911 3nd 88.3501 18.681 22.3593 22.3573 15.4127 15.4127 35.183 3.5128 3.5128 3nd 88.7067 88.7066 120.597 10.4992 10.4049 61.6248 61.6248 \$\sqrt{2}1 3.5277 2.0412 20.4212 20.4919 18.5422 3.5123 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.5232 3.523			10	1st	9.7254	9.7247	21.1019	21.0951	14.8938	14.8912	3.4915	3.4914
25 1st 9.8460 2.1535 22.1533 15.300 3.5120 3.5120 2nd 39.1056 39.1044 60.3036 60.2992 49.1981 49.1957 21.8625 3rd 86.9790 86.9659 116.3020 116.2720 101.204 101.200 60.5724 60.5724 2nd 39.3840 39.3840 51.211 61.3208 49.7694 49.7692 21.912 21.911 3nd 88.3501 19.8681 22.3393 22.3573 15.4127 15.184 51.858 3.5138 2nd 39.4547 39.4547 61.5843 61.5843 49.9157 49.9157 22.026 22.0236 3rd 88.7067 88.7066 120.5979 120.5980 10.40492 16.4248 61.6248 10 1st 7.0314 13.2521 13.1938 9.9062 9.9381 3.5222 2.2457 2nd 25.577 22.0422 2.45427 2.3419 21.2597 2.0430 10				2nd	37.3394	37.3015	54.4248	54.3228	45.7322	45.6670	21.0258	21.0189
2 3 5 1st 9.863 9.863 2.2.317 2.2.317 12.204 101.200 60.5724 60.5679 50 1st 9.8637 22.3177 15.3961 15.3961 3.5150 3.5150 3rd 88.3501 110.605 119.0404 103.4615 103.4605 10.4093 61.4093 100 1st 9.8681 9.2.393 22.3593 15.4127 15.4127 3.5158 3.5158 2nd 3.9.4547 39.4447 61.5843 49.9157 49.9157 22.0236 22.0236 3rd 88.7066 10.20579 12.04597 12.04490 16.6248 61.6248 10 1st 8.9163 10.20579 12.04577 23.3419 21.2597 20.024 10 1st 8.9163 8.9156 19.028 13.4846 13.422 3.5195 3.5195 21 10 1st 8.9163 9.82913 3.32920 18.6767 3.89163 3.32920 18.6767				3rd								
3rd 86.9790 86.9659 116.3020 116.2204 101.2004 101.2004 60.5724 60.5729 50 1st 9.8637 9.2317 12.3177 12.3081 49.7694 49.7692 21.9911 3rd 88.3501 88.3501 119.6965 119.6940 103.4405 103.4400 61.4093 61.4093 100 1st 9.8681 22.3593 12.3593 15.4127 3.5158 3.5158 2nd 39.4547 39.4547 61.5843 61.5843 49.9157 49.9157 22.026 22.0266 3rd 88.7067 88.7066 120.597 120.5980 104.0492 104.0492 104.0492 104.0492 104.0492 10.6248 61.6248 √2 3 5 1st 7.039 7.0314 13.2521 13.1938 9.9602 9.9381 3.5232 3.5225 2nd 22.5773 22.0422 24.2128 24.0527 23.419 21.2597 20.8030 11 1st			25	1st								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2nd		39.1044	60.3036		49.1981	49.1957	21.8628	21.8625
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				3rd				116.2720	101.2204		60.5724	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			50	1st								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										49.7692	21.9912	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				3rd					103.4615	103.4600		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			100		9.8681	9.8681			15.4127	15.4127		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								61.5843	49.9157	49.9157	22.0236	22.0236
2nd 16.3059 16.1509 20.4210 20.0819 18.5642 18.3205 12.6427 12.5757 3rd 22.5773 22.0042 25.4238 24.6512 24.0527 23.3419 21.2597 20.8030 10 1st 8.9163 8.9156 19.0006 18.9939 13.4846 13.4823 3.5195 3.5195 2nd 28.1544 28.1258 39.8407 39.7524 33.9813 33.9209 18.6766 18.6677 3rd 48.0901 47.8965 58.9143 55.671 53.2866 40.4636 40.3540 25 1st 9.6999 21.7469 15.0661 15.0661 3.5167 21.4257 3rd 77.0842 77.0725 101.9404 101.9080 89.1923 89.1725 56.6912 56.6867 50 1st 9.8265 9.22119 15.3284 45.162 3.1516 2nd 38.7995 38.7995 115.3960 99.9148 60.3525 60.3525 3rd				3rd	88.7067	88.7066	120.5979	120.5980	104.0492	104.0490	61.6248	61.6248
2nd 16.3059 16.1509 20.4210 20.0819 18.5642 18.3205 12.6427 12.5757 3rd 22.5773 22.0042 25.4238 24.6512 24.0527 23.3419 21.2597 20.8030 10 1st 8.9163 8.9156 19.0006 18.9939 13.4846 13.4823 3.5195 3.5195 2nd 28.1544 28.1258 39.8407 39.7524 33.9813 33.9209 18.6766 18.6677 3rd 48.0901 47.8965 58.9143 55.671 53.2866 40.4636 40.3540 25 1st 9.6999 21.7469 15.0661 15.0661 3.5167 21.4257 3rd 77.0842 77.0725 101.9404 101.9080 89.1923 89.1725 56.6912 56.6867 50 1st 9.8265 9.22119 15.3284 45.162 3.1516 2nd 38.7995 38.7995 115.3960 99.9148 60.3525 60.3525 3rd	$\sqrt{2}$	з	5	1et	7 0339	7 0314	13 2521	13 1038	9 9602	0 0381	3 5232	3 5225
2 3 5 1st 5.8830 5.8770 10.842 10.842 10.8434 3.5195 3.5195 2.04 2.8.1544 2.8.1258 39.8407 39.7524 33.9813 33.9290 18.6756 18.6677 3.07 48.0901 47.8965 58.9143 58.5214 53.5671 53.2866 40.4636 40.3540 2.5 1st 9.6999 9.6999 21.7469 12.7466 15.0661 15.0661 3.5167 3.5167 2.04 36.9279 36.9267 56.4535 56.4493 46.2497 21.4257 21.4257 3.07 77.0842 77.025 101.9404 101.9080 89.9123 89.1725 56.6912 56.6867 50 1st 9.8265 9.8265 22.2119 22.2119 15.3966 99.9148 60.3525 60.3525 60.3525 60.3525 60.3525 60.3526 60.3526 56.9526 52.956 51.5396 61.5356 61.3566 61.3546 61.3566 61.3546	V Z	5	0									
10 1st 8.9163 8.9156 19.0006 18.9939 13.4846 13.4823 3.5195 3.5195 2nd 28.1544 28.1258 39.8407 39.7524 33.9813 33.9290 18.6756 18.6677 3rd 48.0901 47.8965 58.9143 58.5214 53.5671 53.2866 40.4636 40.3540 25 1st 9.6999 21.7469 21.7466 15.0661 15.0661 3.5167 2nd 36.9279 36.9267 56.4535 56.4493 46.2499 46.2477 21.4257 21.4255 3rd 77.0842 77.0725 101.9404 101.9080 89.1923 89.1725 56.6912 56.6867 2nd 38.7995 38.7994 60.2643 48.9689 48.9688 21.8794 21.8794 3rd 85.4800 85.4792 115.3956 15.3956 3.5161 3.5161 3.5161 2nd 38.305 93.059 61.3136 61.3136 49.7112 49.7152 21.9955 3rd 18.7958 87.9588 19.4680 103.1218												
2nd 28,1544 28,1258 39,8407 39,7524 33,9813 33,9290 18,6756 18,6677 3rd 48,0901 47,8965 58,9143 53,5671 53,2866 40,4354 40,3540 25 1st 9,6999 9,6999 21,7469 21,7466 15,0661 15,0661 3,5167 21,4257 21,4257 3rd 77,0842 77,0725 101,9404 101,9080 89,1923 89,1725 56,6912 56,6867 50 1st 9,8265 9,8265 22,2119 22,2119 15,3284 15,3284 3,5162 3,5162 2nd 38,7995 38,7995 115,3995 115,3060 99,9148 60,3525 60,3522 100 1st 9,8588 9,8588 22,330 22,330 15,3956 15,3956 3,5161 3,5161 2nd 38,3059 39,3059 61,3136 61,3136 49,7112 49,7112 21,9955 21,9955 3rd 87,9589 87,9588 119,4686 119,4680 103,1218 103,1210 61,3546 61,3546 2			10									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			25									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			20									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			00									
100 1st 9.8588 9.8588 22.3330 15.3956 15.3956 3.5161 3.5161 2nd 38.3059 39.3059 61.3136 61.3136 49.7112 49.7112 21.9955 21.9955 3rd 57.9589 87.9589 119.4686 119.4680 103.1218 103.1210 61.3546 61.3546 2 3 5 1st 5.8830 5.8770 10.8642 10.8026 8.2156 8.1952 3.6507 3.6495 2nd 12.3183 12.2013 15.3213 15.0436 14.0142 13.8182 9.7649 9.7140 3rd 16.4993 16.0812 18.6614 17.9761 17.6063 17.0662 16.4645 16.0494 10 1st 8.2804 8.2798 17.4090 17.4022 12.4063 12.4043 3.5488 3.5489 2nd 23.5318 23.5079 32.8628 32.7809 28.2456 28.1993 16.8709 16.8630 2nd 37.6594 37.5078 45.9992 45.612 41.6497 33.4683 33.3679 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			100									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			100									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
2nd12.318312.201315.321315.043614.014213.81829.76499.71403rd16.499316.081218.661417.976117.606317.066216.464516.0494101st8.28048.279817.409017.402212.406312.40433.54883.54892nd23.531823.507932.862832.780928.245628.199316.870916.86303rd37.659437.507845.999245.661241.880241.649733.468333.3679251st9.56019.560121.361121.360914.814914.81483.52133.52132nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675				010	07.9009	07.9000	117.1000	117.1000	100.1210	100.1210	01.0010	01.0010
3rd16.499316.081218.661417.976117.606317.066216.464516.0494101st8.28048.279817.409017.402212.406312.40433.54883.54892nd23.531823.507932.862832.780928.245628.199316.870916.86303rd37.659437.507845.999245.661241.880241.649733.468333.3679251st9.56019.560121.361121.360914.814914.81483.52133.52132nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675	2	3	5	1st	5.8830	5.8770	10.8642	10.8026	8.2156	8.1952	3.6507	3.6495
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2nd	12.3183	12.2013	15.3213	15.0436	14.0142	13.8182	9.7649	9.7140
2nd23.531823.507932.862832.780928.245628.199316.870916.86303rd37.659437.507845.999245.661241.880241.649733.468333.3679251st9.56019.560121.361121.360914.814914.81483.52133.52132nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675				3rd	16.4993	16.0812	18.6614	17.9761	17.6063	17.0662	16.4645	16.0494
3rd37.659437.507845.999245.661241.880241.649733.468333.3679251st9.56019.560121.361121.360914.814914.81483.52133.52132nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675			10	1st	8.2804	8.2798	17.4090	17.4022	12.4063	12.4043	3.5488	3.5489
251st9.56019.560121.361121.360914.814914.81483.52133.52132nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675				2nd	23.5318	23.5079	32.8628	32.7809	28.2456	28.1993	16.8709	16.8630
2nd35.077635.076553.245553.241243.774243.772021.009621.00933rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675				3rd	37.6594	37.5078	45.9992	45.6612	41.8802	41.6497	33.4683	33.3679
3rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675			25	1st	9.5601	9.5601	21.3611	21.3609	14.8149	14.8148	3.5213	3.5213
3rd69.944269.933691.843491.810580.634980.615753.467853.4633501st9.78979.789722.109622.109615.261615.26163.51733.51732nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675					35.0776	35.0765						
2nd38.240338.240259.259759.259348.205748.205621.769021.76903rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675					69.9442							
3rd82.871982.8710111.5318111.527096.712896.710359.347959.34761001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675			50	1st	9.7897	9.7897	22.1096	22.1096	15.2616	15.2616	3.5173	3.5173
1001st9.84959.849522.306722.306715.378715.37873.51633.51642nd39.158739.158761.046361.046349.509249.509221.967521.9675				2nd		38.2402	59.2597	59.2593	48.2057	48.2056	21.7690	21.7690
2nd 39.1587 39.1587 61.0463 61.0463 49.5092 49.5092 21.9675 21.9675						82.8710	111.5318	111.5270				
			100	1st	9.8495	9.8495	22.3067	22.3067	15.3787	15.3787	3.5163	3.5164
3rd 87.2297 87.2297 118.3702 118.3690 102.2186 102.2180 61.0879 61.0879				2nd			61.0463		49.5092	49.5092	21.9675	21.9675
				3rd	87.2297	87.2297	118.3702	118.3690	102.2186	102.2180	61.0879	61.0879


Table 2. Three non-dimensional frequency values for $\eta = 0$, $\sqrt{2}$, 2, d/h = 3 and L/d [5, 10, 25, 50, 100].

Figures 2–5 show the nondimensional frequency values versus the ratio h/d, for three different values of the nonlocal parameter $\eta = 0$, 1, 2 and various boundary conditions. According to Figures 2–4 in relation to the cases of the simply-supported, clamped-clamped, clamped-supported SWCNT, for a fixed aspect ratio value L/d = 10 and for 2 < d/h < 10, the non-dimensional frequency values decrease as the nonlocal effect value increases. In addition, when d/h = 10 and higher values of the non-dimensional frequency are found for the clamped-clamped situation, the frequency curves for $\eta = 0$ and $\eta = 1$ approach


and tend to coincide. Ultimately, the frequency increases for $\eta = 1$ and $\eta = 2$ and as the ratio d/h varies, whereas it decreases for $\eta = 0$. The case of the clamped-free single-walled carbon nanotube is explored in Figure 5. For a fixed aspect ratio value L/d = 10 and for 2 < d/h < 10, the non-dimensional frequency values versus the ratio d/h, for three alternative values of the nonlocal parameter $\eta = 0, 1, 2$, are provided. As can be observed, the nondimensional frequency increases if the nonlocal parameter increases and for the ratio d/h= 10 the frequency curves approach and tend to coincide.

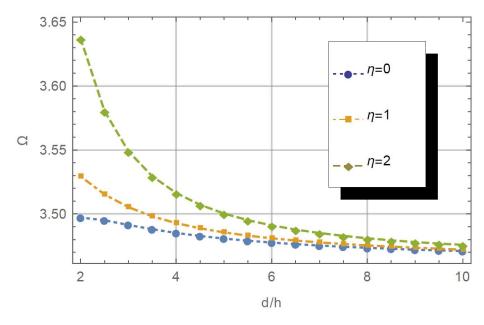

Figure 2. The nondimensional frequency values versus the ratio d/h, for three different values of the nonlocal parameter $\eta = 0, 1, 2$: simply-supported single-walled nanotube case.

Figure 3. The nondimensional frequency values versus the ratio d/h, for three different values of the nonlocal parameter $\eta = 0, 1, 2$: clamped-clamped single-walled nanotube case.

Figure 4. The nondimensional frequency values versus the ratio d/h, for three different values of the nonlocal parameter $\eta = 0, 1, 2$: clamped-supported single-walled nanotube case.

Figure 5. The nondimensional frequency values versus the ratio d/h, for three different values of the nonlocal parameter $\eta = 0, 1, 2$: clamped-free single-walled nanotube case.

Table 3 compares the results from the truncated Timoshenko theory and those produced using the conventional method, showing the percentage of errors in each case. This inaccuracy grows with the nonlocal effect η and is greater for the clamped-clamped boundary condition. The simply supported nanotube does not change while η changes. From the first to the third frequency, this error increases.

η[nm]	L/d	Ω _i	SS	СС	CS	CF		
·			% Error *					
		1st	0.102	0.292	0.187	0.016		
	5	2nd	0.950	1.084	1.049	0.325		
0		3rd	2.534	2.243	2.405	1.375		
0		1st	0.008	0.032	0.017	0.002		
	10	2nd	0.102	0.187	0.143	0.033		
		3rd	0.403	0.531	0.470	0.205		
		1st	0.035	0.440	0.222	0.021		
$\sqrt{2}$	5	2nd	0.951	1.661	1.313	0.530		
		3rd	2.538	3.393	2.955	2.148		
	10	1st	0.008	0.035	0.017	0.000		
		2nd	0.102	0.222	0.154	0.042		
		3rd	0.403	0.667	0.524	0.271		
	5	1st	0.102	0.567	0.248	0.033		
2		2nd	0.950	1.813	1.399	0.521		
		3rd	2.534	3.672	3.068	2.521		
	10	1st	0.007	0.039	0.016	0.003		
		2nd	0.102	0.249	0.164	0.047		
		3rd	0.403	0.735	0.550	0.300		

Table 3. Percentage error between the traditional SWCNT and the result of the truncated theory, for L/d = 5, 10 per ($\eta = 0, \sqrt{2}$), 2.

* % error = $\frac{\text{approx - exact}}{\text{exact}} \cdot 100.$

5. Conclusions

In the present paper, the nonlocal truncated Timoshenko single-walled nanotube, with various boundary conditions, has been studied. According to the Eringen's and nonlocal Timoshenko beam theory, a new theory for the free vibration analysis of the Timoshenko nanotube has been presented and the equations of motion and the general corresponding boundary conditions have been derived.

As is well known, it is not always possible to find analytical solutions for all sets of boundary conditions and varied geometries. This circumstance has motivated the present research. The novelty of the proposed approach has been devoted to finding solutions to the eigenvalue problem of single-walled carbon nanotube by employing the truncated theory in those cases for which, to the authors' knowledge, no analytical solutions have been provided in the literature.

Starting from the truncated Timoshenko beam theory, the authors have developed the same theory for Timoshenko nanotubes using the geometrical and variational methods. Comparing the classical Timoshenko theory with the truncated theory, we have shown a considerable simplification of the differential equation. Some numerical examples have shown the effectiveness of the proposed approach, even through a comparison against results in the literature. In particular, the results have demonstrated that the present formulation is very efficient and able to describe the behavior of nanobeams in a satisfactory way.

Finally, it has been explained how the length of the nanotube and nonlocal parameters affect the three initial frequencies of SWCNT. The main points are:

- the first three nondimensional frequencies decrease with increasing of nonlocal effect;
- the first three nondimensional frequencies increase with increasing the ratio L/d;
- the effect of the small scale parameter on the frequency parameter of the SWCNT with SS, CC and CS boundary conditions is more significant than that of the SWCNT with CF boundary conditions.

The present approach can be applied to analyze the stability and dynamics behaviour of single-walled and multi-walled carbon nanotubes (MWCNTs) with different boundary conditions. The first results obtained, and reported in the degree thesis [35], are significant

and in perfect agreement with the results of the literature. In the upcoming publication, which will be released, the effects of surface tension on the natural frequency of nanotubes will also be investigated.

Moreover, the exact nonlocal truncated Timoshenko beam solutions presented herein should be useful to engineers who are designing nano-beams and nanotubes. In addition, the exact solutions serve as reference results for confirming numerical vibration solutions derived from other mathematical models and methods.

Author Contributions: Conceptualization, M.A.D.R. and M.L.; methodology, M.A.D.R. and M.L.; software, A.O.; validation, M.A.D.R., M.L. and A.O.; formal analysis, M.A.D.R. and A.O.; investigation, A.O.; resources, M.A.D.R. and M.L.; data curation, M.A.D.R. and A.O.; writing—original draft preparation, M.L.; writing—review and editing, M.A.D.R. and M.L.; visualization, I.E.; supervision, M.A.D.R. and I.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young's modulus of single-walled nanotubes. *Phys. Rev. B* 1998, 58, 14013–4019. [CrossRef]
- Demczyk, B.G.; Wang, Y.M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R.O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. *Mat. Sci. and Eng. A* 2002, 334, 173–178. [CrossRef]
- Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008. [CrossRef]
- 4. Ansari, R.; Rouhi, H.; Rad, A.N. Vibrational analysis of carbon nanocones under different boundary conditions: An analytical approach. *Mech. Res. Commun.* **2014**, *56*, 130–135. [CrossRef]
- Elishakoff, I.; Versaci, C.; Muscolino, G. Clamped-free double-walled car-bon nanotube-based mass sensor. Acta Mech. 2011, 219, 29–43. [CrossRef]
- Elishakoff, I.; Pentaras, D. Fundamental natural frequencies of double-walled nanotubes. Int. J. Sound Vib. 2009, 322, 652–664.
 [CrossRef]
- 7. Ru, C.Q. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. *Phys. Rev. B* 2000, 62, 16962–16967. [CrossRef]
- 8. Wang, Q.; Hu, T.; Chen, Q.J. Bending instability characteristics of double walled nanotubes. *Phys. Rev. B* 2005, 71, 045403. [CrossRef]
- Zhang, Y.Y.; Wang, C.M.; Tan, V.B.C. Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J. Eng. Mech. 2006, 132, 952–958. [CrossRef]
- 10. Rafiee, R.; Moghadam, R.M. On the modeling of carbon nanotubes: A critical review. *Compos. Part B Eng.* **2014**, *56*, 435-449. [CrossRef]
- 11. Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [CrossRef]
- Eringen, A.C. On differential equations of non local elasticity and solutions of screw dislocation and surface-waves. *J. Appl. Phys.* 1983, 54, 4703–4710. [CrossRef]
- 13. Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [CrossRef]
- 14. Wang, L.; Hu, H. Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 195412. [CrossRef]
- 15. Lu, P.; Lee, H.P.; Lu, C.; Zhang, P.Q. Dynamic properties of exural beams using a nonlocal elasticity model. *Appl. Phys.* **2006**, *99*, 073510. [CrossRef]
- 16. De Rosa, M.A.; Lippiello, M. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schimdt based on nonlocal Euler-Bernoulli beam theory. *Sci. World J.* 2014, 2014, 194529. [CrossRef]
- 17. Reddy, J.N.; Pang, S.D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 1998, 103, 023511. [CrossRef]
- 18. De Rosa, M.A.; Lippiello, M. Hamilton principle for SWCN and a modified approach for nonlocal frequency analysis of nanoscale biosensor. *Int. J. Recent Sci. Res.* **2015**, *6*, 2355–2365.
- 19. Kucuk, I.; Sadek, I.S.; Adali, S. Variational principles for multiwalled carbon nanotubes undergoing vibrations on nonlocal Timoshenko beam theory. *J. Nanomat.* **2010**, 2010, 461252. [CrossRef]
- De Rosa, M.A.; Lippiello, M.; Martin, H.D. Free vibrations of a cantilevered SWCNT with distributed mass in the presence of non local effect. *Sci. World J.* 2015, 2015, 825342. [CrossRef]

- 21. De Rosa, M.A.; Lippiello, M. Nonlocal frequency analysis of embedded singlewalled carbon nanotube using the Differential Quadrature Method. *Compos. Part B Eng.* **2016**, *84*, 41–51. [CrossRef]
- 22. De Rosa, M.A.; Lippiello, M.; Martin, H.D.; Piovan, M.T. Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: An approximate method. *Acta Mech.* **2016**, 227, 2323–2342. [CrossRef]
- 23. De Rosa, M.A.; Lippiello, M. Nonlocal Timoshenko frequency analysis of single-walled carbon nanotube with attached mass: An alternative Hamiltonian approach. *Compos. Part B Eng.* **2017**, *111*, 409–418. [CrossRef]
- 24. De Rosa, M.A.; Lippiello, M.; Tomasiello, S. Differential quadrature solutions for the nonconservative instability of a class of single-walled carbon nanotubes. *Eng. Comput.* 2018, *35*, 251–267. [CrossRef]
- Auciello, N.M.; De Rosa, M.A.; Lippiello, M.; Tomasiello, S. Non-conservative instability of cantilevered nanotube via cell discretization method. *Springer Proc. Math. Stat.* 2018, 248, 13–24.
- De Rosa, M.A.; Lippiello, M.; Auciello, N.M.; Martin, H.D.; Piovan, M.T. Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack. *Arch. Appl. Mech.* 2021, 91, 301–316. [CrossRef]
- De Rosa, M.A.; Lippiello, M.; Babilio, E.; Ceraldi, C. Nonlocal Vibration Analysis of a Nonuniform Carbon Nanotube with Elastic Constraints and an Attached Mass. *Materials* 2021, 14, 3445. [CrossRef]
- Faghidian, S.A.; Tounsi, A. Dynamic characteristics of mixture unified gradient elastic nanobeams. *Facta Univ. Ser. Mech. Eng.*2022, 20, 539–552. [CrossRef]
- 29. Vinh, P.V.; Tounsi, A. The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates. *Eng. Comp.* **2022**, *38*, 4301–4319. [CrossRef]
- Vinh, P.V.; Tounsi, A. Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. *Thin-Walled Struct.* 2022, 174, 109084. [CrossRef]
- 31. De Rosa, M.A.; Lippiello, M.; Elishakoff, I. Variational Derivation of Truncated Timoshenko-Ehrenfest Beam Theory. J. Appl. Comput. Mech. 2022, 8, 996–1004.
- Elishakoff, I. An Equation Both More Consistent and Simpler Than Bresse-Timoshenko Equation. In Advances in Mathematical Modeling and Experimental Methods for Materials and Structures; Gilat, R., Sills-Banks, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 249-254.
- 33. Wolfram, S. The Mathematica 8; Cambridge University Press: Cambridge, UK, 2010.
- 34. Wu, C.P.; Lai, W.W. Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. *Phys. E* 2015, *68*, 8–21. [CrossRef]
- Onorato, A. A new Theory for Dynamic Analysis of Timoshenko SWCNT. Degree Thesis, University of Basilicata "School of Engineering", Potenza, Italy, 2023.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.