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Abstract: Here, a comparative investigation of data-driven, physics-based, and hybrid models for the
fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation,
sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are
constructed using extremely randomized trees (ERT), eXtreme gradient boosting (XGB), LightGBM
(LGBM) and histogram-based gradient boosting (HGB). The physics-based model (PBM) relies on
the Findley’s critical plane approach. Two hybrid models (HM) were developed by combining
data-driven and physics-based approaches obtained from invariant stresses (HM-I) and Findley’s
stress (HM-F). A fatigue dataset of 979 data points of four structural adhesives is employed. To assess
the sensitivity to data size, the dataset is split into three train/test ratios, namely 70%/30%, 50%/50%,
and 30%/70%. Results revealed that DDMs are more accurate, but more sensitive to dataset size
compared to the PBM. Among different regressors, the LGBM presented the best performance in
terms of accuracy and generalization power. HMs increased the accuracy of predictions, whilst
reducing the sensitivity to data size. The HM-I demonstrated that datasets from different sources
can be utilized to improve predictions (especially with small datasets). Finally, the HM-I showed the
highest accuracy with an improved sensitivity to data size.

Keywords: adhesives; fatigue prediction; artificial intelligence; data-driven models; physics-based
model; invariant stress; multiaxial fatigue

1. Introduction

Structural adhesives, as polymeric materials, tend to overheat at extreme frequencies,
which makes fatigue testing highly time- and cost-consuming. For instance, a fatigue
test with 10 million cycles at a frequency of 10 Hz would last approximately 11.6 days.
Considering that several data points are required for the construction of a fatigue design
curve (SN curve), the development of approaches to take advantage of existing datasets
can be very beneficial.

Structural adhesive joining is widely regarded as a key technology for the develop-
ment of reliable lightweight components by using multi-material design and efficient load
distribution. These capabilities can enable the reduction of production costs, as well as
improve energy efficiency [1,2]. Concerning durability and long-term behavior, the fatigue
has a great impact on the design of adhesively bonded joints, as cyclic loads are commonly
present during their lifetime [3]. An additional challenge is that adhesive joints have a
particularity: they are not made of a single material, but from at least an adhesive (a
polymer), and two substrates (metal, polymer, or composite).

A suitable design against fatigue should include all factors that might influence on the
fatigue lifetime in order to depict the expected in-service conditions of structural adhesive
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joints [4]. However, many factors have an effect on the fatigue strength of structural
adhesives, such as mean stress [5–7], stress concentrations [8,9], stress multiaxiality [7,10],
temperature [11–14], non-proportional loading [6,15], and others. Therefore, in order to
cover all of these aspects, an extensive experimental campaign is expected.

An interesting approach to deal with such complex phenomena (e.g., fatigue) is to
take advantage of the existing available data. In this context, artificial intelligence (AI) is
known for its capacity to solve large-scale problems by learning from previous knowledge,
enabling the generation of quantitative expressions that successfully represent complex
relationships between parameters [16].

However, a shortcoming of data-driven AI approaches in the framework of materials
science is associated with the limited availability of data and the difficulty to generate large
data sizes. Although initiatives (e.g., DOME4.0 [17] and NFDI MatWerk [18]) have been
developed in recent years to create repositories and marketplaces for materials science and
engineering data, the access to data is still restricted. In this regard, modeling the fatigue
lifetime of structural adhesive joints can be challenging due to the constraints posed by
small datasets. One solution to this issue is to integrate heterogeneous data sources. As
such, AI-based data-driven models can incorporate fatigue data from various sources, such
as peer-reviewed articles, reports, and material databases, by exploiting the similarities in
behavior among materials within the same category [19].

In tasks involving small datasets, domain knowledge is crucial in choosing the most rel-
evant features and avoiding overfitting in modeling. Overfitting occurs when a model is too
closely tailored to the training data and struggles to properly generalize when exposed to
new data [20]. The feature engineering process may uncover complex relationships between
inputs, leading to a simpler model with reduced parameters. This domain knowledge can
be introduced by informing AI-models of existing correlations between parameters, which
are backed by physics-based relationships. Approaches such as the physics-informed neural
networks (PINNs)—with the motto “big data, small physics—small data, big physics”—can
significantly improve the prediction capability of AI-models [21–23].

A consequence of the use of smaller datasets is that shallow learning algorithms, such
as decision trees and shallow neural networks, tend to perform better than deep learning
algorithms [24]. This is because deep learning algorithms bring in more complexity and
require a substantial amount of data to fine-tune a model. Therefore, it is important to
consider both the task at hand and the size of the dataset when selecting an ML algo-
rithm [25]. Addressing the modeling of adhesive joints for small datasets, Zhu et al. [26]
used back-propagation (BP) neural network to model the accelerated degradation of epoxy
resin. Mansouri et al. [27] were able to predict the compressive strength of environmen-
tally friendly concrete using hybrid ML based on 147 datasets. For fatigue applications,
Zhou et al. [28] employed 27 specimens to identify genetic features and to predict the fa-
tigue lifetime of stainless steel. Heng et al. [29] employed FEA to generate data for the
training of a surrogate model for probabilistic fatigue evaluation of rib-to-deck joints.

Therefore, considering the task of lifetime predictoin of structural adhesive joints,
prediction models should ideally be accurate, interpretable, computationally efficient, gen-
eralizable, and able to perform with reduced datasets [30]. In this regard, three approaches
can be taken into consideration: physics-based models (PBM), data-driven models (DDM),
and a third is the development of hybrid models (HM), which combine both data-driven
and physics-based characteristics.

Physics-based models relying on the stress-life criteria can be considered the state-
of-the-art for fatigue lifetime prediction of adhesively bonded joints [3]. Among them,
invariant stress criteria have been widely used [10,12,31,32] with suitable accuracy. Recently,
especially in cases under non-proportional loading (i.e., with phase-shift), critical plane
stress criteria are gaining more attraction in fatigue applications (e.g., Beber et al. [33],
Fernandes et al. [15], and Beugre et al. [34]). However, a common limitation of physics-
based approaches is that parameters are adhesive-dependent, i.e., for each new adhesive
the parameters for lifetime prediction have to be calibrated.
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Regarding data-driven-models, there is a rising trend on the usage of DDM for life-
time predictions [35]. Several authors have investigated the implementation of AI-based
methods [21,23,35,36] for lifetime predictions in materials science. More specifically, for
the fatigue of adhesive joints, Sekercioglu and Kovan [37] used ANN to predict the fa-
tigue lifetime of adhesively bonded cylindrical joints. Silva et al. [38] proposed an inte-
grated approach combining ML (an ERT-model) and finite element analysis to predict
the fatigue lifetime of adhesively bonded joints. Other authors have employed ML ap-
proaches for the static strength of structural adhesive joints, e.g., Schubert and Kläusler [39],
Pruksawan et al. [40], and Gajewski et al. [41].

For hybrid models, Chen and Liu employed a physics-guided machine learning ap-
proach for fatigue data analysis of metals and composite materials. He et al. [42] developed
a physics-informed neural network based on the critical plane approach to predict the
multiaxial fatigue lifetime of three different materials. Shutin et al. [43] combined DDM
and PBM to predict the useful life of metallic load bearings. Nonetheless, the field of hybrid
approaches combining data-driven and physics-based methods for fatigue modeling of
structural adhesive joints is, to our knowledge, still very scarce.

In this scenario, the current work presents a comparative investigation of data-driven,
physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive
joints. The different modeling approaches are compared in terms of complexity of imple-
mentation, sensitivity to data size, and prediction accuracy. Four data-driven models are
constructed using different regressors, namely extremely randomized trees, eXtreme gradi-
ent boosting, LightGBM, and histogram-based gradient boosting. The physics-based model
employs the critical plane approach. Then, two hybrid models are developed by combining
data-driven approaches with physics-based parameters obtained from the (i) invariant
stresses and (ii) the critical plane stress.

The fatigue dataset consists of 979 fatigue data points from four structural adhesives
with four joint configurations taken from heterogeneous data sources. To assess the sen-
sitivity to data size, the fatigue dataset is split with three different ratios of the train/test
dataset, namely 70%/30%, 50%/50%, and 30%/70%. Prediction accuracy is evaluated by
the R2, as well as the error factor (ER) for lifetime predictions of the train and test datasets.

2. Fatigue Dataset
2.1. Fatigue Loading Parameters

For a constant amplitude fatigue loading under sinusoidal shape, the value of the
shear stress τ(t) and tensile stress σ(t), at any time, can be obtained as a function of the
mean shear stress τm and the shear stress amplitude τa, as well as the mean tensile stress
σm and the tensile stress amplitude σa:

τ(t) = τm + τa sin
(

2π f t + φτ
π

180

)
(1)

σ(t) = σm + σa sin
(

2π f t + φσ
π

180

)
(2)

where t is the time in [s], f is the frequency in [Hz], φτ , and φσ are the phase-shift for shear
and tensile stresses, respectively, in [◦]. The relative phase-shift φ between the shear and
tensile stresses is defined in [◦] as:

φ = |φτ − φσ| (3)

The stress amplitude can be written as a function of the maximum (σmax or τmax) and
minimum stress (σmin or τmin) of the cyclical load:

σa =
σmax − σmin

2
or τa =

τmax − τmin
2

(4)
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The stress ratio R is defined as follows:

R =
σmin
σmax

=
τmin
τmax

(5)

Based on the stress amplitude, R can be a measure of the intensity of the mean stress:

σm =
1 + R
1− R

σa or τm =
1 + R
1− R

τa (6)

The fatigue loading parameters are graphically represented in Figure 1a considering a
phase-shifted multiaxial stress state with shear and tensile stresses.

Figure 1. Fatigue parameters: (a) stress (or load) parameters; (b) critical plane determination; and
(c) function for the determination of the number of cycles to failure as a function of the Findley’s
critical plane stress.

2.2. Dataset Description

The fatigue dataset employed in the current investigation was mined from publicly
accessible scientific literature [5–7,14,15,33,44,45]. The dataset consists of 979 fatigue data
points measured at room temperature from four different structural adhesives. As this
information was not clearly stated in every publication, we have assumed a cohesive failure
of the adhesive layer (i.e., ideal adhesion between substrates and the adhesive).

As shown in Table 1, seven publications were collected to construct the fatigue dataset.
Additionally, parameters related to both the adhesive and the substrates are listed: ultimate
tensile strength of the adhesive (UTSad), Young’s modulus of the adhesive (Ead), Poisson’s
ratio of the adhesive (νad), Young’s modulus of the substrate (Esub), and Poisson’s ratio of
the substrate (νsub).
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Table 1. Adhesive and substrate properties, as well as dataset size and sources.

Adhesive n UTSad Ead νad Substrate Esub νsub Sources

Ad1 573 (58.5%) 34.0 MPa 1571 MPa 0.40 Steel 210,000 MPa 0.33 [5,6,14,44]
Ad2 174 (17.8%) 43.6 MPa 3002 MPa 0.39 Steel 210,000 MPa 0.33 [6,15]
Ad3 180 (18.4%) 41.3 MPa 1944 MPa 0.38 Aluminum 70,000 MPa 0.33 [45]
Ad4 52 (5.3%) 34.5 MPa 2205 MPa 0.36 Steel 210,00 MPa 0.33 [7,33]

Due to availability, the amount of data per adhesive is not totally balanced, e.g., the
adhesive Ad1 makes 58.5% of the total amount. The consideration of multiple structural
adhesives in the dataset helps to evaluate the fatigue prediction capability of the model to
integrate heterogeneous data sources.

A statistical analysis of the fatigue dataset is presented in Table 2, where the central
tendency, dispersion, and shape can be seen. The parameters listed here (see Figure 1a) will
be used for the implementation of the models (see Section 3).

Table 2. Fatigue dataset: central tendency, dispersion, and shape.

R
[-]

φ
[◦]

σa
[MPa]

τa
[MPa]

UTSad
[MPa]

Ead
[MPa]

N
[-]

count 979 979 979 979 979 979 979
mean 0.08 8.92 7.72 6.09 37.08 1927.59 356,114.85

std 0.45 31.90 7.18 5.35 4.10 532.93 708,550.39
min -1 0 0 0 34 1571 178
25% 0.1 0 0 0 34 1571 15,694.5
50% 0.1 0 8.32 5.47 34 1571 91,170
75% 0.4 0 12.08 9.675 41.3 1944 409,116.5
max 0.8 180 37.81 28.94 43.64 3002 7,577,945

2.3. Adhesives and Joints

Adhesives have a particularity of usually being employed in a joint, i.e., to join two
different substrates. Therefore, to properly investigate the lifetime prediction of structural
adhesively bonded joints, it is important to not only have a variety of adhesives, but also
a variety of joint types [46]. The data were modeled so as to describe the loading of the
adhesive joint by comprising it of shear stress (τ) and tensile stress (σ) components:

• Thick-Adherend-Shear-Test-Joint (TJ)→ σTJ = 0, τTJ 6= 0
• Scarf-Joint (SJ)→σSJ 6= 0, τSJ 6= 0
• Butt-Joint (BJ)→σBJ 6= 0, τBJ = 0
• Pipe-Joint (PJ):

- Pure Axial Load→ σPJ,Ax, 6= 0, τTJ,Ax = 0;
- Pure Torsional Load→ σPJ, To = 0, τPJ,To 6= 0;
- Multiaxial Load→ σPJ,M 6= 0, τPJ,M 6= 0.

As shown in Figure 2, the TJ is loaded under axial load F, generating a shear stress
on the adhesive layer. The axial loading F of the SJ generates a multiaxial state of stress
comprising shear and tensile components. For the BJ, when loaded axially with F, a pure
tensile stress state is obtained. Finally, the PJ has a larger variation, as it can be either loaded
with axial load F (pure tensile stress), torsional load M (pure shear stress), or with both
(multiaxial stress state). An additional influence for the PJ can be a phase-shift φ between
the axial and torsional loads, which leads to a non-proportional loading.
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Figure 2. Geometry parameters of adhesively bonded joints and respective load cases: Thick-
Adherend-Shear-Test Joint (TJ), Scarf joint (SJ), Butt joint (BJ), and Pipe Joint (PJ).

Considering that the tensile stress is given in the x-direction (normal to the adhesive
layer), as shown in Section 3.3, the restraint of the lateral contraction due the stiff substrates
leads to the formation of two extra tensile stresses (σy and σz).

The geometric parameters (such as adhesive layer thickness ta) were not taken into
consideration for the prediction models described in Section 3. This could present a
limitation of the prediction models. However, as these geometric parameters were, in some
cases, only listed as target values (and not the actual values), it was not possible to include
them on the modeling.

In Table 3, the distribution/quantity of each joint according to adhesives is given.

Table 3. Fatigue dataset: distribution of joint types per adhesive.

Joint n/Ad1 n/Ad2 n/Ad3 n/Ad4 n/Combined

BJ 40 17 58 20 135 (13.8%)
PJ 301 124 0 0 425 (43.4%)
SJ 89 15 54 23 181 (18.5%)
TJ 143 18 68 9 238 (24.3%)

Total 573 174 180 52 979 (100%)

3. Prediction Models

To address the objective of the current investigation, which is to determine the best
approach for the fatigue lifetime prediction of structural adhesive joints, four types of
prediction models were implemented:
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• Data-driven models (DDMs);
• A physics-based model (PBM);
• Hybrid models (HM):

- Hybrid models based on Findley’s critical plane (HM-F);
- Hybrid models based on invariant stresses (HM-I).

The prediction models will be compared in terms of complexity of implementation,
accuracy, and sensitivity to dataset size. The fatigue dataset will be split into train set and
test set. An optimal balance should be found between train and test sets [47]. If the train set
is too large, the generalization of the model cannot be tested, as the test dataset would be
too limited. On the other hand, if the test set is too large, fewer samples would be available
for the train set, which affects the overall performance of the model, as more train data
tends to yield better models [48].

The accuracy will be quantified based on the two indicators: the coefficient of determi-
nation (R2) and the error factor (ER) for both the train and test datasets [32]:

ER =
1
n ∑n

i=1 10|logNpred,i−logNexp,i | (7)

ER indicates the average error between the predicted lifetime (Npred) obtained from the
prediction models and expected lifetime (Nexp). As a reference value, in case of expected
lifetime (correct value) of 1000 cycles, if the predicted lifetime is either 500 or 2000 cycles,
both would lead to an ER of 2. For a perfect agreement (Npred = Nexp), an ER = 1 would be
obtained.

To assess the sensitivity of each model to dataset size, three different splits of the
fatigue dataset were investigated:

• Split 70tr/30te: 70% of dataset for training and 30% for testing;
• Split 50tr/50te: 50% of dataset for training and 50% for testing;
• Split 30tr/70te: 30% of dataset for training and 70% for testing.

The proportions of each split were kept among each adhesive to ensure an equally
distributed (balanced) dataset. A random shuffle of the dataset for each adhesive was
carried out. Then, the split was done per each adhesive, which was followed by the
combination into a single dataset (train and test set). The different splits, and respective
sizes of the train (tr) and test (te) datasets are listed in Table 4.

Table 4. Different splits of the fatigue dataset into training and test datasets.

Dataset n/70tr n/30te n/50tr n/50te n/30tr n/70te

Ad1 401 172 286 287 171 402
Ad2 121 53 87 87 52 122
Ad3 125 55 90 90 54 126
Ad4 36 16 26 26 15 37

Combined 683 296 489 490 292 687

Some procedures regarding the data treatment and feature selection were common to
all models, including:

• The fatigue lifetime (number of cycles to failure, N) was modeled using a logarithm
scaling based on domain knowledge (e.g., the Basquin’s law [49]);

• By assuming an ideal cohesive failure, and by the fact that the substrates were thick
(little deformation), the predictions were carried out ignoring the substrate properties;

• The geometric parameters of the joints were not taken into consideration;
• The frequency ( f ) was not taken into consideration.
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3.1. Data-Driven Model (DDM)

The workflow for the implementation of the DDM is presented in Figure 3a. The DDM
was implemented as follows:

• A particular data split (70Tr/30Te, 50Tr/50Te, or 30Tr/70Te) was selected;
• Parameters of the train dataset (R, φ, τa, σa, Ead, UTSad, Nexp) were used to train

the model;
• The hyperparameters for the DDM are optimized so as to minimize ER_train (conver-

gence criterion);
• The trained DDM was determined;
• Parameters of the test dataset (R, φ, τa, σa, Ead, UTSad) were used to test the DDM.

However, the expected number of cycles to failure (Nexp) was not used as an input;
• The output of the DDM was the predicted number of cycles to failure (Ncalc);
• The accuracy indicators of the DDM (R2_test and ER_test) were calculated based on

Ncalc and Nexp.

Figure 3. Workflow of the (a) data-driven model (DDM) and (b) physics-based model (PBM).

The model optimization was carried out by a five-fold cross-validation (see Appendix A)
with grid search, i.e., four folds were employed as the train dataset and one fold as a
validation dataset. With a grid search, all potential combinations in the hyperparameter
sub-space are generated. After optimization of the model, the hyperparameter combination,
which outperforms the others, was selected. The five-fold cross-validation also contributes
to avoiding issues with overfitting [30]. The hyperparameter space for the optimization for
the DDM (and HMs) is given in Table 5.

Table 5. Hyperparameter searching space for the DDM and HMs employed in the present work.

Minimum Maximum Step

Maximum depth 5 20 1
Maximum features 1 4 1

Minimum number of samples to split 2 5 1

Since several regressors are available for data-driven prediction models, another
relevant aspect of the current investigation was to determine which regressor would be
the most suitable for the lifetime prediction considering the existing dataset (and their
respective parameters). Four different regressors were evaluated for the development of
the DDM, with each of them following the same procedure described in the workflow.
All four regressors rely on the construction of non-linear relationships to achieve the best
prediction. The regressors were:



Appl. Mech. 2023, 4 342

• Extra trees regressor (ERT, Python-library: sklearn) [50]: the ERT builds multiple
decision trees on random subsets of the data and features. For each split in the tree,
a random subset of features is chosen, and the best split is selected based on some
criterion, such as reducing the variance or the mean squared error. The final prediction
is made by averaging the predictions of all the trees.

• ExtremeXGBoost regressor (XGB, Python-library: xgboost) [51]: the XGB uses gradient
boosting to build a sequence of trees, where each tree tries to correct the errors made by
the previous tree. The gradient boosting process starts with a weak base learner, such
as a decision tree, and trains the next tree to correct the residuals from the previous
tree. The final prediction is made by summing up the predictions of all the trees.

• LightGBM regressor (LGBM, Python-library: lightgbm) [52]: the LGBM uses gradient
boosting to build a sequence of trees, where each tree tries to correct the errors made
by the previous tree. The algorithm uses a novel approach to build trees, called
the histogram-based method, which reduces the computational cost compared to
traditional gradient boosting algorithms. The histogram-based method splits the data
based on histograms of feature values instead of finding the best split by brute force.
The final prediction is made by summing up the predictions of all the trees.

• Histogram-based gradient boosting regressor (HGB, Python-library: sklearn) [53]: the
HGB is similar to XGB in that it also uses gradient boosting to build a sequence of
trees. Moreover, the HGB is inspired (with slight modifications) by the LGBM.

The regressors were compared in terms of accuracy and sensitivity to data size. As the
datasets were relatively small (n < 1000), the comparison of computational performance
was not necessary.

3.2. Physics-Based Model (PBM)

For the physics-based model (PBM), the aim was to find a fatigue failure criterion so as
to correlate the value of the criterion with the number of cycles to failure [1]. Considering
the type of parameters available for the lifetime prediction with: different values of stress
ratio (R), multiaxial stresses (τa and σa), as well as non-proportional loading (φ 6= 0◦), the
usage of a critical-plane stress-based criterion is a suitable approach [54]. In the concept
of critical-plane, the multiaxial stress state is reduced to an equivalent uniaxial state in
a specific plane. The idea is then to combine the normal and shear stresses in this fixed
(critical) plane [54]. With this method, it is possible to calculate the fatigue life as well the
position of the fatigue fracture plane.

The Findley’s critical plane stress [55] value is defined as follows:

SF = max[τa,CP(θF) + kFσmax,CP)] (8)

Here, SF is the value of the Findley’s stress, θF is the angle of the critical plane, kF
is a material parameter related to the sensitivity to normal stress, τa,CP is the shear stress
amplitude at the critical plane, and σmax,CP is the upper normal stress at the critical plane.

Considering the train dataset, the process of determination of the critical plane and the
Findley’s stress involved three loops through: (i) the normal stress sensitivity (kF), which
varied from 0.0 to 2.0; (ii) one stress cycle (with shear and tensile stresses), which was
divided into 100 time increments; and (iii) the angle θF of the plane, which varied from 0◦

to 180◦. For a given number of cycles to failure (N), the calculations started by defining a
given kF (e.g., kF = 0.1). Then, for each time increment, the plane was rotated from 0◦ to 180◦

with steps of 3◦ (see Figure 1b). The Findley’s stress {SF = max[τa,CP(θF) + kFσmax,CP)]}
was calculated for each plane. The maximum value SF was then recorded for every time
increment. At the end, the plane with the largest value of SF was assumed as the critical
plane. Therefore, for the given data point, a relationship was established between SF and N.

Finally, by taking the entire train dataset, the value of kF was determined so as to
maximize R2_train for a regression of log N = f (log SF), see Figure 1c. For the test dataset,
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the Findley’s stress (SF) was used as input to obtain the number of cycles to failure based
on the previous relationship (log N = f (log SF)).

The workflow for the implementation of the PBM is presented in Figure 3b. The PBM
was implemented as follows:

• A particular data split (70Tr/30Te, 50Tr/50Te, or 30Tr/70Te) was selected;
• Since the value of kF is adhesive-dependent, each adhesive was evaluated separately;
• Parameters of the train set (R, φ, τa, σa, Ead, UTSad, Nexp) were used to train the model

of each adhesive;
• Train set: the value of kF was varied between 0 and 2.0;
• Train set: for each data point the value of θF was varied to maximize SF;
• Train set: the value of kF leading to the maximum correlation of R2_train between SF

and Nexp (converge criterion) was determined;
• The optimized PBM determined the relationship: log Npred = f (log SF);
• Based on the parameters of the test dataset (R, φ, τa, σa, Ead, UTSad) the value of SF

was used to test the PBM of each adhesive. However, the expected number of cycles
to failure (Nexp) was not used as an input;

• The output of the PBM was the predicted number of cycles to failure (Ncalc);
• The Ncalc and Nexp for each adhesive were combined;
• The accuracy indicators of the PBM (R2_test and ER_test) were calculated based on

Ncalc and Nexp.

3.3. Hybrid Models (HM)

The hybrid models (HM) were developed to combine advantages of both of the DDM
and the PPM. Two hybrid models were investigated:

• A hybrid model using physics-based parameters from the Findley’s critical plane into
a data-driven model (HM-F);

• A hybrid model using physics-based stress invariant parameters into a data-driven
model (HM-I).

3.3.1. Hybrid Model Using the Findley’s Critical Plane Approach (HM-F)

The HM-F relies on the usage of Findley’s approach to calculate kF, θF, and SF. To
use them, subsequently, as inputs for a DDM. The workflow of the HM-F is presented in
Figure 4a:

• A particular data split (70Tr/30Te, 50Tr/50Te, or 30Tr/70Te) was selected;
• Since the value of kF is adhesive-dependent, each adhesive was evaluated separately;
• Parameters of the train dataset (R, φ, τa, σa, Ead, UTSad, Nexp) were used to train a

PBM of each adhesive;
• Train set: the value of kF leading to the maximum correlation R2_train between SF and

Nexp was determined;
• The physics-based parameters of the train dataset (kF, SF, θF, Ead, UTSad, Nexp) were

used to train a DDM regressor;
• The hyperparameters of the DDM regressor were optimized so as to minimize the

ER_train (convergence criterion);
• The trained HM-F was determined;
• Parameters of the test dataset (R, φ, τa, σa, Ead, UTSad) were used to test the HM-F.

However, the expected number of cycles to failure (Nexp) was not used as an input;
• The output of the HM-F was the predicted number of cycles to failure (Ncalc);
• The Ncalc and Nexp for each adhesive were combined;
• The accuracy indicators of the HM-F (R2_test and ER_test) were calculated based on

Ncalc and Nexp.
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Figure 4. Workflow of the hybrid model: (a) based on Findley’s critical plane (HM-F) and the hybrid
model (b) based on the invariant stresses (HM-I).

3.3.2. Hybrid Model Using Invariant Stresses (HM-I)

The HM-I relies on the usage of invariant stresses to employ them afterwards as
inputs for a DDM. Stress invariants have been widely employed in fatigue predictions
approaches [31–33,56] as they provide relevant information on the stress state within the
adhesive layer, such as the deviatoric stress (related to the shape change) and the hydrostatic
stress (related to the volume change).

The stress invariants were defined as follows: taking x as the direction normal to the
adhesive layer, and y and z as the transverse directions, a generic 3D stress tensor can be
constructed for the adhesive layer in order to describe its stress state:

σ =

 σx τxy 0
τxy σy 0
0 0 σz

 (9)

With the assumption of homogenous stress distribution and a complete transverse
strain restraint of the adhesive layer due to the higher stiffness of the substrates (substrate
ca. 10 times stiffer than the adhesive). It can be inferred from the linear elasticity that:

σy = σz =
vad

(1− vad)
σx (10)

where vad is the Poisson’s ratio of the adhesive.
The stress invariants, i.e., stress values that are independent of the coordinate system,

I1 and J2 can be defined as follows:

I1 = σx + σy + σz (11)

J2 =
1
3
[σ2

x + σ2
y + σ2

z − σxσy − σxσz − σyσz] + τ2
xy (12)

The stress invariants (I1,J2) are relevant parameters for the determination of the
behavior of adhesive joints. They can be correlated with the hydrostatic stress (σH) and
deviatoric stress (i.e., von Mises stress, σVM), which are strongly related to the fatigue
behavior of adhesives as shown in [31,57,58].

σH =
I1

3
(13)

σVM =
√

3J2 (14)
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The workflow of the HM-I is presented in Figure 4b:

• A particular data split (70Tr/30Te, 50Tr/50Te, or 30Tr/70Te) was selected;
• Train dataset: based on parameters (τa, σa, νad) the invariant stresses (I1 and J2) were

calculated;
• The physics-based parameters of the test dataset (I1, J2, φ, Ead, UTSad, Nexp) were used

to train a DDM regressor;
• The hyperparameters of the DDM regressor were optimized so as to minimize the ER_train;
• The trained HM-I was determined;
• Parameters of the test dataset (R, φ, τa, σa, Ead, UTSad) were used to test the HM-I.

However, the expected number of cycles to failure (Nexp) was not used as an input;
• The output of the HM-I was the predicted number of cycles to failure (Ncalc);
• The Ncalc and Nexp for each adhesive were combined;
• The accuracy indicators of the HM-I (R2_test and ER_test) were calculated based on

Ncalc and Nexp.

4. Prediction Results
4.1. Predictions by Data-Driven Models

The predictions related to the data-driven models (DDMs) were carried out following
the workflow shown in Figure 3a. For that approach, four ML methodologies were applied:
extra trees regressor (ERT), XGBoost regressor (XGB), histogram-based gradient boosting
(HGB), and LightGBM (LGBM).

The first assessment performed is related to the accuracy of each methodology to
predict the test data according to the size of the train dataset. In Table 6, one can find a
summary of the results obtained in the prediction of the train and test data regarding the
(R2_train/R2_test) and (ER_train and ER_test) scores. On the one hand, ERT and XGB pre-
dictions presented very high R2_train (low ER_train) values for the train dataset, but were
not able to repeat their good performance using the test data (R2_test or ER_test), which is
an indication of less generalization power. On the other hand, HGB and LGBM prediction
performances showed less variation when comparing R2_train values to R2_test values.

Table 6. DDM: model performance for the combined dataset according to dataset split.

DDM 70tr:
R2_train/(ER_train)

30te:
R2_test/(ER_test)

50tr:
R2_train/(ER_train)

50tr:
R2_test/(ER_test)

30tr:
R2_train/(ER_train)

70tr:
R2_test/(ER_test)

ERT 0.96 (1.46) 0.58/(5.33) 0.96/(1.36) 0.58/(7.00) 0.97/(1.28) 0.46/(9.12)
XGB 0.95 (1.56) 0.58/(4.92) 0.95/(1.43) 0.54/(9.00) 0.97/(1.32) 0.43/(12.88)
HGB 0.79 (3.30) 0.56/(5.41) 0.75/(3.01) 0.49/(6.46) 0.69/(3.89) 0.34/(7.86)

LGBM 0.79 (3.26) 0.56/(5.70) 0.72/(3.27) 0.49/(6.27) 0.66/(4.18) 0.32/(8.18)

The ER_test values for predictions with the DDM according to split size and the
regressor method are given in Figure 5. Based on the evaluation of each ML-methodology
applied, the following assessments can be drawn: (i) the accuracy in predicting the test
data was strongly influenced by the train dataset size. The best prediction accuracy was
achieved when the size of the train dataset increased (70tr/30te); (ii) HGB and LGBM
predictions showed less sensitivity to the size of the train dataset compared to the other
methods; (iii) in terms of ER when comparing the results of the 70tr/30te and 30tr/70te
split datasets, the accuracy of the models changed. The LGBM lost 1.46x its performance
(ER from 5.7 to 8.2), and the XGB had the largest reduction of performance with 2.63x
(ER from 4.9 to 12.9); and, (iv) the XGB showed the highest accuracy for the 70tr/30te split
with ER = 4.9.
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Figure 5. Sensitivity to dataset size based on ER_test for the combined dataset considering
different DDMs.

In Figure 6, the relevance analysis of each parameter for the DDM (lgbm) is given.
This technique assigns a score to each parameter to determine how useful each input is in
predicting a desired variable, in this case, the number of cycles to failure (N). Important
information can be obtained from the relevance output of this technique: (i) “tau_a” and
“sigma_a” show the higher values of relevance for the model predictions; (ii) “UTS_ad”
plays a greater role for the DDM predictions than “R” and “E_ad”; and (iii) most of the
data used for training and testing of DDMs have “phi” values of 0◦; hence, the relevance of
this input is smaller.

Figure 6. Relevance analysis of model parameters for the DDM.

4.2. Predictions Using the Physics-Based Model

In terms of the physics-based model (PBM), predictions were carried out follow-
ing the workflow shown in Figure 3b. For that approach, the Findley’s failure criterion
(Equation (7)) is applied. The first findings are related to the sensitivity of the PBM to
dataset size. In Table 7, the R2_train/R2_test indicators are given as a function of the data
split. Contrarily to the DDM, in the PBM, the R2_train and R2_test values were more
comparable. However, the value of kF varied according to the size of dataset. Nonetheless,
with enough train data, the value of kF tends to be very close for every adhesive.
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Table 7. PBM: model performance for single adhesive and combined dataset according to
dataset split.

PBM kF
(70tr/30te)

70tr:
R2_train/

(ER_train)

30te:
R2_test/

(ER_test)

kF
(50tr/50te)

50tr:
R2_train/

(ER_train)

50te:
R2_test/

(ER_test)

kF
(30tr/70te)

30tr:
R2_train/

(ER_train)

70te:
R2_test/

(ER_test)

Ad1 0.8 0.24/
(11.48)

0.38/
(9.19) 0.9 0.25/

11.06)
0.3/

(10.10) 1.0 0.29/
(10.92)

0.27/
(10.17)

Ad2 0.8 0.49/
(4.17)

0.34/
(6.03) 0.8 0.58/

(3.91)
0.31/
(5.84) 1.0 0.47/

(4.45)
0.4/

(5.26)

Ad3 0.7 0.43/
(6.31)

0.5/
(6.60) 0.7 0.43/

(6.38)
0.46/
(6.93) 0.9 0.51/

(5.85)
0.4/

(7.48)

Ad4 0.7 0.62/
(4.60)

0.5/
(3.48) 0.7 0.61/

(3.38)
0.59/
(4.72) 0.6 0.49/

(4.40)
0.65/
(3.38)

Combined - 0.34/
(8.88)

0.43/
(7.84) - 0.38/

(8.51)
0.36/
(8.48) - 0.38/

(8.50)
0.34/
(8.44)

In Figure 7, the values of ER_test are given per each adhesive, as well as the combined
dataset. The change in the size of the trained/tested dataset seems to be less relevant for the
accuracy of the model predictions, i.e., increasing the dataset size will not likely be beneficial
for future predictions. This could be observed, for instance, in the prediction of the Ad1,
which, despite having the largest dataset, presents the highest ER_test. Considering the
split 70tr/30te, the prediction of the combined_testset was more accurate in the DDM-xgb
(ER_test = 4.9) as compared to the PBM (ER_test = 7.8).

Figure 7. Sensitivity to dataset size based on ER_test for the PBM.

4.3. Predictions Using Hybrid Models

As defined in Section 3.3, the proposal for hybrid models is to use the same ML-
methods applied in the DDM, but with the introduction of stress-based parameters obtained
from physics-based approaches as input parameters. The models have been divided
according to the applied inputs. While the HM-I introduces the stress invariants (I1,J2)
as inputs parameters, the HM-F introduces the angle (θF) and Findley’s stress criterion
(SF) obtained from the PBM. In the workflow presented in Figure 4a,b, one can find how
predictions were carried out. As performed for DDM and PBM, the first assessment is
related to the accuracy of the model to predict the test data based on the train dataset size
(sensitivity to dataset size).

In Tables 8 and 9, the R2_train and R2_test according to dataset split and regressor are
given. Similarly to the DDM, for both the HM-I and HM-F, ERT and XGB regressors yielded
high R2_train (low ER_train) values, but were not able to repeat their good performance
using the test data, i.e., R2_test values (less generalization power). On the other hand, HGB
and LGBM prediction performances presented less variation when comparing R2_train
(ER_train) values to R2_test (ER_test) values.



Appl. Mech. 2023, 4 348

Table 8. HM-I: model performance for combined dataset according to dataset split.

HM-I 70tr:
R2_train/(ER_train)

30te:
R2_test/(ER_test)

50tr:
R2_train/(ER_train)

50tr:
R2_test/(ER_test)

30tr:
R2_train/(ER_train)

70tr:
R2_test/(ER_test)

ERT 0.95/(1.46) 0.61/(5.06) 0.95/(1.36) 0.59/(6.78) 0.97/(1.28) 0.52/(8.55)
XGB 0.94/(1.54) 0.59/(6.15) 0.95/(1.41) 0.55/(8.96) 0.97/(1.3) 0.46/(8.96)
HGB 0.8/(2.67) 0.64/(4.12) 0.8/(2.61) 0.53/(5.83) 0.75/(3.26) 0.43/(6.8)

LGBM 0.8/(2.67) 0.65/(3.92) 0.78/(2.74) 0.52/(5.92) 0.73/(3.35) 0.43/(6.6)

Table 9. HM-F: model performance for combined dataset according to dataset split.

HM-F 70tr:
R2_train/(ER_train)

30te:
R2_test/(ER_test)

50tr:
R2_train/(ER_train)

50tr:
R2_test/(ER_test)

30tr:
R2_train/(ER_train)

70tr:
R2_test/(ER_test)

ERT 0.95/(1.46) 0.6/(4.72) 0.96/(1.36) 0.51/(8.43) 0.97/(1.28) 0.45/(9.95)
XGB 0.94/(1.56) 0.59/(4.91) 0.95/(1.41) 0.52/(8.22) 0.97/(1.31) 0.47/(9.48)
HGB 0.78/(2.86) 0.59/(4.6) 0.8/(2.62) 0.51/(6.74) 0.77/(2.85) 0.42/(8.24)

LGBM 0.79/(2.81) 0.59/(4.49) 0.8/(2.66) 0.52/(6.9) 0.76/(3.04) 0.41/(9.23)

In Figure 8, the ER_test for the HM-I and HM-F models is given according to the
data split and ML regressor method. Based on prediction results, it is possible to note the
following: (i) on average HM-I shows higher accuracy for the test data, when compared
to the HM-F (1.15x more accurate using LGBM for the 70tr/30te split); (ii) the accuracy
in predicting the test data was strongly influenced by the trained dataset size for both
approaches; and (iii) LGBM produces the best prediction results for both HM-I and HM-F.

Figure 8. Sensitivity to dataset size: HM-I and HM-F.

The parameter relevance analysis for the hybrid models is provided in Figure 9.
Considering the HM-I, J_2 and I_1 were the most relevant parameters (even more relevant
than “tau_a” and “sigma_a” for the DDM). Moreover, “R” plays a greater role for the
HM-I predictions than “UTS_ad” and “E_ad”. For the HM-F, “S_F” and “theta_F” have the
highest relevance for predictions. Since most of the data used for the training and testing of
the hybrid models have “phi” values of 0◦, the relevance of this input is minimal for both
HM-I and HM-F.

4.4. Performance Comparison between Models and Outlook

As a summarizing step, the performance of the four models (DDM, PBM, HM-I, and
HM-F) was compared in terms of sensitivity to data size, accuracy, and complexity of
implementation. In Figure 10, the ER_test for the prediction models as a function of the
data split (70tr/30te and 30tr/70te) is shown. The PBM has the smallest reduction of
accuracy with −1.07x. Hybrid models (HM-F and HM-I) are less sensitive to the data size
than the DDM. The accuracy of the DDM decreased 2.63 times, compared to −2.04x of
the HM-F and −1.69x to the HM-I. Therefore, one could infer that the HMs combine the
accuracy improvement of the DDM, with the robustness to data size of the PBM.
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Figure 9. Relevance analysis of the HM-I and HM-F considering the LGBM regressor.

Figure 10. Summary of ER_test values for each model applied according to dataset size.

Figure 11 presents the accuracy of models (ER_test) for each adhesive and for the
combined dataset taking the 70tr/30te split. The hybrid models have the highest accuracy,
especially the HM-I with an accuracy for the combined dataset within a factor of four
lifetimes (ER_test = 3.9). This accuracy improvement is reflected in three out four adhesives
(except Ad2). The HM-I was able to improve the accuracy of the DDM in 20% whereas, for
the HM-F, this improvement was of 8%. Comparatively, the PBM has the lowest accuracy
for the combined dataset.

Figure 11. Accuracy of models for each adhesive and combined dataset.

Considering the 70tr/30te split, 296 data points were predicted in the test dataset.
The N_pred/N_exp plot for the prediction using the four models (DDM, PBM, HM-I, and
HM-F) is given in Figure 12. The black diagonal lines establish a perfect prediction, whereas
the gray dashed lines define a region within a factor of five lifetimes. As an additional
accuracy metric, not only the ER_test is provided, but also the percentage of the data points,
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which are within a factor of five lifetimes (ER_test < 5). For the HM-I, 83% of predictions
are within a factor of five, followed by the HM-F with 80%, the DDM with 79%, and the
PBM with 72%.

Figure 12. Lifetime prediction (N-N-plot) for the 70Tr/30Te split of the combined_set considering all
four models.

Another investigation regarding the hybrid models was carried out in order to assess
whether the accuracy of the combined dataset is higher than that of a single adhesive,
i.e., (i) train the model with adhesive A, and test with adhesive A or (ii) train the model
with a combined adhesive dataset (including A), and test with a combined adhesive dataset
(including A). The discussion here would be: “is it more relevant to have a homogeneous
dataset (A predicting A) or to have more data available (combined predicting combined)?”.
Table 10 shows the prediction accuracy (ER_test) using the HM-I for a 70Tr/30Te split
considering two different datasets: (i) homogeneous prediction (A predicting A) and
(ii) heterogeneous prediction (combined predicting combined).

Table 10. HM-I: prediction accuracy (ER_test) for a 70Tr/30Te split considering homogeneous and
heterogeneous datasets.

Adhesive n Homogeneous Dataset:
R2_train/(ER_test)

Heterogeneous Dataset:
R2_test/(ER_test)

Ad1 573 0.66/(3.40) 0.69/(3.24)
Ad2 174 0.37/(8.84) 0.44/(6.96)
Ad3 180 0.74/(4.18) 0.78/(3.35)
Ad4 52 Not converged 0.62/(3.12)
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For all adhesives, the predictions with the heterogeneous dataset outperformed the
homogeneous dataset. Moreover, for the adhesive with the smallest dataset (Ad4), there
was not enough data to reach a minimum convergence criterion. Nonetheless, for the same
adhesive, with the use of the heterogeneous dataset (with the combination of information
from other adhesives), it was possible to obtain a very good accuracy for the Ad4.

Another relevant aspect is that complexity of the implementation for the four models
was comparable. The most demanding task was related to the preparation of the dataset,
including data mining, data cleaning, data curation, and feature selection. In terms of
computational time, all models were within the same range. The models were executed
using the Jupyter © Notebook in a PC (Intel© i5-10400H (2.6 GHz) with 16GB of RAM). For
this reason, the implementation of the hybrid models can be a method for improvement
of lifetime prediction (accuracy and minimum required data). Hybrid modelling also
allows a reduction in the number of experiments by taking advantage of the accuracy of
data-driven models, and robustness of data size of physics-based models. Finally, the use of
hybrid models, which rely on physics-based approaches, might enhance the acceptance of
AI-based solutions in engineering fields, as more explainable (or more visible) correlations
between parameters and predictions can be assessed.

5. Conclusions

In the current work, a comparative investigation of data-driven, physics-based, and
hybrid models for the fatigue lifetime prediction of structural adhesive joints was presented.
Four data-driven models (DDM) were constructed using extremely randomized trees (ERT),
eXtreme gradient boosting (XGB), LightGBM (LGBM), and histogram-based gradient
boosting (HGB). The physics-based model (PBM) relies on the critical plane approach. Two
hybrid models were developed by combining data-driven approaches with physics-based
parameters obtained from the invariant stresses (HM-I) and the Findley’s critical plane
approach (HM-F).

A fatigue dataset was constructed with 979 fatigue data points from four structural
adhesives with four joint configurations. To assess the sensitivity to data size, the fa-
tigue dataset was split with three different ratios of train/test dataset, namely 70%/30%,
50%/50%, and 30%/70%. Prediction accuracy is evaluated from the R2 and the error factor
(ER) for the test datasets from lifetime predictions.

Results revealed that DDMs are more accurate, but more sensitive to the dataset
size when compared to the PBM. At the same time, DDMs have the potential of accuracy
improvement with the extension of the database. Among different regressors, the LGBM
presented the best performance when dealing with smaller and larger train datasets. HMs
increased the accuracy of predictions, whilst enhancing the robustness of models (reduction
of sensitivity to data size). Finally, the HM-I showed the highest accuracy with an improved
sensitivity to data size compared to the DDMs. Considering the HM-I, for all adhesives,
predictions with the heterogeneous dataset outperformed the homogeneous dataset.
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Abbreviations

The following abbreviations/symbols were employed in this investigation:

Abbreviation/Symbol Meaning
AI Artificial intelligence
ad Adhesive
BJ Butt Joint
DDM Data-driven model
E Young’s modulus in [MPa]
ER Error factor
ERT Extremely randomized trees
HGBM Histogram-based gradient boosting model
HM-F Hybrid model based on Findley’s critical plane model
HM-I Hybrid model based on invariant stress
LGBM Light gradient-boosting method
LLN Law of large numbers
ML Machine learning
N Number of cycles to failure
n Number of observations
PBM Physics-based model
PJ Pipe Joint
R Stress ratio
RF Random forest
SJ Scarf Joint
sub Substrate
te Test
tr Train
TJ Thick-Adherend-Shear-Test Joint
UTS Ultimate tensile strength in [MPa]
XGB Gradient boosting method
φ Phase-shift in [◦]
τ Shear stress in [MPa]
σ Tensile stress in [MPa]
θF (or theta_F) Angle of Findley’s critical plane
ν Poisson’s ratio
SF (or S_F) Findley’s critical stress
kF (or k_F) Findley’s normal stress sensitivity
I1 (or I_1) First invariant of the principal stress tensor in [MPa]
J2 (or J_2) Second invariant of the deviatoric stress tensor in [MPa]

Appendix A

Python Libraries employed for this investigation:

Data manipulation

import os
import pandas as pd
import xlwings as wx
import numpy as np
import math-Shuffle
from sklearn.utils import shuffle

Models applied

from sklearn.ensemble import ExtraTreesRegressor,HistGradientBoostingRegressor
import xgboost as xgb
import lightgbm as ltb
from sklearn.linear_model import LinearRegression
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Model optimization

from sklearn.model_selection import GridSearchCV,cross_val_score,KFold,Repeated-
KFold,RandomizedSearchCV

Cross-validation
cv = KFold(5, shuffle = True, random_state = None)
gsc = GridSearchCV(
estimator = ltbreg,
param_grid = {‘max_depth’: range(5,20,1),
‘n_estimators’: (500)
‘max_features’: [1,2,3,4],
‘min_samples_split’: range(2,5,1)},
scoring = make_scorer(ER_loss,greater_is_better = False),
cv = cv,
verbose = 2, n_jobs = −1)
Figure manipulation

import matplotlib.pyplot as plt
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