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Abstract: The calculation of moments of area is one of the most fundamental aspects of engineer-
ing mechanics for calculating the properties of beams or for the determination of invariants in
different kind of geometries. While a variety of shapes, such as circles, rectangles, ellipses, or their
combinations, can be described symbolically, such symbolic expressions are missing for freeform
cross-sections. In particular, periodic B-spline cross-sections are suitable for an alternative beam
cross-section, e.g., for the representation of topology optimization results. In this work, therefore, a
symbolic description of the moments of area of various parametric representations of such B-splines
is computed. The expressions found are then compared with alternative computational methods
and checked for validity. The resulting equations show a simple method that can be used for the fast
conceptual computation of such moments of area of periodic B-splines.
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1. Introduction

In engineering mechanics, there are idealized 1D models, such as rods or beams,
as well as 2D models, such as shells and plates. In particular, the beam represents a
high abstraction of a 3D body consisting of a curve and a cross-section. These cross-
sections usually consist of the composition of different 2D geometric objects such as circles,
ellipses, rectangles, or triangles [1], leading, for example, to cross-sections such as U,
T, H, I, or tube sections. Structural optimization for such wireframe structures can be
applied to the element stiffness matrix of a beam by changing the moments of area [2–4] or
accounting parameters for specific types of cross-sections [5,6]. While such cross-sections
are typically found in frame structures such as cars, buses, or bridges, the results of topology
optimization tend to result in root-shaped geometric freeform bodies [2]. Visually, the
results provided by topology optimization considering plate or volumetric elements often
lead to organic shapes [7], which can be interpreted as beams with circular or elliptical
cross-sections [8,9]. Alternatively, freeform surfaces can be selected manually [10,11] or
estimated automatically [12,13] for such optimization results.

Freeform curves in particular offer the advantage of high shape variation and are
especially well suited for the reconstruction of organic models. Such a freeform cross-
section consists of a so-called control polygon [14], with which the spline can be adjusted
and controlled. A significant advantage is that such cross-sections can be used to derive
a frame structure consisting of several beams to a closed freeform surface model. These
control polygons of the individual beams can be linked to form a comprehensive control
mesh [15]. In contrast to the unification of cylinders or spheres by means of constructive
solid geometry, this results in a continuous surface. Furthermore, such a control polygon
can be parametrized and further applied for shape reconstruction and wireframe optimiza-
tion [15]. Thus, it is highly desirable to investigate the geometric properties of such a basis
spline (B-splines) defined by a parametric representation.
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1.1. Motivation

The advantage of constructive solid geometry (CSG) derived from circular and ellipti-
cal cross-sections includes the parametric representation of the curve and the moments of
area, which are necessary for the evaluation of the bending stiffness as well as for FE simu-
lations. For freeform cross-sections, the calculation of the moments is usually performed in
a large number of numerically treated point coordinates, where they are determined via a
boundary integral. In a recent publication [15], instead of a numerical calculation approach,
a parametric formula was derived analytically, e.g., for the area of a triangle and rectangle
control polygon. Figure 1 shows the example of a bar with Cartesian coordinates and with
a parametric of the control polygon of a B-spline.

Figure 1. B-spline beam: Cross-section and centerline beam; Cartesian coordinates of control points;
parametric coordinates of contour points.

However, since, in [15], only a triangle and a rectangle are considered and a numerical
estimation of the coefficients of the second moments of area is carried out, a parametric
description of the moments of area is analyzed in the context of this work. On one hand,
the zero- and second-order moments of area are determined analytically, and, on the other
hand, in addition to the triangle and rectangle, various control polygons, such as the
moments of area of a parallelogram, a trapeze, a symmetric pentagon, and a symmetric
hexagon control polygon, are derived.

In addition to the determination of the equations for the moments, an extensive
validation strategy is presented. First, the formulas are checked against correlations of
valid cross-sections, so that, for example, the cross-sectional area must always be greater
than 0. Then, the freeform curves are converted into polygons by an appropriate choice of
control points and compared with results from the literature using a triangle and a rectangle
as examples. Finally, a numerical comparison of the moments of area is performed with
alternative calculation methods of the moments of polygons as well as of 2D binary images.
This validation can be used to ensure the validity of the automatically calculated formulas.

In the following, the properties and the methods for the determination of the mo-
ments of area of periodic splines are described. Then, alternative methods for calculating
moments of polygons and images are explained. Finally, the essential parameters of
moments are described.

1.2. State of the Art

The parametric representation of various shapes and topologies has been discussed in
various articles for simple polygons as common cross-section types [16,17] and also for more
complex topologies consisting of multiple polygons such as hexagonal networks [18,19].
The knot positions of these for one or several polygons can be considered as control points
for tensor product splines.

There are several different kinds of splines such as the Overhauser spline [20,21], the
Catmull–Rom spline [22], B-splines [23], and Bezier splines [24]. These different spline
types may differ in properties such as the convex hull criterion or the type of continuity [25].
The convex hull criterion describes the property in which, given a convex control polygon,
the resulting spline lies within that control polygon. While B-splines provide C2 continuity
and the convex hull criterion, Bezier curves only guarantee C1 continuity and the convex
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hull criterion [25]. Catmull–Rom splines are only C1 continuous and violate the convex hull
criterion [25]. The Catmull–Rom spline and the Bezier spline offer. in contrast to B-splines.
the advantage that the control points are located on the curve. Due to the convex criterion
and the C2 continuity, this article focuses on B-splines. Such a cross-section can be used to
describe 3D surfaces by using operations, such as skinning or sweeping, along a curve [26]
to design, for example, a propeller blade [27]. Furthermore, B-splines can be used to model
the mechanical behavior of a beam [15,28]. Additionally, they can be used in the structural
optimization of lattices [15,29–31], so that the beam line or its cross-section changes due to
some objective function.

The calculation of the moments of freeform curves has been performed in several
publications [32–34]. The calculation is carried out via the boundary integral along the spline
using Green’s Theorem in order to be able to calculate the moments of area directly [32,33].
This boundary integral can be traced back to a summation of the individual points, including
weighting factors. The authors of [32] compared their equations using several B-splines
to approximate the ellipse against the exact moments of area. While the authors of [32,33]
considered the calculation on 2D shapes, the authors of [35] calculated the moment of inertia
for the 3D shapes of freeform surfaces instead. Such moments of area, particularly for splines,
are often used for shape matching [36,37] due to the invariant properties.

However, since this summation has a large number of coefficients, a more compact
parametric description is often desirable. The authors of [15] were able to find an exact
parametric description of triangles and rectangles for the value of the cross-sectional area,
the formula of which was subsequently used for the truss optimization as well as the
3D reconstruction. In this work, analogous to [15], such a compact description shall be
found for different control polygons and for different types of splines. In contrast to [15], a
complete analytical description of the second order of the moments of area, as well as the
transfer to control polygons consisting of a parallelogram, a trapeze, a symmetric pentagon,
and a symmetric hexagon, is guaranteed.

In addition to the numerical calculation of spline cross-sections, alternative geometric
representations such as a polygon or an image can also be used. The moments of binary
images were investigated in several articles such as [16,38]. By summing up the single
pixels to a rectangle, the area can be calculated by considering Steiner’s theorem and
the center of area, and the second moments of area can be calculated with the following
equations [16]:

AImg = ∑
i∈B

1; SxImg = ∑
i∈B

yi 12; SyImg = ∑
i∈B

xi 12 (1)

IxImg = ∑
i∈B

(
1
12

+ (ys − yi)
2
)

; IyImg = ∑
i∈B

1
12

+ (xs − xi)
2; IxyImg = −∑

i∈B
(ys − yi)(xs − xi) (2)

For polygonal cross-sections, the moments of area with respect to the center of area
can be determined with the following equations [39,40]:

IxPoly =
1

12

n

∑
i

(
y2

i + yiyi+1 + y2
i+1

)
ai (3)

IyPoly =
1

12

n

∑
i

(
x2

i + xixi+1 + x2
i+1

)
ai (4)

IxyPoly = − 1
24

n

∑
i
(xiyi+1 + 2xiyi + 2xi+1yi+1 + xi+1yi)ai (5)

ai = xiyi+1 − xi+1yi (6)

Typically, cross-sections can be converted from algebraic curves to images or polygons
directly. Therefore, it is reasonable to cross-validate the new equations to the alternative
representations using Equations (1) and (2). While the equations of the polygon cross-
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section are determined by a boundary integration, the equations for the binary image were
determined by an area integration. While these numerical approximations of the moments
of area can be computed quite quickly, the main advantage of parametric cross-sections is
their interpretability and direct use in algebraic equations. For example, the beam stiffness
matrix can be constructed directly using the parametric spline description, which can be
further optimized [15].

2. Materials and Methods

In order to determine the formulas for the moments, the description of a periodic
B-spline is first explained in more detail. Then, based on the publication [32], the approach
to derive the formulas for the analytical moments is presented. Finally, a suitable experi-
mental setup is presented to automatically test the formulas numerically against alternative
calculation methods as well as against general correlations of valid cross-sections. A tensor
product spline describes a family of curves that can be represented [25,41] with

P(t) = TMC, (7)

where P(t) describes the curve, T describes the monomial basis, C describes the control
points of the spline, and M describes the geometry matrix [25]. In the case of a cubic
B-spline, the relationship for a segment can be described as follows:

Pi(t) =
(

x(t)
y(t)

)
=
[
t3 t2 t 1

]1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

[ci−1 ci ci+1 ci+2]
T (8)

where ci is the individual control points and t is the parametrization along the spline of the
monomial basis. Figure 2 shows for a triangular control polygon the computation of the
B-spline using different sequences of control points. A periodic B-spline can be obtained by
repeating the first two control points. If the individual control points are repeated in the
sequence itself, a sharper spline is obtained, and repeating twice gives the control polygon
as a contour.

Figure 2. Variation of the number of control points: B-spline segment; two segments; periodic
B-spline; sharped one time repeated B-spline; polygon.

In this work, we restrict ourselves to periodic splines since they only lead to a closed
cross-section. For the first validation, the moments of area of the control polygon calculated
by repeating the control points must match with the moments of area of a directly computed
polygon in Equation (2). Therefore, the moment formulas of a rectangle or triangle must
match those from the approach with the B-spline.

2.1. Moments of Area of a Periodic B-Spline

Different control polygons can be parametrized for the calculation of the moments of
area. Figure 3 shows a variation of different control polygons with the parameters used in
each case.
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Figure 3. Parametrization of the control polygon: triangle; rectangle; parallelogram; quadrilateral;
trapeze; symmetric pentagon; symmetric hexagon.

For the moments of splines, the authors of [32,33] used a boundary integral along the
tensor product spline with N control points and the coordinates Xn, Yn to calculate the
area of such a spline with

A =
N

∑
i=0

4

∑
l

4

∑
m

ClmXi+l−2Yi+m−2 (9)

where the coefficient Clm can be calculated by summing the geometry matrix [32] with:

Clm =
4

∑
j=1

3

∑
k=1

Mjl Mkm(4− k)
8− j− k

. (10)

Analogously, the first and second order moments were determined in [32] using the
following equations:

Sx =
−1
2

N

∑
i=0

4

∑
l=1

4

∑
m=1

4

∑
n=1

ClmnYi+l−2Yi+m−2Xi+o−2 (11)

Sy =
1
2

N

∑
i=0

4

∑
l=1

4

∑
m=1

4

∑
n=1

Clmn Xi+l−2Xi+m−2Xi+n−2Yi+o−2 (12)

Ix =
−1
3

N

∑
i=0

4

∑
l=1

4

∑
m=1

4

∑
n=1

4

∑
o=1

ClmnoYi+l−2Yi+m−2Yi+n−2Xi+o−2 (13)

Iy =
1
3

N

∑
i=0

4

∑
l=1

4

∑
m=1

4

∑
n=1

4

∑
o=1

Clmno Xi+l−2Xi+m−2Xi+n−2Yi+o−2 (14)

Iyz = −
1
2

N

∑
i=0

4

∑
l=1

4

∑
m=1

4

∑
n=1

4

∑
o=1

Clmno Xi+l−2Xi+m−2Yi+n−2Yi+o−2 (15)

The coefficients Clmn and Clmno can be calculated as follows [32]:

Clmn =
4

∑
j=1

4

∑
k=1

3

∑
r=1

Mjl Mkm Mrn(4− r)
12− j− k− r

(16)

Clmno =
4

∑
j=1

4

∑
k=1

4

∑
r=1

3

∑
s=1

Mjl Mkm Mrn Mso(4− s)
16− j− k− r− s

(17)

With the help of these equations, the parametric descriptions of the control polygons
can be generated. In the following, the parametrization is determined schematically for a
triangular control polygon.
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2.2. Parametric Representation of the B-Spline of a Triangle

Based on the parametric in Figure 3, the area can now be determined. For a B-spline,
the area can be calculated as follows:

A =
1

36

[
− 9

20
ch− 15

2
hp− 9

10
ch− 1

2
hp +

1
20

hp− 19
10

ch +
71
20

ch− 1
20

hp +
1
2

hp +
183
20

ch +
15
2

hp
]

(18)

This results in an expression similar to that found in [15]:

A = 21 c
h

80
. (19)

Analogously, the first and second order moments of area with respect to the coordinate
origin can be calculated with

S(0,0)
x = 7 c

h2

80

S(0,0)
y = 7

c2h
80

+ 7 c h
p

80

I(0,0)
xx = 15769 c

h3

443520

I(0,0)
yy = 15769

c3h
443520

+ 23039 c2h
p

443520
+ 15769 c h

p2

443520

I(0,0)
xy = −23039

c2h2

887040
− 15769 c

h2 p
443520

.

From the first moments of area, the center of area of the spline cross-section can now
be calculated with

xs =
Sy

A
=

c
3
+

p
3

(20)

ys =
Sx

A
= h/3. (21)

Using the center of area, the second order moments can now be referenced to the
center of area with

Ixx = I(0,0)
xx − y2

s A =
2833

443520
ch3 (22)

Iyy = I(0,0)
yy − x2

s A =
2833

443520
c h
(

c2 − c p + p2
)

(23)

Ixy = I(0,0)
xy + xsys A = 2833 c

h2(c− 2 p)
887040

. (24)

It is noticeable that the structure of the moments of the B-spline differs from that of a
triangle only in the coefficients (see also Table 1). To check the validity of the formulas found
for the moments, it is necessary to compare them with alternative calculation methods and
to check valid cross-section properties.

2.3. Comparison to Polygon Cross-Sections

By repeating the control points, the B-spline formula can be used to accurately repro-
duce the shape of a polygon and, therefore, its moments of area. If the parametric formula
is derived from this, the moment of area formula of, for example, a rectangle or a triangle is
obtained in Table 2. The following table shows the determination of the moments via the
B-spline formula, which can also be derived from Equation (2) or found in the literature [1].
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Table 1. List of symbols and abbreviations.

TSP Tensor Product Spline CSG Constructive Solid Geometry

C1 Tangential Continuity A Zeroth Moment of Area (Cross-Sectional Area)

C2 Curvature Continuity Sx, Sy First Moment of Area

T Monomial Basis Ix, Iy, Ixy Second Moment of Area

M Geometry Matrix AImg, IxImg

IyImg , IxyImg

Moments of Area of the Binary Image

Ci
Control Point of the

Tensor Product Spline
APoly, IxPoly

IyPoly , IxyPoly

Moments of Area of the Polygon

P(t) Tensor Product Spline
A(0,0)

yy , I(0,0)
yy

I(0,0)
xy , I(0,0)

xx
Moments of Area referred to the Origin of the Coordinate System

xs, ys
Center Points of the

Cross-Section
ATPS, IxTPS

IyTPS , IxyTPS

Moments of Area of the Tensor Product Spline

c, b, h, p, a, d Geometric Sizes I1, I2 Principal Moments of Area

B Binary Image εA, εIxy , εIx , εIy Relative Errors

σ2 Variance ε[...] Mean Value of [. . .]

Table 2. Derivation of the moments of area using the equations for the B-spline.

Triangle Rectangle

A c h
2 bh

Ix c h3

36 b h3

12

Iy c h c2−c p+p2

36
b3h
12

Ixy c h2(c−2 p)
72

0

xs, ys
(

c
3 +

p
3 , h

3

) (
b
2 , h

2

)

The comparison with the table shows an agreement of the calculation methods with
the literature. Thus, it can be seen that if the control points (polygon) are repeated twice,
the results from the literature can be determined directly.

2.4. Numerical Comparison Framework

To ensure the validity of the formulas with a high degree of accuracy, they must be
validated with alternative calculation methods and by checking the Jordan curve theorem
and valid cross-section properties. Figure 4 shows the steps involved in the automatic
validation of the equations for the cross-sections. First, a tensor product spline is defined.
This curve is then converted into a discrete polygon and the control polygon points. From
the control polygon points, the parametric equation is derived and the numerical results of
the moments are then compared to the moments of the polygon as well as the moments
from a binary image.

In addition, for each formula it is checked whether it is a valid cross-section or a curve,
as determined by the Jordan curve theorem.
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Figure 4. Framework for the validation of the symbolic equations of the moments of area.

2.4.1. Spline Cross-Section with Valid Cross-Section Property

A valid cross-section has a positive cross-sectional area and positive principal axis
moments (eigenvalues), so that all combinations of parameters must fulfill

A > 0 ∧ I1 > 0 ∧ I2 > 0 (25)

Principal moments can be computed with

I1,2 =
Iy + Iz

2
±

√(
Iy − Iz

2

)2
+ I2

yz > 0.

However, since this expression can be very complex, it is first necessary to find a
simplified criterion for valid cross-sections. It is sufficient to state that the smaller principal
moment of area given by

I2 =
Iy + Iz

2
−

√(
Iy − Iz

2

)2
+ I2

yz > 0

must be greater than zero. This leads to

Iy + Iz

2
>

√(
Iy − Iz

2

)2
+ I2

yz

I2
y + 2Iy Iz + I2

z > I2
y − 2Iy Iz + Iz

2 + 4I2
yz

Iy Iz > I2
yz.

Therefore, for all parameter combinations, a valid cross-section has to fulfill

A > 0 ∧ Iy Iz − I2
yz > 0 (26)

In addition to the relationship between the moments of area for valid cross-sections, it is
also necessary to compare the formula found with various alternative calculation methods.

2.4.2. Spline Cross-Section as Valid Jordan Curve

For validation, the spline is converted into a polygon and into a 2D binary image.
Then, the moments can be calculated in different ways for the particular spline. Figure 4
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shows three different B-splines, their polygons (red and green), and a binary image of their
cross-sections.

A comparison of Equations (1) and (2) is used to check the accuracy and validity. As
the number of segments along the polygon line is increased, the accuracy of the moments
of area estimate also increases. The comparison with the formula of the binary image
serves to ensure the validity of the calculated curve, so that no Jordan curves are detected.
Figure 5 shows a non-Jordan curve by swapping the order of the nodes. While such a
cross-section can be estimated with some accuracy using the binary image, the boundary
integration approach using the polygon approach, as well as the chosen formula derived
for the B-spline, leads to incorrect results (e.g., area = 0, in this case).

Figure 5. Tensor product spline cross-sections (B-splines) and their polygons and binary images.

To achieve a high degree of coverage, it is necessary to compare the approach with a
large number of possible polygon and binary image cross-sections. For each parametriza-
tion, a Latin hypercube sampling is chosen by generating a large number of cross-sections.
Then, the mean error and the variance of the error are chosen as evaluation criteria in
comparison to the alternative computational methods. For this purpose, the relative errors
are determined as follows.

2.4.3. Spline Cross-Section Numerically Compared to Polygon and Image Cross-Section

To validate each formula, the moments from the derived polygon cross-section and the
image AImg, Poly, Ix Img, Poly, Iy Img, Poly, Ixy Img, Poly are compared with the moments of the
B-spline formula ATPS, IxTPS, IyTPS, IxyTPS. Thereby, the relative errors of a large number
of combinations of the control polygons, including

εA =

∣∣∣∣AImg, Poly − ATPS

ATPS

∣∣∣∣ (27)

εIx =

∣∣∣∣ Ix Img, Poly − IxTPS

ATPS

∣∣∣∣ (28)

εIy =

∣∣∣∣ Iy Img, Poly − IyTPS

IyTPS

∣∣∣∣ (29)

εIxy =

∣∣∣∣ Ixy Img, Poly − IxyTPS

IxyTPS

∣∣∣∣ (30)

can be compared. Possible geometric values can be selected in the range of the geometric
space, such as, for example, for a triangle between

c ∈ [0, ∞[, h ∈[0, ∞[, p ∈[0, ∞[ .

Thus, each individual geometric variable and its influence can be checked directly.
However, since an evaluation up to ∞ is not possible, a limiting parameter of the
geometric variable of 100.0 is chosen. For each case, 100 samples are generated using
Latin Hypercube Sampling.
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3. Results

Based on the described strategy for the parametrization as well as for the evaluation
of the found formulas, it is necessary in the following to design different parametric
control points for the tensor product splines. From these parametric control point coor-
dinates, the respective moments are then calculated automatically and analytically. In
this work, the moments of a general triangle, a rectangle, a trapeze, a parallelogram, an
isosceles pentagon, and an isosceles hexagonal honeycomb are considered, since, for these
parametric quantities, there is a suitable simple expression, which can still be presented
on a few lines.

For the evaluation of these moments of area, the approach from Section 2.4 is chosen.
By using the Jordan curve theorem, the parametric is restricted so that only valid Jordan
curves are used as cross-section results. Table 3 shows for different control polygon types
several cases with different parameters (see also Figure 3). For comparison, the resulting
curve was rasterized into an 8 × 8 pixel image and segmented into a polygon consisting of
six segments.

Table 3. Example of three cases of different control polygons as B-splines and alternative representa-
tions as six-line segment polygons along the curve and as 8 × 8 binary images.

Control Polygon Case 1
b=1, p=0.75, h=1.5

Case 2
b=1, p=2.0, h=2.5

Case 3
b=1, p=0.1, h=0.5

Triangle

Rectangle

Parallelogram

Trapeze

Pentagon

Hexagon
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3.1. Moments of Area Parametrization of a Triangle Control Polygon

Since the triangle itself is always a convex polygon, the curve also lies within the
selected polygon. The value of the area must, therefore, be smaller than that of the triangle
itself. Table 4 shows the formulas for calculating the moments of area and the relative
errors compared to a polygon with 100 segments, a polygon with 10 segments per spline
segment, an image I128 with a grid size of 128 × 128 pixels, and an image I16 with a grid
size of 16 × 16 pixels.

Table 4. Equations for the parametric control polygon for the triangle and its numerical error.

Equation Error [%] P100 P10 I128 I16

A 21 c h
80 εA 0.007 0.879 1.922 11.951

Ix 2833 c h3

443520 σ2(εA) 0.000 0.000 0.168 4.990

Iy 2833 c h c2−c p+p2

443520 εIx 0.015 1.776 4.299 19.075

Ixy 2833 c h2(c−2 p)
887040 σ2(εIx ) 0.000 0.000 0.810 5.377

xs, ys

(
c
3 +

p
3 , h

3

)
εIy 0.015 1.776 3.247 18.471

Ix Iy − I2
xy 8025889 c4h4

262279987200 σ2
(

εIy

)
0.000 0.000 0.291 5.914

εIxy 0.015 1.776 5.046 25.759

σ2
(

εIxy

)
0.000 0.000 1.575 6.264

Equation (26) always shows values greater than zero for the geometric parameters
of c, h; thus, the essential properties for a valid cross-section are guaranteed for positive
geometric parameters. The relative error from the calculation shows an average relative
error of 0.015% for P100. This error increases when fewer segments per spline P10 are used.
The errors for binary images are significantly higher compared to the polygon approach.
Furthermore, if a 16 × 16 pixel grid is chosen, an error of 25.7% can occur for the second
order moment of area.

The relative errors show good agreement between the different calculation methods,
so that the formulas from Table 1 can be assumed to be correct. In particular, the small error
for a high resolution of the spline as polygon P100 shows good agreement.

3.2. Moments of Area Parametrization of a Quadrilateral Control polygon Area

For a quadrangular control polygon, the cross-sectional area of the B-spline can be
generally expressed as

A = −61 a
h

180
+ 61 b

h
180

+ 61 c
d

180
(31)

according to the parametrization covered in Figure 3. However, the parametrization of
the general quadrilateral can lead to the violation of the Jordan curve theorem, so that the
curve can intersect itself. This can lead to a negative cross-sectional area, so that more
appropriate boundary conditions for the dependencies of the parameters of the control
polygon have to be considered for a robust application. In the following, the quadrilateral
is constructed as a rectangle, a trapeze, and a parallelogram.

3.2.1. Moments of Area Parametrization of a Rectangle Control Polygon

Due to the chosen parametrization of a rectangle, only positive and valid cross-sections
can be realized compared to the general quadrilateral. Table 5 shows the equations for the
moments of area of the rectangular control polygon as well as the numerical errors. Analo-
gous to the triangle, a high accuracy of the relative errors is again shown in comparison to
the polygonal approach. Similarly, it can be seen that Equation (26) leads exclusively to
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positive values. The moment of area of Ixy leads to a value of 0 due to the symmetric shape
of the control polygon.

Table 5. Equations for the parametric control polygon for the rectangle and its relative error.

Equation Error [%] P100 P10 I128 I16

A 61 b h
90 εA 0.004 0.505 2.674 13.488

Ix 27371 b h3

748440 σ2(εA) 0.000 0.000 1.110 5.877

Iy 27371 b3h
748440 εIx 0.008 1.009 3.858 16.736

Ixy 0 σ2(εIx ) 0.000 0.000 1.473 6.440

xs, ys

(
b
2 , h

2

)
εIy 0.008 1.009 3.687 17.262

Ix Iy − I2
xy 749171641 b4h4

560162433600 σ2
(

εIy

)
0.000 0.000 1.248 5.963

3.2.2. Moments of Area Parametrization of a Parallelogram Control Polygon

Table 6 shows the results for the moments of area of the control polygon as a parallel-
ogram as well as the numerical errors. Analogous to the triangle, a high accuracy of the
relative errors is also shown here in comparison to the polygonal approach. Similarly, it
can be seen that Equation (26) leads exclusively to positive values. The moment of area Ixy
is 0 for the parallelogram with p = 0, which represents a rectangle. Otherwise, this leads to
values unequal to 0 due to the asymmetry of the cross-section.

Table 6. Equations for the parametric control polygon for the triangle and its numerical error.

Equation Error [%] P100 P10 I128 I16

A 61 a h
90 εA 0.004 0.505 2.218 12.118

Ix 27371 b h3

748440 σ2(εA) 0.000 0.000 1.075 4.609

Iy 27371 b h b2+p2

748440 εIx 0.008 1.009 3.831 19.453

Ixy −27371 b h2 p
748440 σ2(εIx ) 0.000 0.000 1.489 5.294

xs, ys

(
b
2 +

p
2 , h

2

)
εIy 0.008 1.009 3.463 20.586

Ix Iy − I2
xy 749171641 b4h4

560162433600 σ2
(

εIy

)
0.000 0.000 1.298 5.750

εIxy 0.008 1.009 4.474 30.458

σ2
(

εIxy

)
0.000 0.000 1.920 9.431

3.2.3. Moments of Area Parametrization of a Trapeze Control Polygon

For the validity of the trapezoids, according to Equation (26), the following relation is
positive and, therefore, valid for each possible parameter combination:

Ix Iy − I2
xy =

h4(75371706005 b4+564591208444 b3p )
820077802790400 +

h4(1525810647880 b2p2+2258364833776 b p3+1205947296080 p4)
820077802790400

(32)

Table 7 shows the results for the moments of area of the control polygon as a trapeze
as well as the numerical errors. Analogous to the triangle, a high accuracy of the relative
errors is also shown in comparison to the polygonal approach. The moment Ixy is
consistently zero due to the symmetry. For the parameter p = b

2 , the relation of the
rectangle is obtained.
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Table 7. Equations for the parametric control polygon for the rectangle and its relative error.

Equation Error [%] P100 P10 I128 I16

A 61 h b+2 p
180 εA 0.004 0.505 0.915 9.991

Ix
h3(4412605 b2+22420724 b p+17650420 p2)

273929040 (b+2 p)
σ2(εA) 0.000 0.000 0.013 3.937

Iy h 17081 b3+75322 b2 p+150644 b p2+136648 p3

2993760 εIx 0.008 0.961 2.180 15.232

Ixy 0 σ2(εIx ) 0.000 0.000 0.132 4.967

xs, ys

(
b
2 ; h 461 b+1274 p

1098 (b+2 p)

)
εIy 0.009 1.097 1.385 13.110

Ix Iy − I2
xy (32) σ2

(
εIy

)
0.000 0.000 0.002 4.336

In an analogous way, further quadrilaterals can now be parametrized and their formu-
las for the moments of area can be derived. In the following, the calculation of the moments
of area of a parametric pentagon, as well as of a hexagon, is performed.

3.3. Moments of Area Parametrization of a Symmetric Pentagon Control Polygon

For the validity of the pentagon, according to Equation (19), the following relation
leads to only positive values:

Ix Iy − I2
xy =

h4(82305438169 b2+212310520756 b p +120438027736 p2)
(169 b +218 p) ·

(1527254 b3+5667223 b2p +7684452 b p2+3712596 p3)
963658637770752000

(33)

Table 8 shows the results for the moments of area of the control polygon as a symmetric
pentagon as well as the numerical errors. Analogous to the triangle, the relative errors also
show a high accuracy compared to the polygonal approach. The moment Ixy is consistently
zero due to the symmetry.

Table 8. Equations for the parametric control polygon for the rectangle and its relative error.

Equation Error [%] P100 P10 I128 I16

A h 169 b+218 p
288 εA 0.003 0.332 2.438 14.852

Ix
h3(82305438169 b2+212310520756 b p+120438027736 p2)

20118067200 (169 b+218 p)
σ2(εA) 0.000 0.000 1.298 6.766

Iy h 1527254 b3+5667223 b2 p+7684452 b p2+3712596 p3

47900160 εIx 0.005 0.643 4.220 19.337

Ixy 0 σ2(εIx ) 0.000 0.000 1.454 7.039

xs, ys

(
b
2 ; h 167189 b+254368 p

2520 (169 b+218 p)

)
εIy 0.006 0.690 2.291 17.653

Ix Iy − I2
xy (33) σ2

(
εIy

)
0.000 0.000 1.276 7.541

Finally, the parametrization for a hexagon can now be specified analogously.

3.4. Moments of Area Parametrization of a Symmetric Hexagonal Control Polygon

A valid hexagonal has to fulfill the following equation:

Ix Iy − I2
xy =

h4(1267299 b +927031 p)
143401583001600 ·(

354311 b3 + 1131397 b2p + 1267299 b p2 + 490213 p3
) (34)
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Table 9 shows the results for the moments of area of the control polygon as a symmetric
hexagon as well as the numerical errors. Analogous to the triangle, the relative errors also
show a high accuracy compared to the polygonal approach. The moment Ixy is consistently
zero due to the symmetry.

Table 9. Equations for the parametric control polygon for the rectangle and its relative error.

Equation Error [%] P100 P10 I128 I16

A 301 h b+p
360 εA 0.002 0.225 1.128 15.193

Ix
h3(1267299 b+927031 p)

23950080
σ2(εA) 0.000 0.000 0.081 7.610

Iy h 354311 b3+1131397 b2 p+1267299 b p2+490213 p3

5987520
εIx 0.003 0.398 2.405 20.943

Ixy 0 σ2(εIx ) 0.000 0.000 0.419 8.302

xs, ys
(

b
2 , h

2

)
εIy 0.004 0.511 1.037 15.814

Ix Iy − I2
xy (34) σ2

(
εIy

)
0.000 0.000 0.037 7.627

4. Discussion

The final formulas show a very good suitability for the design and determination of
beams with freeform cross-sections. In particular, the comparison of the formulas with
alternative calculation methods suggests a high validity.

One point of criticism could be the chosen parametrization of the control polygons.
While the triangle was still covered for arbitrary shapes, there are already restrictions for
the moment of area for a quadrilateral due to the complexity of the perpetual expressions.
The same is true for pentagons and hexagons. Only a restriction of the parametric
allows simpler expressions, e.g., for a parallelogram as well as a trapeze. However, this
simplification can be improved to achieve high shape coverage with a suitable set of
variables. For example, the parametric of the positive lengths of the symmetric hexagon
yields exclusively convex polygons, so this unfavorable choice implicitly excludes many
alternative symmetric hexagons.

While the numerical formula for determining the moments of area is easy to implement
and universally applicable, the symbolic expressions lead to the restriction of the cross-
sectional geometry. However, due to the numerical accuracy of such formulas, erroneous
moments of area cannot be absolutely guaranteed, unlike in the analytical formula. The
symbolic expressions can be used completely up to the limit ranges, so that a consideration
of the convergence behavior towards infinity is also possible. Especially in the case of
optimization, cross-section values close to zero can occur, at which point a numerical
approximation can lead do misleading results.

The validation framework exhibits high robustness and reliability, so that symbolic
formulas can be tested directly. However, for future work, the estimation of a polygon
consisting of many segments is usually sufficient. Unlike the polygon and the B-spline, the
binary image and the evaluation step is based on an area integral rather than a boundary
integral and is, therefore, not directly comparable.

In summary, however, a large number of expressions are shown, which can be used to
determine moments of area of such freeform curves in the simplest way. These can now not
only be used for aspects of structural optimization, but also for reconstructions analogous
to [15]. In contrast to [15], however, a fully analytical function of the beam stiffness matrix
can be realized, so that geometric values close to zero can be accurately captured.
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5. Conclusions

This work has dealt with the derivation of analytical formulas for the moments of
area of periodic B-splines. The position of the control points was mapped parametrically
and then embedded in the boundary integral for the calculation of the moments of area of
splines. In contrast to common methods for the numerical determination of moments of
area, a symbolic calculation with an integer numerator and denominator was considered.
This integer calculation leads to an exact determination of the cross-sectional area and the
second moments of area of such periodic B-spline cross-sections.

While, in [15], only the cross-sectional area was determined analytically, in this work,
a symbolic description for the second moments of area could be obtained. Especially in
structural optimization, cross-section parameters close to zero can be determined, for which
an exact calculation of the moments is necessary.

The obtained expressions can now be used for various applications in the field of
reconstruction design, as well as in verification calculations. Similarly, further control
polygons can be parametrized using the approach described above.
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