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Abstract: A great number of reinforced concrete structures are approaching the end of their service life
and they are strongly affected by progressive deterioration processes due to insufficient maintenance.
A fundamental understanding of all damage phenomena acting together on reinforced concrete, RC,
structures under service loads is a crucial step toward more sustainable structures. The present work
aims to study the creep of RC beams in the cracked state. To achieve this objective, an analytical
model was developed based on Bernoulli’s theory and the global equilibrium of the RC beam. A
Newton–Raphson algorithm was also proposed to solve the non-linear equilibrium equations related
to the non-linearity in the adopted materials models. The proposed model allows predicting the
instantaneous and long-term behavior under any loading level up to the steel yielding, and it takes
into consideration the effect of creep on the behavior of concrete both in tension and compression.
In addition to the evolution of the deflection with time, the model is also able to follow the height
of the compression zone as well as the evolution of crack’s height and width under any sustained
service load. The comparison between analytical and experimental results found in the literature for
long-term loaded beams showed a good agreement.
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1. Introduction

The most common material used in the world’s construction industry is concrete.
Contrary to all other building materials, concrete has mechanical characteristics that vary
over time. Additionally, it behaves differently in compression and tension [1]. Concrete’s
capacity to deform under continuous, sustained stress is referred to as creep [2,3]. Creep
causes a change in volume, an increase in the deflection of beams and slabs, and a redistri-
bution of stress, all of which have a significant impact on the performance of reinforced
concrete members [2,4–6]. The age of the concrete at the time of loading, the curing and
ambient conditions, the stress level, the duration and rate of loading, the size of the concrete
member, as well as the material composition, all affect long-term behavior [3,7,8].

By suggesting a linear behavior for concrete and ignoring the entirety of the tensioned
concrete in the RC section, Ghali et al. [1] proposed a simple method to predict both the
short- and long-term behavior of RC beams based on Bernoulli’s theory. However, the
approach is appropriate for a rough evaluation of the deflection values.

Gilbert and Ranzi [9] described the primary approaches for investigating the long-
term behavior of RC members, including “the Effective Modulus Method EMM”, “Step
by Step Method SSM”, “the Age-adjusted Effective Modulus Method AEMM”, and “the
Rate of Creep Method RCM”, and they noted that each approach has its own advantages
and restrictions.
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Mullem [5] compared the experimental results with an analytical model created
by the author by assuming a linear behavior for concrete in compression, ignoring the
concrete in tension, and using the AEMM approach proposed by Gilbert and Ranzi [9]
for calculating the long-term deflection. The experimental results involved 48 RC beams
subjected to a 4-point bending test over a period of about four years with varying sustained
loading levels. Depending on the loading level, the discrepancy between experimental
and analytical deflection values ranged from 10 to 25%. By considering the nonlinear
behavior of compressed concrete while ignoring the contribution of concrete in tension,
Reybrouck et al. [10] presented an enhancement to the methodology of Ghali et al. [2] using
the AEMM approach presented in Gilbert and Ranzi [9]. With regard to deflection, all
monitoring data have an average variance of less than 27% with the calculated results. Due
to its significant impact on the results, the authors emphasized the need to take into account
non-linear creep after a specific level of actual stress. The conclusions of Tošic et al. [11]
and Sryh and Forth [12] are nearly identical to those of Mullem et al. [5]. De Vitorio [4]
investigated 10 different types of one-way RC slabs for 120 days while they were subjected
to three different stress levels by means of four-point bending tests. The author found a
45–60% difference between the test results and the results of his model in terms of mid
span deflection.

Some researchers have attempted to conduct research on already-built structures. For
example, Shallal [13] conducted a field-measured investigation for RC beams in a building
in Al-Diwania, Iraq, and contrasted the findings with those of commonly employed tech-
niques to determine the long-term deflection of RC beams. The comparison revealed that
these methodologies were not compatible with on-site measurements.

The instantaneous deflection occurs as soon as the service load is applied, therefore
serviceability considerations can have a significant impact on the design of a structural
member. The structural standards impose guidelines on a structure’s serviceability to
prevent excessive vibration or deflection and minimize user inconvenience [14]. The
design standards take into consideration the contribution of cracked and non-cracked
sections in the flexural element’s deflection. However, several authors demonstrated
that the analysis methods suggested in the standards are limited [6,15,16]. Due to the
uncertainty concerning the moment of inertia of cracked sections, standardized approaches
are inadequate [6,15]. According to Mohamad et al. [16], the problem is related to the
equilibrium equations’ ignoring of the properties of the fracture properties of concrete in
tension. These characteristics, which depend on the concrete’s mix design parameters and
compressive strength, are described by the fracture energy and critical crack opening [17,18].

The current study’s aim is to investigate the instantaneous and long-term behavior of
simply supported reinforced concrete beams while accounting for the whole stress–strain
behavior of concrete in both compression and tension and using the mid-span deflection as
a critical parameter.

2. Instantaneous Flexural Behavior
2.1. Material Models
2.1.1. Concrete in Compression

The adopted behavior for concrete in compression (stress–strain relationship) was
taken from EC2 [14] and can be expressed by Equation (1).

σ = fcm
k·η− η2

1 + (k− 2)·η (1)

where fcm is the concrete compressive strength, η = ε/εc1, k = (1.05·Ecm · εc1)/fcm, εc1
the concrete compressive strain corresponding to the peak stress fcm, εcu is the ultimate
compressive strain in concrete as per EC2 [14], and Ecm is the secant modulus of elasticity.
Figure 1 shows the adopted compressive behavior of concrete. All the above mentioned pa-
rameters can be evaluated as functions of the compressive strength [14] (Equations (2)–(4)).
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Figure 1. The adopted behavior of concrete in compression [14].

2.1.2. Concrete in Tension

If no experimental data are available, the tensile strength of concrete fctm can be
determined as a function of the compressive strength using Equation (5). The full tensile
behavior is divided into two parts as shown in Figure 2. The first part is linear and
can be described by the classical Hooke’s law up to the peak stress. The second part is
nonlinear and can be expressed by a stress-crack opening curve (σ-w) where the stress
decreases with the increase of the crack opening (Figure 2). The preferred model to explain
the softening behavior is the power law model (Equation (6)) [16,17]. According to the
established law, n stands for its power and wu for the critical crack width where zero tensile
strength corresponds.{

fctm = 0.3 (fcm − 8)2/3 for fcm ≤ 50 MPa
fctm = 2.12 ln

(
1 + fcm

10

)
for fcm > 50 MPa

(5)


σ = ε·Ecm for w ≤ wcr

σ = fctm·
[
1−

(
w

wu

)n]
; n = 0.19 for wcr < w ≤ wu

σ = 0 for w > wu

(6)
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Figure 2. The adopted behavior of concrete in tension [6,7].

2.1.3. Steel Reinforcement Behavior

In this paper, the stress–strain relationship proposed in EC2 [14] is adopted, which is
a stress–strain curve (Figure 3) composed of two parts. The first part describes the linear
phase up to yielding stress fy and the second part represents the plastic phase which is
taken here as an inclined line up to the ultimate steel strain εuk and a maximum steel
stress fyk = k · fy. Equation (7) [14] represents this behavior with k = 1.25, εy = fy/Es and
εuk = 10%. 

σ = ε · Es for ε ≤ εy

σ = fy + fy · (k− 1) · ε−εy
εuk−εy

for εy < ε ≤ εuk

σ = 0 for ε > εuk

(7)
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Figure 3. The adopted behavior of Steel Reinforcement [14].

2.2. Mechanical Model of RC Section Subjected to Bending

Finding the instantaneous deflection of a simply supported beam subjected to 4-point
bending at any loading level is one of the main aims of the present work.

A cross-sectional analysis based on Bernoulli’s theory was performed to accomplish
this objective. Figure 4 shows a typical reinforced concrete cross section with the strain
distribution diagram due to an external bending moment. Three unknowns, namely
the concrete strain (εc), the steel strain (εs), and the height of the compression zone (x),
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are present in the non-ultimate state (also known as the serviceability state) versus two
equilibrium equations.
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Any fiber’s deformation in the cross section may be defined as a function of the
curvature, κ, and mean normal strain so-called ε0 at the beam axis. Equation (8) can be used
to calculate the strain in the strip that is positioned at y distances from the beam’s bottom.

ε(y) = ε0 +

(
h
2
− y

)
κ (8)

A reinforcement bar and layered strips of concrete are supposed to compose the cross
section of the beam. The only degree of freedom for each strip is the elongation; therefore
the task is to create a correlation between generalized sectional forces and strains in both
compression and tension. If the strip is in the compression zone, Equation (1) is used
to determine the compressive stress. In the tension zone, the stress is determined using
Equation (5) which takes account of the softening behavior. The stress is determined
for the reinforcement-representing strip as a function of strain using the EC2 [14] bi-
linear relationship (Equation (7)). The neutral axis is determined by the cross-section’s
equilibrium of compressive and tensile forces under the effect of an external bending
moment (Equation (9)).

The internal and external forces equilibrium equations are mathematically nonlinear
because of the adopted material’s nonlinear behaviors; hence an analytical model is needed
to solve these equations. Thesolution of these nonlinear equations consists in finding the
values of the curvature, κ, and the mean strain ε0, which satisfy the equilibrium of the
cross-section. The numerical solution of the equilibrium equations was performed using
the Newton–Raphson method with two variables. The cross section has been divided into
n + 1 strip defining n layers in order to the integrals of Equation (9). The force of each
layer is computed by multiplying the average stress by the area of the layer. As a result,
sums can be used in place of integrals. After reaching the equilibrium and determining
the two variables (ε0 and k) all strains values as well as stresses along the section could
be determined, in addition to the height of the compression zone (Equation (10)). These
results are essential for long-term analysis.

Equation (11) can be used to compute the deflection of the beam for each value of

curvature. The variable
−
x represents the distance between the left support and the point

where the deflection is required.
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An algorithm that summarizes the workflow is presented in Figure 5.
Ninternal =

∫ +h/2
−h/2 σ·dA = b·∆h

n
∑

i=1
σi + As·σs = 0

Minternal =
∫ +h/2
−h/2 y·σ·dA = b·∆h

n
∑

i=1
yi·σi + As·σs·

(
h
2 − d0

)
= Mexternal

(9)

x =
εc

k
(10)

∆ =
∫ l/2

0
k·−x·dx (11)
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2.3. Initial Loading Model Assessment

The experimental results of the NAC1 + NAC2 beams [19] and the H50-0 beam [20] are
compared to the results of the present work’s model in Figure 6. It can be seen that there is
a good agreement between the theoretical predictions and the experimental data, especially
at high cracking forces with a small (less than 10%) variation in the cracked phase prior
to yielding.

The results of a comparison between numerical and experimental results for additional
beams obtained from the literature for the instantaneous behavior [10–12] are also summa-
rized in Table 1. It can be observed that there is a good agreement with the experimental
results. Moreover, the variance does not exceed 10%, except for the beam NAC7 [11]
whose variance reaches the value of 34%, which probably results from the uncertainty of
mechanical properties measured at the age of seven days.
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Table 1. Comparison between experiments in the literature [10–12] and the present work.

Data
Reybrouck et al., 2017

[10]
Tošic et al., 2018

[11]
Sryh and Forth, 2022

[12]

B2-L52 NAC7 NC

b [mm] 150 150 160 300

h [mm] 280 280 200 150

Bot. Reinf. 5 T 14 8 T 14 2 T 10 3 T 16

L [mm] 2800 2800 3200 4000

fy [MPa] 461 461 587 500

Es [GPa] 195.5 195.5 200 200

t0 [day] 28 28 7 28

t1 [day] 1426 1600 457 118

fcm,t0 [MPa] 35 40.3 32.9 41.5

Ec,t0 31,000 27,800 30,100 30,600

Fctm [MPa] 4.12 4.34 5.6 5.3

σ/fcm 0.62 0.59 0.46 0.46

Mexternal [kN.m] 34 42.2 7.628 17.2

Results Paper Present
Work Paper Present

Work Paper Present
Work Paper Present

Work

∆,0 (t = t0) [mm] 7.27 6.64 7.08 6.42 9.17 12.31 30.49 31.15

∆,LT (t = t1) [mm] 13.49 12.54 14.51 12.93 18.79 19.65 48.79 48.97

Ratio 1.86 1.89 2.05 2.01 2.05 1.60 1.60 1.57

Variance in ∆,0 0.09 0.09 0.34 0.02

Variance in ∆,LT 0.07 0.11 0.05 0.00

εc,0 (t = t0) [×10−4] −8.70 −8.10 −8.50 −9.25 −5.47 −5.45 NA −7.87

εc,LT (t = t1) [×10−3] −2.43 −2.31 −2.43 −2.61 −1.89 −1.36 NA −1.43
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3. Long-Term Flexural Behavior
3.1. Material Models

Regarding the long-term behavior of concrete, a number of models have been pre-
sented in the literature, including “the Effective Modulus Method EMM”, “Step by Step
Method SSM”, “the Age-adjusted the Effective Modulus Method AEMM”, and “the Rate
of Creep Method RCM” [9,21]. According to the fundamental idea of Lee [21], a model
was developed in the current work using the EMM approach, which adjusts the value of
the elasticity modulus by Equation (12). The model also modifies the actual stress–strain
relationship. Equation (13) describe the modifications made to the adopted model. ϕ(t,t0)
is the creep coefficient according to EC2 [14] Annex B which represents the ratio between
the long-term strain at time t due to a sustained load applied at time t0 and the instan-
taneous strain at time t0 while Eeff (t,t0) is the effective modulus of elasticity. In uniaxial
compression, Equation (14) describes the chosen stress–strain relationship, where εcu,LT is
the adjusted ultimate compressive strain at time t. This model is shown in Figure 7, where
it can be seen that the stress–strain curve is dependent on the loading duration (t − t0) and
the creep coefficient value ϕ (t, t0).

Eeff(t, t0) =
Ecm

1 +ϕ(t, t0)
(12)


εc1,LT = εc1·[1 +ϕ(t, t0)]
εcu,LT = εcu·[1 +ϕ(t, t0)]

ηLT = ε
εc1,LT

, kLT =
1.05 Eeff·|εc1,LT|

fcm

(13)

σLT = fcm
kLT·ηLT − ηLT

2

1 + (kLT − 2)ηLT
(14)
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The identical law described previously concerning the concrete tensile behavior was
applied here but Ecm was replaced by Eeff (t, t0) (Equation (12)) as illustrated in Figure 8.
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Figure 8. The adopted behavior of tensioned concrete due to creep.

The same steel behavior was used since the steel material does not exhibit the
creep deformations.

3.2. The Mechanical Model of RC Section Subjected to Sustained Bending

To achieve the equilibrium status under any given external load at any loading time,
the same approach described previously for the initial loading was performed with the
updated material model and by taking the non-linear creep coefficient into consideration as
per EC2 [14] (Figure 9 illustrates the algorithm of the work flow). The creep phenomenon
causes the longitudinal reinforcement to experience higher stress and strain while the
top fiber of the concrete experiences decreasing stress and increasing strain leading to an
increase in the height of the compression zone (Figure 10). Due to the redistribution, some
layers’ stress states will shift from compression to tension, and those of other layers will
change from being cracked after initial loading to un-cracked after creep. However, since
this is not true and physically impossible, one of the key ideas was to stop these entirely
fractured layers from bearing any tension loads after the strain and stress redistribution.
The stress and strain redistribution resulting from persistent loading, as determined by the
proposed model, is shown in Figure 10.

3.3. Long-Term Loading Model Assessment

Four beams collected from the literature [10–12] were used to validate the model
developed in this study. Figure 11 depicts a comparison of the experimental data with the
model’s predictions, where it can be observed that the creep rates for the NC beam [12] and
B2-L52 beam [10] differ just marginally.

Additionally, the comparison recapitulated in Table 1 demonstrates that the model
results agree with the experimental ones because the variance in long-term deflection
values is only about 10% or less. Figure 12 also summarizes the comparison of long-term
deflection at the end of the tests.
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Figure 12. Long-Term Deflection- Experimental [10–12] vs. Present Work.

4. Conclusions

In this work, a new model was developed to predict the short- and long-term behavior
of RC beams at any level of loading. The developed model was validated by comparing
the experimental deflection values for beams chosen from the literature with the numerical
ones. The following conclusions can be derived from the findings:

• Any simply supported beam under any level of loading can be examined instantly
and over time using the established model.



Appl. Mech. 2023, 4 42

• The concrete stress–strain relationship can be modified using the EMM approach to
produce reliable numerical results.

• The model may also be used to calculate the height and width of the cracks following
creep advancement. Unfortunately, due to a lack of experimental studies, a comparison
of crack evolution during creep was not conducted in the current work.
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