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Abstract: Carbon nanotubes with their outstanding mechanical, physical and electrical properties
have stimulated a significant amount of scientific and technological research due to their uniqueness
compared to conventional materials. As a result, an extensive study on their mechanical properties
has been conducted, and the static and dynamic behavior of single- walled and multi-walled carbon
nanotubes has been examined using Euler-Bernoulli and Timoshenko beam models. The main objec-
tive of this paper is to study the free vibration behaviour of single-walled carbon nanotubes (SWCNT)
using the nonlocal truncated Timoshenko beam theory. According to the Hamilton principle, the
equation of motion of Timoshenko single-walled carbon nanotubes is calculated taking into account
the truncated theory; and the general corresponding boundary conditions are derived. Finally, some
numerical examples are performed to evaluate the effects of the nonlocal coefficient and the length
of the nanotube. The obtained results are validated by comparing them with those found in the
literature, and they show the accuracy and efficiency of the developed model. Particularly, the results
demonstrate that the present formulation is highly efficient and capable of satisfactorily describing
the behavior of nanobeams.

Keywords: truncated Timoshenko nanotubes; vibration; analytical modelling; computational
modelling

1. Introduction

Carbon nanotubes, with their outstanding mechanical, physical and electrical prop-
erties have stimulated extensive research activities in the field of science and technology
due to their uniqueness compared to conventional materials. As a result, extensive studies
have been conducted to investigate their mechanical properties [1–3] and the static and
dynamic behavior of single- and multi-walled carbon nanotubes have been carried out.

In the literature, the main existing approaches to study the behavior of nanostructures
can be divided into two classes: One at the atomistic level, and the other at the continuous
level. Although the molecular dynamics approach can be considered more suitable for
the analysis of nano-sized structures, the complexity of the computational process and
the time-consuming calculations [4] have attracted little attention compared to continuum
models. Among continuum approaches, beam models have proven to be cost-effective.
Using the classical Euler-Bernoulli and Timoshenko beam models, extensive studies have
been conducted to investigate the mechanical properties of CNTs and elastic beam models
have been used to evaluate static and dynamic problems of carbon nanotubes [5–10].

An important aspect of nanotube modeling is the scale-effect. Although classical
continuum approaches are efficient in the mechanical analysis of CNTs, their applicabil-
ity in identifying small-scale effects on the mechanical behavior of carbon nanotubes is
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questionable. Numerous studies have underlined the importance of the scale-effect and
have shown that non-local elastic continuum models are more suitable for predicting the
structural behavior of nanotubes.

The origins of non-local elasticity theory go back to pioneering works by Eringen [11,12]
and Reddy [13]. Using non-local constitutive differential equations, Reddy gives a thorough
development of the traditional beam and shear deformation theories in [13] and derives
the solutions for, bending, buckling and natural frequency problems for simply-supported
beams. Further applications of the nonlocal elasticity theory have been used in the study
of the buckling problem and vibration problems in CNTs by applying Euler-Bernoulli
beam, plate and shell theories and Timoshenko beam theory [14–27]. The wave dispersion
response of elastic nano-sized beams was analytically addressed and the closed-form
solution of the phase velocity was determined in [28]. Still based on the nonlocal elasticity
beam theory, the effects of the spatial variation of the nonlocal parameter on free frequencies
of nanoplates were discussed in [29]. Using nonlocal first-order shear deformation theory
with variable nonlocal parameters, the free vibration of the functionally graded doubly
curved nanoshells was studied in [30].

The present paper deals with the nonlocal vibrational analysis of the single-walled
carbon nanotube (SWCNT). Using the nonlocal elasticity theory, a novel theory for the
free vibration analysis of Timoshenko nanotubes is proposed. The main objective of this
paper is to investigate the free vibration behaviour of single-walled carbon nanotubes
using the nonlocal truncated Timoshenko beam theory. According to Hamilton principle,
the equation of motion of Timoshenko single-walled carbon nanotube are calculated and
the general corresponding boundary conditions are derived.

The mathematical modeling of CNTs and their solutions play an important role in
the field of nanotechnology. As is well-know, it is not always possible to find analytical
solutions for all sets of boundary conditions and different geometries. This circumstance
has motivated the present research. In addition, since in the literature there are no free
vibration solutions for nanotubes with the simplified approach, the authors have chosen to
briefly present the key findings and challenges and direct light to possible future research.
This paper does not intersect with recent relevant reviews, which reflects its significance
to readers.

Recently, a variational model leading to a simplified theory of the dynamic analysis of
the Timoshenko beam theory has been proposed, called the truncated Timoshenko theory [31].
Starting from the truncated Timoshenko beam theory, the authors in the present paper have
developed a similar theory for Timoshenko nanotubes using geometrical and variational
methods. Comparing the classical Timoshenko theory with the truncated theory, a signifi-
cant simplification of the differential equation can be observed. The novelty of the proposed
approach is that it shows a perfect analogy between variational and direct methods for the
dynamic analysis of beams. The aim of the proposed formulations is to find the truncated
Timoshenko equations and the corresponding boundary conditions and to establish their
mathematical similarity with the two different approaches. It is shown that the differential
equations and the corresponding boundary conditions, used to solve the dynamic problem
of the local and nonlocal truncated Timoshenko equations via the variational formulation,
have the same form as those obtained via the direct method. In addition, it is shown that
the equation is both simpler and more consistent than the appropriate classical Timoshenko
equations extended to include nonlocal stress effects.

Finally, the impacts of the nonlocal coefficient and the length of the nanotube are then
assessed using a few numerical examples. By comparing the obtained results with those
found in the literature, the findings are validated. Moreover, the outcomes demonstrate
how effective the simplified approach is at accurately describing the behavior of nanotubes.
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2. Theoretical Formulation: Equations of Motion for Nonlocal Timoshenko
Beams Model
Eringen Nonlocal Theory Assumptions and Stress Resultants in Nonlocal Theory

According to Eringen [11,12], the nonlocal elasticity theory assumes that the Cauchy
stress state, at a given reference point xxx, does not depend only on the strain field at this point,
but is considered as a function of the strain field at all points of the body. This assumption
leads us to the assertion that, in nonlocal elasticity theory, the stress at a point is determined
both by the stress at that point and by its spatial derivatives. Eringen attributed this fact to
the atomic theory of lattice dynamics and experimental observations on phonon dispersion.
For an elastic and isotropic homogeneous body, the nonlocal constitutive behavior is
expressed by the following relations:

σσσ =
∫

V
α(|x′ − xx′ − xx′ − x|, τ)ttt(x′x′x′)dx’x’x’ (1)

ttt(xxx) = CCC(xxx)⊗ εεε(xxx) (2)

(
1− τ2le

2∇2
)

σσσ === ttt , τ =
e0li
le

(3)

where σσσ is the nonlocal stress tensor at point xxx, t(x)t(x)t(x) is the conventional stress tensor at
point xxx, α(| x’ − xx’ − xx’ − x|,τ) is the nonlocal coefficient introducing into the constitutive equation
the nonlocal effect at the reference point xxx produced by local strain at the source x’x’x’. The
Euclidean distance is |x’ − x||x’ − x||x’ − x| , τ is defined as the scale coefficient that incorporates the
small-scale factor, where e0 is a material constant determined experimentally. In addition, li
and le are the internal and external characteristic lengths, respectively. Finally, ttt at a point xxx
is related to the strain εεε at the point by the fourth-order elasticity tensor CCC and ⊗ denotes
the “double-dot product”.

Using Equation (3) we can express the resulting stresses in terms of strains. In contrast
to the local theory, the nonlocal constitutive relations lead to differential relationship
between resulting stresses and strains. In the following, the nonlocal constitutive relations
for isotropic and homogeneous beam are described. In particular, for beams the nonlocal
constitutive relations in Equation (3) take the following special form:

σzz − µ2 ∂2σzz

∂z2 = Eezz , µ = (e0li) (4)

where σzz and ezz are the normal stress and normal strain, respectively, E is elasticity modulus,
µ is the small scale parameter that incorporates the small scale effect and z is the coordinate
measured from the mid-plane of the nanotube.

σzy − µ2 ∂2σzy

∂z2 = 2G ezy (5)

where σzy and ezy are the transverse shear stress and the transverse shear strain, respec-
tively, G is shear modulus and y is the longitudinal coordinate measured from the left-end
of the nanotube.

Multiplying Equation (4) by y and integrating the result over the area A yields:

∫
A

yσzzdA− µ2
∫

A

∂2(yσzz)

∂z2 dA = E
∫

A
y2 ∂φ

∂z
dA (6)

The integrals with the first member indicate the bending moment, whereas the integral
with the second member defines the second moment of area I of the straight section. As
a result:

M− µ2 ∂2M
∂z2 = EI

∂φ

∂z
(7)
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where M is the bending moment and φ is the rotation due to bending. In addition, by inte-
grating Equation (5) over the area, one gets:

Q− µ2 ∂2Q
∂z2 = GAκ

(
∂v
∂z

+ φ

)
(8)

where Q is the shear force, A is the area of the straight section, v the transverse displacement
and κ the shear factor.

3. Timoshenko’s Non-Local Truncated Theory: Dynamic Analysis
3.1. Equation of Motion for a Truncated Timoshenko Beam: Euler Method

This section presents the equilibrium of the nanotube element using the Timoshenko-
Ehrenfest beam model. For example, if we examine the nanotube element in Figure 1, we
should impose the equilibrium of the applied loads at the abscissa z: equilibrium at the
vertical translation and at the rotation around the center of the right-hand section of all the
forces identified on the elementary ashlar, beginning from its equilibrium.

Figure 1. Translational and rotational equilibrium of the elementary ashlar.

The contributions for rotational m and translational inertia f I are made separately and
considering that

f I = −ρA
∂2v
∂t2 (9)

m = −ρI
∂2φb
∂t2 (10)

where ρ denotes mass density, t denotes the time variable, the rotational inertial term m
is independent of the total rotation φ and exclusively depends on the flexural rotation
φb = − ∂v

∂z :

φ = φb + ψ = −∂v
∂z

+ ψ (11)

The equation for the vertical translation equilibrium is:

∂Q
∂z

= ρA
∂2v
∂t2 (12)
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whose first derivative, when substituted in Equation (8), yields:

Q = GAκ

(
∂v
∂z

+ φ

)
+ µ2ρA

∂3v
∂t2∂z

(13)

hence, Equation (12) can be completed and expressed as follows:

ρA
∂2v
∂t2 − µ2ρA

∂4v
∂t2∂z2 −GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
= 0 (14)

On the other hand, the rotation’s equilibrium with respect to the center of gravity
elementary ashlar’s right face is written:

∂M
∂z

= Q− ρI
∂3v

∂t2∂z
(15)

whose first derivative, when replaced in Equation (7), gives:

M = EI
∂φ

∂z
+ µ2

(
−ρI

∂4v
∂t2∂z2 + ρA

∂2v
∂t2

)
(16)

The rotation’s equilibrium Equation (15) can be written:

EI
∂2φ

∂z2 − µ2ρI
∂5v

∂t2∂z3 + ρI
∂3v

∂z∂t2 −GAκ

(
∂v
∂z

+ φ

)
= 0 (17)

Equations (14) and (17) constitute the set of differential equations of motion for a Tim-
oshenko SWCNT that were obtained from the Timoshenko beam’s truncated theory.

3.2. Equations of Motion for a Truncated Timoshenko Beam: Variational Method

In this section, according to the Hamilton principle, the motion equations for a beam
system are derived.

For the local theory, the strain energy Π can be expressed as follows:

Π =
1
2

(∫ L

0
M

∂φ

∂z
dz +

∫ L

0
Q
(

∂v
∂z

+ φ

)
dz
)

(18)

It is evident from Equations (13) and (16), which are used to determine the shear stress
Q and the bending moment M in the case of non-local elasticity, that the terms, defined
in this context as additional to the local theory, are constant quantities that do not change
with respect to the force; this means that these additional terms do not contribute to the
strain energy but instead become the potential energy of the loads P (see Ref. [23]).

The strain energy Π assumes the following form:

Π =
1
2

∫ L

0
EI
(

∂φ

∂z

)2
dz +

1
2

∫ L

0
GAκ

(
∂v
∂z

+ φ

)2
dz (19)

As can be seen, only the local terms are present in the formulation of the strain energy.
The nonlocal potential energy Pd is equal to the work done with changed sign for the

corresponding displacement of the inertial forces.

Pd =
∫ L

0
µ2
(
−ρI

∂4v
∂t2∂z2 + ρA

∂2v
∂t2

)
∂φ

∂z
+ µ2ρA

∂3v
∂t2∂z

(
∂v
∂z

+ φ

)
dz (20)

As can be observed, only the moment and shear nonlocal contributions accurately
reflect the nonlocal potential energy expression in contrast to the local theory.
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Moreover, for the corresponding displacement φ, the rotational component Pt is
expressed in terms of the work of the inertia forces m, with the sign changed:

Pt = −
∫ L

0
mφdz = −

∫ L

0
−ρI

∂2φb
∂t2 φdz = −

∫ L

0
−ρI

∂2

∂t2

(
−∂v

∂z

)
φdz (21)

Finally, the kinetic energy T is given by:

T =
1
2

∫ L

0
ρA
(

∂v
∂t

)2
dz (22)

Equations of Motion for a Timoshenko SWCNT: Truncated Theory

According to the Hamilton principle, the equations of motion for a Timoshenko single-
walled carbon nanotube are computed using the truncated theory.

Summing the strain energy Equation (19) and the potential energies Equations (20) and (21)
minus the kinetic energy Equation (22), we have:

(Π + Pd + Pt − T) =

1
2

∫ L

0
EI

∂φ

∂z
∂φ

∂z
dz +

∫ L

0
µ2
(

ρA
∂2v
∂t2 − ρI

∂4v
∂t2∂z2

)
∂φ

∂z
dz+∫ L

0
µ2
(

ρA
∂3v

∂t2∂z

)(
φ +

∂v
∂z

)
dz +

1
2

∫ L

0
GAκ

(
φ +

∂v
∂z

)(
φ +

∂v
∂z

)
dz

− 1
2

∫ L

0
ρA
(

∂v
∂t

)2
dz−

∫ L

0
ρI

∂3v
∂z∂t2 φ dz (23)

Applying the Hamilton principle, Equation (23) becomes:∫ t2

t1

δ(Π + Pd + Pt − T)dt =

∫ t2

t1

(∫ L

0
EI

∂φ

∂z
δ

(
∂φ

∂z

)
dz +

∫ L

0

(
−µ2ρI

∂4v
∂t2∂z2 + µ2ρA

∂2v
∂t2

)
δ

(
∂φ

∂z

)
dz+

∫ L

0

((
µ2ρA

∂3v
∂t2∂z

δφ + µ2ρA
∂3v

∂t2∂z

)
δ

(
∂v
∂z

)
+ GAκ

(
φ +

∂v
∂z

)
δφ+

GAκ

(
φ +

∂v
∂z

)
δ

(
∂v
∂z

))
dz−

∫ L

0
ρA

∂v
∂t

δ

(
∂v
∂t

)
dz−

∫ L

0
ρI

∂3v
∂z∂t2 δφ dz

)
dt = 0 (24)

performing integration by parts and collecting all the terms in the previous equations
allows us to write:

ρA
∂2v
∂t2 − µ2ρA

∂4v
∂t2∂z2 −GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
= 0 (25)

EI
∂2φ

∂z2 − µ2ρI
∂5v

∂t2∂z3 + ρI
∂3v

∂z∂t2 −GAκ

(
∂v
∂z

+ φ

)
= 0 (26)

The Equations (25) and (26) represent the set of differential equations of motion for
a Timoshenko SWCNT and, as can be seen, have the same form as the Equations (14) and (17)
obtained by Euler method.

Finally, the corresponding boundary conditions are given by:[(
µ2ρA

∂2v
∂t2 − µ2ρI

∂4v
∂t2∂z2 + EI

∂φ

∂z

)
δφ

]L

0
= 0 (27)
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[((
µ2ρA

∂3v
∂t2∂z

)
+ GAκ

(
∂v
∂z

+ φ

))
δv
]L

0
= 0 (28)

3.3. The Solution of Differential Equations System

In order to find a solution to the system of differential equations describing the
dynamic behavior of the nanotube, we seek periodic solutions of the form:

v(z, t) = v(z)eiωt

φ(z, t) = φ(z)eiωt (29)

where ω is the frequency of natural vibration. On substituting Equation (29) into
Equations (25) and (26) we have:

ρAω2v− µ2ρAω2 ∂2v
∂z2 + GAκ

(
∂2v
∂z2 +

∂φ

∂z

)
= 0 (30)

EI
∂2φ

∂z2 + µ2ρIω2 ∂3v
∂z3 − ρIω2 ∂v

∂z
−GAκ

(
∂v
∂z

+ φ

)
= 0 (31)

After obtaining ∂φ
∂z from Equation (30) and properly substituting it in Equation (31),

we arrive at: (
−EI + µ2ρIω2 + EI

µ2ρAω2

GAκ

)
∂4v
∂z4 +(

−EI
ρAω2

GAκ
− µ2ρAω2 − ρIω2

)
∂2v
∂z2 + ρAω2v = 0 (32)

Equation (32) is the differential equation of motion for a Timoshenko nanotube derived
from the fourth order truncated theory in v.

On introducing the following non-dimensional coefficients:

ζ =
z
L

; Ω2 =
ρAL4ω2

EI
; η2 =

µ2

L2 ; β2 =
EI

GAκL2 ; α2 =
I

AL2 (33)

with ζ ∈ [0, 1] the dimensionless counterpart of z ∈ [0, L], Ω2 the frequency parameter,
η2 scaling effect parameter, β2 shear deformation parameter and α2 slenderness ratio, the
governing Equation (32) may be rewritten as:

(
1−Ω2α2η2 −Ω2β2η2

)∂4v
∂ζ4 +

(
Ω2β2 + Ω2η2 + Ω2α2

)∂2v
∂ζ2 −Ω2v = 0 (34)

The general solution for Equation (34) is given by:

v(ζ) = A1 cos(aζ) + A2 sin(aζ) + A3 cosh(bζ) + A4 sinh(bζ) (35)

where:

a =

√
1

2p

(
q +

√
q2 + 4pr

)
; b =

√
1

2p

(
−q +

√
q2 + 4pr

)
(36)

p =
(

1−Ω2α2η2 −Ω2β2η2
)

q =
(

Ω2β2 + Ω2η2 + Ω2α2
)

;

r = Ω2 (37)
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with A1, A2, A3 and A4 being the integration constants, which are determined using the
boundary conditions, and p, q and r are the coefficients of the characteristic polynomial
associated with differential Equation (34).

The system of Equations (25) and (26) in dimensionless form is given by:(
1
β2 −Ω2η2

)
∂2v
∂ζ2 + Ω2v +

1
β2

∂(φL)
∂ζ

= 0

Ω2α2η2 ∂3v
∂ζ3 +

(
− 1

β2 −Ω2α2
)

∂v
∂ζ

+
∂2(φL)

∂ζ2 − 1
β2 (φL) = 0 (38)

It is possible to derive φ̄ = φ L

φ̄(ζ) =
(

Ω2α2η2β2 + Ω2β4η2 − β2
)∂3v

∂ζ3 −
(

1 + Ω2α2β2 + Ω2β4
)∂v

∂ζ
(39)

3.4. Boundary Conditions

The quantities defined by Equations (27) and (28) lead to the following boundary
conditions in dimensionless form:[((

− 1
β2 + Ω2η2

)
∂v
∂ζ
− 1

β2 φ̄

)
v(ζ)

]1

0
= 0[(

−∂φ̄

∂ζ
−Ω2α2η2 ∂2v

∂ζ2 + Ω2η2v
)

φ̄(ζ)

]1

0
= 0 (40)

By substituting the Equations (35) and (39), that were appropriately calculated, in the
boundary conditions (40), we obtain a system of four equations in the four unknowns Ai.
In order for the system to admit a solution other than the trivial one, the determinant of the
coefficient matrix must be set to zero.

The infinite solutions of the transcendental equation obtained by solving the determi-
nant provide the infinite free frequencies of vibration.

3.5. Comparison of the Two Methods

This section compares the boundary conditions and differential equations of motion
for the two theories. In particular, we compare the boundary conditions and differential
equations of motion for the classical theory (see Equation (18) to Reference [23]) with the
truncated theory (see Equation (34) of the current paper).

As demonstrated in Reference [23], the differential equation’s characteristic polynomial
for a classical SWCNT has the following form:

pCλ4 + qCλ2 + rC = 0 (41)

with:

pC =
(

1−Ω2α2η2 −Ω2β2η2 + Ω4α2β2η4
)

;

qC =
(

Ω2β2 + Ω2η2 + Ω2α2 − 2Ω4α2β2η2
)

;

rC =
(

Ω2 −Ω4α2β2η2
)

(42)

where pC, qC and rC are the coefficients of the differential equation’s characteristic poly-
nomial. As shown in the present paper, the characteristic polynomial associated with
differential Equation (34) based on truncated Timoshenko’s theory is represented by:

pλ4 + qλ2 − r = 0 (43)
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with:

p =
(

1−Ω2α2η2 −Ω2β2η2
)

;

q =
(

Ω2β2 + Ω2η2 + Ω2α2
)

;

r = Ω2 (44)

The comparison of the two Equations (42) and (44) shows that the terms pC and p
differ by the amount (α2β2η4Ω4), qC and q differ by the amount (α22β2η4Ω4) and the terms
rC and r differ by the amount (β2η4Ω4). As you can see, they are all terms multiplicative
in ∂4v

∂t4 .
By examining the free frequencies of vibration of a simply-supported beam at both

ends, Timoshenko came to the conclusion that the final multiplicative term may be omit-
ted because it would not affect the results, as was previously noted in Reference [32] in
which Elishakoff obtained an equation both more consistent and simpler than the Bresse-
Timoshenko equation given by the following expression:

EI
∂4v
∂x4

3
+ ρA

∂2v
∂t2 − ρI

(
1 +

E
Gχ

)
∂4v

∂x2
3∂t2

+
ρ2 I
Gχ

∂4v
∂t4 = 0 (45)

It can easily be seen from the comparison of the boundary conditions that those
relating to displacements and shear remain constant while those relating to rotations and
momentum change with respect to a single term. The following equations show how the
classical theory and the nonlocal theory for a quantity differ from one another:[(

−
(

1−Ω2η2α2
)∂φ̄

∂ζ
+ Ω2η2v

)
φ̄(ζ)

]1

0
= 0 (46)

Equation (46) is related to the classical theory, while the following equation relates to
the nonlocal theory: [(

−∂φ̄

∂ζ
−Ω2α2η2 ∂2v

∂ζ2 + Ω2η2v
)

φ̄(ζ)

]1

0
= 0 (47)

in which it can be noted that −
(
Ω2η2α2) ∂φ̄

∂ζ becomes −Ω2α2η2 ∂2v
∂ζ2 .

4. Numerical Examples

In this section, the suggested analytical method is validated in order to assess the
impacts of the nonlocal parameter and the length of the nanotube on the free frequencies of
vibration. Some numerical examples have been carried out, and the obtained results have
been compared with those of papers that have already been published in the literature. All
the numerical computations have been performed through in-house software developed in
the Mathematica language [33] and the same geometrical features have been used.

For this purpose, Table 1 shows physical and geometrical properties of nanotubes used
in Reference [34], which will be used throughout this section. In addition, the following
shear factor is introduced:

k =
6(1 + ν)

(
1 + cr

2)2

(7 + 6ν)(1 + cr2)2 + (20 + 12ν)cr2 (48)

where cr = (d − 2 h)/d. The external diameter d depends directly on the height h in the
ratio d/h, and the span L depends on d in the ratio L/d.
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Table 1. Geometrical and material properties adopted in numerical experiments.

SWCNT Properties Symbol Value Unit

Cross-sectional area A π (d − h) h m2

Thickness h 0.34 ×10−9 m
Moment of inertia I 1/8 π (hd3 − 3h2d2 + 4h3d− 2h4) m4

Density ρ 2300 kg/m3

Young’s modulus E 1000 GPa
Poisson’s ratio ν 0.19 -
Shear modulus G E

(2+2ν)
GPa

Numerical Comparison between the Two Theories: Conventional and Truncated Theories

A first numerical comparison has been made between the results of the present paper
and those obtained by Wu and Lai in Ref. [34]. For different values of the non-dimensional
small-scale coefficient η

[
0,
√

2, 2
]
, the aspect ratio of L/d [5, 10, 25, 50, 100], with d/h = 3,

and for various boundary conditions, the first three nondimensional frequencies Ωi have
been calculated. In Table 2 are quoted the corresponding values and a comparison between
the present results with those obtained in [34] has been done. As can be easily observed,
for L/d = [5, 10], the results of the classical theory and the truncated theory diverge, whereas
they coincide for values higher than L/d = 10. Moreover, they demonstrate that with increasing
the ratio L/d, the first three nondimensional frequencies increase and it can be seen that if
the nonlocal effect η increases the three first nondimensional frequency value decreases.
In particular, in order to assess the impact of the small scale parameter on the frequency
parameter of the SWCNT, the frequency parameter ratio as R(η) = Ω(η)/Ω(η = 0) is defined.
For various boundary conditions the following remarks may be applicable:

- For L/d = 5 and d/h = 3, the lowest frequency parameter ratio of the simply-supported
SWCNT with η =

√
2, 2 are around 0.75 and 0.63, and they are 0.50, 0.36, and 0.36,

0.26 for the second and third modes, respectively. These findings demonstrate that
the impact of the small-scale parameter on the frequency parameter of the SWCNT is
greater for higher vibration modes than for lower modes.

- For L/d = 10 and d/h = 3, the nonlocal effect parameter η =
√

2 and for four boundary
conditions (simply-supported (SS), clamped-clamped (CC), clamped-supported (CS)
and clamped-free (CF) the frequency parameter ratios for the first vibration mode
of the SWCNT are 0.75, 0.72, 0.73 and 1.03, respectively. According to the results,
the SWCNT with SS,CC, and CS boundary conditions exhibit a small scale parameter
effect on the frequency parameter that is more important than the SWCNT with CF
boundary conditions.

In comparison to Table 3 of Ref. [34], the ratio L/d = 5 has been added and the
dimensionless free vibration frequencies are calculated using the algorithm developed in
Ref. [23] and referred to as additional constraint conditions other than the clamped-free.
These values are crucial because, for larger L/d values, we move toward the Euler-Bernoulli
theory, for which the classical Timoshenko and truncated Timoshenko theories will coincide;
but for lower ratios, we approach Timoshenko’s theory.
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Table 2. Three non-dimensional frequency values for η = 0,
√

2, 2, d/h = 3 and L/d [5, 10, 25, 50, 100].

η[nm] d/h L/d Ωi SS CC CS CF
[34] Present [34] Present [34] Present [34] Present

0 3 5 1st 9.3349 9.3254 18.3188 18.2653 13.6062 13.5807 3.4213 3.4208
2nd 32.7567 32.4455 42.3973 41.9378 37.7664 37.3703 18.6875 18.6268
3rd 63.1739 61.5730 71.1007 69.5058 67.2925 65.6741 44.9335 44.3155

10 1st 9.7254 9.7247 21.1019 21.0951 14.8938 14.8912 3.4915 3.4914
2nd 37.3394 37.3015 54.4248 54.3228 45.7322 45.6670 21.0258 21.0189
3rd 79.1305 78.8118 98.9624 98.4371 89.0947 88.6763 55.6261 55.5123

25 1st 9.8460 9.8460 22.1535 22.1533 15.3303 15.3302 3.5120 3.5120
2nd 39.1056 39.1044 60.3036 60.2992 49.1981 49.1957 21.8628 21.8625
3rd 86.9790 86.9659 116.3020 116.2720 101.2204 101.2000 60.5724 60.5679

50 1st 9.8637 9.8637 22.3177 22.3177 15.3961 15.3961 3.5150 3.5150
2nd 39.3840 39.3839 61.3211 61.3208 49.7694 49.7692 21.9912 21.9911
3rd 88.3501 88.3501 119.6965 119.6940 103.4615 103.4600 61.4093 61.4090

100 1st 9.8681 9.8681 22.3593 22.3593 15.4127 15.4127 3.5158 3.5158
2nd 39.4547 39.4547 61.5843 61.5843 49.9157 49.9157 22.0236 22.0236
3rd 88.7067 88.7066 120.5979 120.5980 104.0492 104.0490 61.6248 61.6248

√
2 3 5 1st 7.0339 7.0314 13.2521 13.1938 9.9602 9.9381 3.5232 3.5225

2nd 16.3059 16.1509 20.4210 20.0819 18.5642 18.3205 12.6427 12.5757
3rd 22.5773 22.0042 25.4238 24.5612 24.0527 23.3419 21.2597 20.8030

10 1st 8.9163 8.9156 19.0006 18.9939 13.4846 13.4823 3.5195 3.5195
2nd 28.1544 28.1258 39.8407 39.7524 33.9813 33.9290 18.6756 18.6677
3rd 48.0901 47.8965 58.9143 58.5214 53.5671 53.2866 40.4636 40.3540

25 1st 9.6999 9.6999 21.7469 21.7466 15.0661 15.0661 3.5167 3.5167
2nd 36.9279 36.9267 56.4535 56.4493 46.2499 46.2477 21.4257 21.4255
3rd 77.0842 77.0725 101.9404 101.9080 89.1923 89.1725 56.6912 56.6867

50 1st 9.8265 9.8265 22.2119 22.2119 15.3284 15.3284 3.5162 3.5162
2nd 38.7995 38.7994 60.2646 60.2643 48.9689 48.9688 21.8794 21.8794
3rd 85.4800 85.4792 115.3995 115.3960 99.9168 99.9148 60.3525 60.3522

100 1st 9.8588 9.8588 22.3330 22.3330 15.3956 15.3956 3.5161 3.5161
2nd 38.3059 39.3059 61.3136 61.3136 49.7112 49.7112 21.9955 21.9955
3rd 87.9589 87.9588 119.4686 119.4680 103.1218 103.1210 61.3546 61.3546

2 3 5 1st 5.8830 5.8770 10.8642 10.8026 8.2156 8.1952 3.6507 3.6495
2nd 12.3183 12.2013 15.3213 15.0436 14.0142 13.8182 9.7649 9.7140
3rd 16.4993 16.0812 18.6614 17.9761 17.6063 17.0662 16.4645 16.0494

10 1st 8.2804 8.2798 17.4090 17.4022 12.4063 12.4043 3.5488 3.5489
2nd 23.5318 23.5079 32.8628 32.7809 28.2456 28.1993 16.8709 16.8630
3rd 37.6594 37.5078 45.9992 45.6612 41.8802 41.6497 33.4683 33.3679

25 1st 9.5601 9.5601 21.3611 21.3609 14.8149 14.8148 3.5213 3.5213
2nd 35.0776 35.0765 53.2455 53.2412 43.7742 43.7720 21.0096 21.0093
3rd 69.9442 69.9336 91.8434 91.8105 80.6349 80.6157 53.4678 53.4633

50 1st 9.7897 9.7897 22.1096 22.1096 15.2616 15.2616 3.5173 3.5173
2nd 38.2403 38.2402 59.2597 59.2593 48.2057 48.2056 21.7690 21.7690
3rd 82.8719 82.8710 111.5318 111.5270 96.7128 96.7103 59.3479 59.3476

100 1st 9.8495 9.8495 22.3067 22.3067 15.3787 15.3787 3.5163 3.5164
2nd 39.1587 39.1587 61.0463 61.0463 49.5092 49.5092 21.9675 21.9675
3rd 87.2297 87.2297 118.3702 118.3690 102.2186 102.2180 61.0879 61.0879

Figures 2–5 show the nondimensional frequency values versus the ratio h/d, for three
different values of the nonlocal parameter η = 0, 1, 2 and various boundary conditions.
According to Figures 2–4 in relation to the cases of the simply-supported, clamped-clamped,
clamped-supported SWCNT, for a fixed aspect ratio value L/d = 10 and for 2 < d/h < 10,
the non-dimensional frequency values decrease as the nonlocal effect value increases. In
addition, when d/h = 10 and higher values of the non-dimensional frequency are found
for the clamped-clamped situation, the frequency curves for η = 0 and η = 1 approach
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and tend to coincide. Ultimately, the frequency increases for η = 1 and η = 2 and as the
ratio d/h varies, whereas it decreases for η = 0. The case of the clamped-free single-walled
carbon nanotube is explored in Figure 5. For a fixed aspect ratio value L/d = 10 and
for 2 < d/h < 10, the non-dimensional frequency values versus the ratio d/h, for three
alternative values of the nonlocal parameter η = 0, 1, 2, are provided. As can be observed,
the nondimensional frequency increases if the nonlocal parameter increases and for the
ratio d/h= 10 the frequency curves approach and tend to coincide.

Figure 2. The nondimensional frequency values versus the ratio d/h, for three different values of the
nonlocal parameter η = 0, 1, 2: simply-supported single-walled nanotube case.

Figure 3. The nondimensional frequency values versus the ratio d/h, for three different values of the
nonlocal parameter η = 0, 1, 2: clamped-clamped single-walled nanotube case.
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Figure 4. The nondimensional frequency values versus the ratio d/h, for three different values of the
nonlocal parameter η = 0, 1, 2: clamped-supported single-walled nanotube case.

Figure 5. The nondimensional frequency values versus the ratio d/h, for three different values of the
nonlocal parameter η = 0, 1, 2: clamped-free single-walled nanotube case.

Table 3 compares the results from the truncated Timoshenko theory and those pro-
duced using the conventional method, showing the percentage of errors in each case. This
inaccuracy grows with the nonlocal effect η and is greater for the clamped-clamped bound-
ary condition. The simply supported nanotube does not change while η changes. From the
first to the third frequency, this error increases.
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Table 3. Percentage error between the traditional SWCNT and the result of the truncated theory, for
L/d = 5, 10 per (η = 0,

√
2), 2.

η[nm] L/d Ωi SS CC CS CF
% Error ∗

0

5
1st 0.102 0.292 0.187 0.016
2nd 0.950 1.084 1.049 0.325
3rd 2.534 2.243 2.405 1.375

10
1st 0.008 0.032 0.017 0.002
2nd 0.102 0.187 0.143 0.033
3rd 0.403 0.531 0.470 0.205

√
2 5

1st 0.035 0.440 0.222 0.021
2nd 0.951 1.661 1.313 0.530
3rd 2.538 3.393 2.955 2.148

10 1st 0.008 0.035 0.017 0.000
2nd 0.102 0.222 0.154 0.042
3rd 0.403 0.667 0.524 0.271

2
5 1st 0.102 0.567 0.248 0.033

2nd 0.950 1.813 1.399 0.521
3rd 2.534 3.672 3.068 2.521

10 1st 0.007 0.039 0.016 0.003
2nd 0.102 0.249 0.164 0.047
3rd 0.403 0.735 0.550 0.300

∗ % error = approx - exact
exact · 100.

5. Conclusions

In the present paper, the nonlocal truncated Timoshenko single-walled nanotube,
with various boundary conditions, has been studied. According to the Eringen’s and
nonlocal Timoshenko beam theory, a new theory for the free vibration analysis of the
Timoshenko nanotube has been presented and the equations of motion and the general
corresponding boundary conditions have been derived.

As is well known, it is not always possible to find analytical solutions for all sets of
boundary conditions and varied geometries. This circumstance has motivated the present
research. The novelty of the proposed approach has been devoted to finding solutions
to the eigenvalue problem of single-walled carbon nanotube by employing the truncated
theory in those cases for which, to the authors’ knowledge, no analytical solutions have
been provided in the literature.

Starting from the truncated Timoshenko beam theory, the authors have developed the
same theory for Timoshenko nanotubes using the geometrical and variational methods.
Comparing the classical Timoshenko theory with the truncated theory, we have shown
a considerable simplification of the differential equation. Some numerical examples have
shown the effectiveness of the proposed approach, even through a comparison against
results in the literature. In particular, the results have demonstrated that the present formu-
lation is very efficient and able to describe the behavior of nanobeams in a satisfactory way.

Finally, it has been explained how the length of the nanotube and nonlocal parameters
affect the three initial frequencies of SWCNT. The main points are:

- the first three nondimensional frequencies decrease with increasing of nonlocal effect;
- the first three nondimensional frequencies increase with increasing the ratio L/d;
- the effect of the small scale parameter on the frequency parameter of the SWCNT with

SS, CC and CS boundary conditions is more significant than that of the SWCNT with
CF boundary conditions.

The present approach can be applied to analyze the stability and dynamics behaviour
of single-walled and multi-walled carbon nanotubes (MWCNTs) with different boundary
conditions. The first results obtained, and reported in the degree thesis [35], are significant
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and in perfect agreement with the results of the literature. In the upcoming publication,
which will be released, the effects of surface tension on the natural frequency of nanotubes
will also be investigated.

Moreover, the exact nonlocal truncated Timoshenko beam solutions presented herein
should be useful to engineers who are designing nano-beams and nanotubes. In addition,
the exact solutions serve as reference results for confirming numerical vibration solutions
derived from other mathematical models and methods.
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