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Abstract: The counterpart for Euler’s buckling problem is Greenhill’s problem, which studies the
forming of a loop in an elastic beam under torsion. In the context of twisted shafts, the optimal shape
of the beam along its axis is searched. A priori form of the cross-section remains unknown. For
the solution of the actual problem, the stability equations take into account all possible convex and
simply connected shapes of the cross-section. The cross-sections are similar geometric figures related
by a homothetic transformation with respect to a homothetic center on the axis of the beam and vary
along its axis. The distribution of material along the length of a twisted shaft is optimized so that the
beam is of the constant volume and will support the maximal moment without spatial buckling. The
applications of the variational method for stability problems are illustrated in this manuscript.

Keywords: buckling of twisted shaft; optimization problem; conservative system of the second kind

1. Introduction

Torsion shafts are tremendously significant mechanical structural elements, which are
used in machinery for the transmission of power. Shafts are used broadly in machinery and
are often one of the most critical parts of the machine. They are used to transfer mechanical
power from the combustion engine or electromotor to a moving component, such as wheels,
pulleys, or sprockets. They are used in combination with further mechanical components,
such as gears and sprockets, to provide power transmission within a mechanical system. A
torsion shaft characteristically consists of a cylindrical rod or bar, but can also be made in
other shapes, such as triangle, squares, or hexagonal bars. Shafts are subjected to loads,
including bending moments and torsional stresses, which can cause shafts to fail if they
are not designed correctly. Generally, shafts are cylindrical bars that can be stepped or
have the same diameter from one end to the other. Shafts that measure only one diameter
across the whole shaft are much easier and cheaper to produce. Stepped shafts are made
to deal with various stress levels that differ along the shaft in a mechanical system. The
primary application of the optimal solutions are the moment-transmitting shafts of the
engines or of the industrial machinery. Optimally stepped shafts transmit the maximal
allowable moment for the predefined mass of the member. The actual manuscript provides
the estimation of mass, bucking moment, stored elastic energy and stiffness of the optimally
stepped shafts. This information could help the designer to estimate properly the effects of
the optimization and allows for the motivated decision making for the specific design of
the shafts.

“Rod” means a straight, round stick, shaft, bar, cane, or staff. The term “rod” is
frequently used for the members in torsion [1–4]. In structural optimization, the terms
“column” or “beam” are frequently used for the designation of the member in bending
state [5–7]. A “beam” signifies a structural element that primarily resists loads applied
laterally to the beam’s axis. An element designed to carry the primarily axial force would be
a “strut” or “column”. The term “column” is applied for the heavy, vertically compressed
beams. “Bar” indicates a solid metal object with a uniform (round, square, hexagonal,
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octagonal, or rectangular) cross-section. However, the term “bar” is hardly ever used in
structural mechanics. Greenhill [8] uses the word “shafting” for the designation of the
twisted elastic beam. According to [9], there are no principal difference between rods,
columns, and shafts in the context of stability problems. In this manuscript, the term “shaft”
will be chiefly used for the description of the straight, thin, and elastic “twisted beam”.

In the actual manuscript, a thin elastic shaft with an isotropic cross-section, and
twisted by couples applied at its ends only [10], will be considered. The optimization
for stability of the simply supported shaft were studied numerically in [1]. The shaft
possessed the similarly shaped cross-sections with the varying cross-sectional area. The
more advanced problem of a twisted and compressed beam was studied numerically in [6].
The optimization problem consisted in finding the distribution of cross-sectional areas that
assigns the largest value to the critical moment. The critical moment causes the loss of
stability. The constraint on the volume of material and the constraints on the admissible
thickness of the rod were satisfied in the cited article.

The problem of determining the compressed and twisted beam of maximal efficiency
was studied in [3]. Following the structural optimization theory for a given load, the shape
of the column of minimal weight was determined numerically.

The problem of the optimal design of rods under combined compression and torsion
was investigated in [11]. A cross-sectional area varying along the axis of the column,
which led to the maximal critical loading, was sought. The varying cross-section was
approximated by a function with free parameters. Alternatively, the varying cross-section
was determined numerically using Pontryagin’s maximum principle.

Generally speaking, for non-conservative problems, the dynamic approach for stability
investigation must be applied [12]. However, Euler’s static approach has proved to be valid
for the considered boundary value problem with conditions of fixed axes of rotation, as
observed in cases 1 and 2 ([9], §5.4, Table 5.1, Section 1.2, page 127). The twisting couple
Λ retains its initial direction during buckling and the boundary conditions of fixed axes
of rotation are satisfied ([9], cases 1 and 2 in Table 1.1, Section 1.2, page 5). Euler’s static
approach is shown to be valid also for an infinite and periodically simply supported shaft.
The corresponding boundary-value problems are neither self-adjoint nor conservative
in the classical sense. Nevertheless, it is a conservative system of the second kind [13].
Consider a thin elastic shaft with an isotropic cross-section, twisted by couples applied at
its ends only (Greenhill’s problem) [2,8]. According to Euler’s theory, the magnitude of the
critical moment of the shaft is determined by the smallest positive eigenvalue.

The optimization problem for a column, loaded solely by compression forces is studied
in [14]. The vector of the applied forces was parallel to the axis of the column. The critical
values of buckling are equal among all competitive designs of the columns. The dimensional
analysis eases the mathematical technique for the optimization problem. The moments
of inertia of the rod are the powers of the cross-sectional area with the exponent α. The
dimensional analysis introduces two dimensionless factors, one for the total material
volume and one for the total stiffness of the columns. With the method of dimensional
analysis, the solution of the nonlinear algebraic equations for the Lagrange multiplier
will be superfluous. The closed-form solutions for the Sturm–Liouville and mixed type
boundary conditions were derived for an arbitrary positive exponent α. The solutions are
expressed in terms of the higher transcendental functions. The principal results are the
closed-form solution in terms of the hypergeometric and elliptic functions, the analysis of
single- and bimodal regimes, and the exact bounds for the masses of the optimal columns.
The isoperimetric inequality was formulated as the strict inequality sign, because the
optimal solution could not be attained for any finite design parameter. The additional
restriction on the minimal area of the cross-section regularized the optimization problem.

The optimal distribution of bending flexure along the axis of the simultaneously
compressed and twisted rod was found in [15]. The cross-section that delivers the maximum
or the minimum for the critical eigenvalue must be determined among all convex and
simply connected domains. The distribution of material along the length of a twisted and
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compressed rod was optimized so that the rod must support the maximal moment without
spatial buckling, presuming its volume remains constant among all admissible rods. The
static Euler’s approach is applicable for the simply supported rod (hinged), twisted by the
conservative moment and axial compressing force. Notably, the solution of the optimization
problem for stability of simultaneously twisted and compressed rods could be determined
only for three certain values of the exponent factor α. Namely, the solution in the above
cited article was determined solely for α = 1, α = 2, and α = 3. In contrast, the above-cited
solution [14] of the optimization of the axially compressed column allows the closed form
expressions for an arbitrary positive exponent. There arises a question as to whether the
optimal design problem for the shaft allows for the solutions for an arbitrary positive or a
real value of the exponent factor α.

The principal task of the actual manuscript is the closed-form analytical solutions for
the optimal shape of the shaft twisted along its axis. The solutions are sought for real values
of the exponent factor α .

2. Isoperimetric Inequality for a Twisted Shaft with an Arbitrary Convex and
Simply-Connected Cross-Section

In dealing with columns, rods, shafts, etc., it is assumed that they are homogeneous,
elastic, and obey Hooke’s law. According to Euler’s theory, the magnitude of critical
moment M is determined by the smallest positive eigenvalue Λ. From the beginning, the
validity of the static Euler’s approach for the simply supported shaft (hinged), twisted by
the conservative moment, is presented. The distribution of the material along the length of
the shaft is optimized so that the shaft is of the constant volume V and will support the
maximal moment without spatial buckling (Figure 1). The cross section that delivers the
maximum or the minimum for the critical eigenvalue must be determined among all convex
and simply connected domains. A priori form of the cross-section remains unknown. For
the solution of the actual problem, the stability equations take into account all possible
convex and simply connected shapes of the cross-section. Consequently, the requirement
of the equality of the principal moments of inertia for the cross-section could be released.

The cross-sections are similar geometric figures related by a homothetic transformation
with respect to a homothetic center on the axis of the shaft and vary along its axis. The area
of some reference cross-section Ω is A0. The area of the cross-section with the coordinate x
is A(x),−L ≤ x ≤ L. The scaling dimensionless function is positive:

s(x) = A(x)
A0

> 0, 0 < s < 1 (1)

The function s(x) is the locally integrable function over the length of the shaft (−L ≤ x ≤ L).
The volume of the shaft is equal to 2V:

1
2

∫ L

−L
s(x)dx = V (2)

For an arbitrary cross-section, the moments of inertia Jyy, Jyz, Jzz of the transverse cross-
sectional area are the power of s(x). The moments of inertia with respect to lines, passing
through a point on the neutral axis of bending and parallel to the axes y and z, read:

Jyy = Iyysα(x), Jyz = Iyzsα(x), Jzz = Izzsα(x), −L ≤ x ≤ L (3)
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Figure 1. The shaft with the simply supported (hinged) ends and its buckling curve. The projections 
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Figure 1. The shaft with the simply supported (hinged) ends and its buckling curve. The projections
y(x), z(x) of the spatial buckling curve in Cartesian coordinates are shown in the graphs below.
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The constants Iyy, Iyz, and Izz denote the moments of inertia of the reference cross-
section Ω. The moments of inertia Iyy, Iyz, and Izz are the components of tensor of the
second rank. For an arbitrary angle Ψ between the principal axis of inertia and y axis, the
moments of inertia are

Iyy = I1cos2Ψ + I2sin2Ψ, Iyz = (I1 − I2)sinΨcosΨ, Izz = I1sin2Ψ + I2cos2Ψ. (4)

The angle Ψ remains constant along the axis of the shaft.
As declared above, the shaft is twisted by conservative couples, such that the torque is

constant over the axis of the beam. The bending moments, in terms of curvatures of the
shaft are:

Mz = EIyyy′′ + EIyzz′′ , My = EIyzy′′ + EIzzz′′ . (5)

The axes y and z are chosen in the direction of principal axes of inertia through the
center of gravity (Ψ = 0). The curvatures of the axis kz, ky in the course of buckling are
assumed to be small, such that the geometrically linear equations could be applied for the
solutions. The bending moments in terms of curvatures kz, ky of the shaft in the principal
axes are:

Mz = EI1kz, My = EI2ky, kz = y′′ , ky = z′′ (6)

At first, it will be assumed that both moments of inertia are proportional to one
function j(x):

I1(x) = η1 j(x), I2(x) = η2 j(x), j(x) =
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3. Optimization Problem and Isoperimetric Inequality for Stability 
Based on the above solution, the distribution of material along the length of a twisted 

beam will be optimized. The optimal distribution of the cross-sectional area along the span 
of the beam is denoted by the capital letter 𝑆(𝑥). The optimization problem examines the 
shaft of the constant volume 2𝑉  that supports the maximal moment without spatial 
buckling. If the density of the material is 𝜌, the mass 2𝔐 of the shaft is given by: 𝔐 = 𝜌𝑉,       𝑉 𝑠 = 𝑠(𝑥) 𝑑𝑥       𝑠(𝑥) > 0. (10) 

The new variables will be introduced:  𝑌 = 𝜂 𝑦 ,                                  𝑍 = 𝜂 𝑧 ,            𝛬 = 𝜂 𝜂 𝛬 

With the new variables, the formulation of the optimization problem is the following: 

𝛬 𝜘 𝑠 , 𝑌, 𝑍 = 𝛬𝜂 𝜂 → 𝑚𝑎𝑥( ) ,                12 𝑠(𝑥) 𝑑𝑥 = 12 𝑆(𝑥) 𝑑𝑥 = 𝑉 , (11) 

Particularly, if both principal moments of the second order are equal 𝐼 (𝑥) = 𝐼 (𝑥), 
the factors are: 𝜂 = 𝜂 = 1. For example, this setting is valid for the shaft with the cross-
section in form of an equilateral triangle or for the shaft with a circular cross-section.  

The distribution of material along the length of a shaft is optimized so that the beam 
is of constant volume and provides the maximal moment without spatial buckling. The 
variational methods will be applied for the derivation of the necessary optimality condi-
tions. The augmented Lagrangian is related to, but not identical to the method of Lagrange 
multipliers [10]. Augmented Lagrangian methods are a certain class of algorithms or an-
alytic techniques for solving constrained optimization problems. They have parallels to 
penalty methods. Both methods replace a constrained optimization problem by a series of 
unconstrained problems and add a penalty term to the objective. The difference between 
both methods consists in their penalty terms. The augmented Lagrangian method adds 
the term with the Lagrange multiplier. The augmented functional for the optimization 
problem (10) and (11) reads: ℒ 𝑠 = V 𝑠 + λΛ 𝜘 𝑠 , 𝑌, 𝑍  (12)

The derivation of the necessary optimality conditions is based on the concept of func-
tionals and the functional derivative. A mathematically precise discussion of the func-
tional derivative can be found in [10] or [17]. The necessary optimality condition follows 
from the first functional derivative of the augmented Lagrangian (12): −𝑐 + 𝑠 Κ = 0,      Κ =  𝜅 + 𝜅       c = (𝐸𝑘 α) λ. (13)

αsα.

The constants are positive values η1 > 0, η2 > 0. The quantity sα is proportional to
the flexural rigidity, and the exponent factor α is positive. In the simplest of cases, the
exponent factor takes the values of 1, 2, and 3 (Banichuk, 1990). The case α = 2 corresponds
to a congruent change in the form of the cross-section. The optimal convex shape of the
simply connected cross-section with the topological genus null was determined [16]. The
topological genus of a surface (or Euler characteristic) is in essence the number of its “holes”.
The solution grounds on the following isoperimetric equation. Of all convex domains with
area A
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ing isoperimetric equation. Of all convex domains with area 𝐴⊿ , the equilateral triangle 
yields the maximum of the product 𝐼 𝐼 : 𝐼 𝐼 ≤ √318 𝐴⊿ = 𝐼  

Thus, the shaft with the cross-section in the form of an equilateral triangle delivers 
the maximum for the critical eigenvalue for all convex and simply-connected domains of 
the same cross-sectional area 𝐴⊿ . For the cross-section in the form of the equilateral trian-
gle 𝜘 = √3 18⁄ ≈ 0.9622. 

For the circular cross-section, the constant is 𝜘 = (4𝜋) ≈ 0.07957. The shaft with 
the circular, simply connected cross-section delivers correspondingly the minimum for 
the critical eigenvalue: 𝐼 𝐼 ≥ 14π 𝐴⊙ = 𝐼⊙  

Two other cases describe the situations in which the form of the transverse cross-
section undergoes the transformation, such that one of the geometric dimensions of the 
cross-section changes. For the technically important case of the thin-walled tubes with the 
variable thickness of wall 𝑡(𝑥) and the mean diameter of tube 𝐷(𝑥), the second moments 
of: 𝐼 (x) = 𝐼 (x) = (𝐷 + 𝑡/2) − (𝐷 − 𝑡/2) = 𝑡𝐷 + 𝐷𝑡 ≈ 𝑡𝐷   for 𝑡 ≪ 𝐷  

The case α = 1 corresponds to the adjustable wall thickness (as the design variable) 
and constant mean diameter of the tube. The analogous dependence arises in the case of 
the bending of sandwich beams [7]. The case α = 3 corresponds the inconstant mean di-
ameter of the tubular shaft (as the design variable) and constant wall thickness. 

, the equilateral triangle yields the maximum of the product I1 I2:

√
I1 I2 ≤

√
3

18
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The axes 𝑦 and 𝑧 are chosen in the direction of principal axes of inertia through the 
center of gravity (Ψ = 0). The curvatures of the axis 𝑘 , 𝑘  in the course of buckling are 
assumed to be small, such that the geometrically linear equations could be applied for the 
solutions. The bending moments in terms of curvatures 𝑘 , 𝑘  of the shaft in the principal 
axes are: 𝑀 = 𝐸𝐼 𝑘 ,     𝑀 = 𝐸𝐼 𝑘 ,     𝑘 = 𝑦 ,     𝑘 = 𝑧  (6)

At first, it will be assumed that both moments of inertia are proportional to one func-
tion 𝑗(𝑥): 𝐼 (𝑥) = 𝜂  𝑗(𝑥),                         𝐼 (𝑥) = 𝜂  𝑗(𝑥),                                𝑗(𝑥) = 𝜘 𝑠 . 

The constants are positive values η > 0, η > 0. 
The quantity 𝑠  is proportional to the flexural rigidity, and the exponent factor 𝛼 

is positive. In the simplest of cases, the exponent factor takes the values of 1, 2, and 3 
(Banichuk, 1990). The case α = 2 corresponds to a congruent change in the form of the 
cross-section. The optimal convex shape of the simply connected cross-section with the 
topological genus null was determined [16]. The topological genus of a surface (or Euler 
characteristic) is in essence the number of its “holes.” The solution grounds on the follow-
ing isoperimetric equation. Of all convex domains with area 𝐴⊿ , the equilateral triangle 
yields the maximum of the product 𝐼 𝐼 : 𝐼 𝐼 ≤ √318 𝐴⊿ = 𝐼  

Thus, the shaft with the cross-section in the form of an equilateral triangle delivers 
the maximum for the critical eigenvalue for all convex and simply-connected domains of 
the same cross-sectional area 𝐴⊿ . For the cross-section in the form of the equilateral trian-
gle 𝜘 = √3 18⁄ ≈ 0.9622. 

For the circular cross-section, the constant is 𝜘 = (4𝜋) ≈ 0.07957. The shaft with 
the circular, simply connected cross-section delivers correspondingly the minimum for 
the critical eigenvalue: 𝐼 𝐼 ≥ 14π 𝐴⊙ = 𝐼⊙  

Two other cases describe the situations in which the form of the transverse cross-
section undergoes the transformation, such that one of the geometric dimensions of the 
cross-section changes. For the technically important case of the thin-walled tubes with the 
variable thickness of wall 𝑡(𝑥) and the mean diameter of tube 𝐷(𝑥), the second moments 
of: 𝐼 (x) = 𝐼 (x) = (𝐷 + 𝑡/2) − (𝐷 − 𝑡/2) = 𝑡𝐷 + 𝐷𝑡 ≈ 𝑡𝐷   for 𝑡 ≪ 𝐷  

The case α = 1 corresponds to the adjustable wall thickness (as the design variable) 
and constant mean diameter of the tube. The analogous dependence arises in the case of 
the bending of sandwich beams [7]. The case α = 3 corresponds the inconstant mean di-
ameter of the tubular shaft (as the design variable) and constant wall thickness. 

Thus, the shaft with the cross-section in the form of an equilateral triangle delivers the
maximum for the critical eigenvalue for all convex and simply-connected domains of the
same cross-sectional area A
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Consider the shaft hinged on two supports 𝑥 = 𝐿 and 𝑥 = −𝐿: 𝑦(𝐿) = 0,     𝐸𝑗𝜂 𝑦 (𝐿) = 0    𝑧(𝐿) = 0,    𝐸𝑗𝜂 𝑧 (𝐿) = 0, 𝑦(−𝐿) = 0,    𝐸𝑗𝜂 𝑦 (−𝐿) = 0,    𝑧(−𝐿) = 0    𝐸𝑗𝜂 𝑧 (−𝐿) = 0. (7) 

The buckling equations of the shaft read: ( 𝐸𝑗𝜂 𝑦 ) = −𝛬𝑧 ,                        (𝐸𝑗𝜂 𝑧 ) = 𝛬𝑦  (8) 

For the boundary value problem (7) and (8), the actual curvatures and displacements 𝑦∗, 𝑧∗ minimize the quotient: 𝛬 𝑗, 𝑦, �̃� = ( ) ,        𝛬 𝑗, 𝑦, 𝑧 ≡ 𝛬 𝜘 𝑠 , 𝑦, 𝑧 = min, 𝛬 𝑗, 𝑦, �̃�  (9) 

3. Optimization Problem and Isoperimetric Inequality for Stability 
Based on the above solution, the distribution of material along the length of a twisted 

beam will be optimized. The optimal distribution of the cross-sectional area along the span 
of the beam is denoted by the capital letter 𝑆(𝑥). The optimization problem examines the 
shaft of the constant volume 2𝑉  that supports the maximal moment without spatial 
buckling. If the density of the material is 𝜌, the mass 2𝔐 of the shaft is given by: 𝔐 = 𝜌𝑉,       𝑉 𝑠 = 𝑠(𝑥) 𝑑𝑥       𝑠(𝑥) > 0. (10) 

The new variables will be introduced:  𝑌 = 𝜂 𝑦 ,                                  𝑍 = 𝜂 𝑧 ,            𝛬 = 𝜂 𝜂 𝛬 

With the new variables, the formulation of the optimization problem is the following: 

𝛬 𝜘 𝑠 , 𝑌, 𝑍 = 𝛬𝜂 𝜂 → 𝑚𝑎𝑥( ) ,                12 𝑠(𝑥) 𝑑𝑥 = 12 𝑆(𝑥) 𝑑𝑥 = 𝑉 , (11) 

Particularly, if both principal moments of the second order are equal 𝐼 (𝑥) = 𝐼 (𝑥), 
the factors are: 𝜂 = 𝜂 = 1. For example, this setting is valid for the shaft with the cross-
section in form of an equilateral triangle or for the shaft with a circular cross-section.  

The distribution of material along the length of a shaft is optimized so that the beam 
is of constant volume and provides the maximal moment without spatial buckling. The 
variational methods will be applied for the derivation of the necessary optimality condi-
tions. The augmented Lagrangian is related to, but not identical to the method of Lagrange 
multipliers [10]. Augmented Lagrangian methods are a certain class of algorithms or an-
alytic techniques for solving constrained optimization problems. They have parallels to 
penalty methods. Both methods replace a constrained optimization problem by a series of 
unconstrained problems and add a penalty term to the objective. The difference between 
both methods consists in their penalty terms. The augmented Lagrangian method adds 
the term with the Lagrange multiplier. The augmented functional for the optimization 
problem (10) and (11) reads: ℒ 𝑠 = V 𝑠 + λΛ 𝜘 𝑠 , 𝑌, 𝑍  (12)

The derivation of the necessary optimality conditions is based on the concept of func-
tionals and the functional derivative. A mathematically precise discussion of the func-
tional derivative can be found in [10] or [17]. The necessary optimality condition follows 
from the first functional derivative of the augmented Lagrangian (12): −𝑐 + 𝑠 Κ = 0,      Κ =  𝜅 + 𝜅       c = (𝐸𝑘 α) λ. (13)

2 =
√

3/18 ≈ 0.9622.
For the circular cross-section, the constant is
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Two other cases describe the situations in which the form of the transverse cross-section
undergoes the transformation, such that one of the geometric dimensions of the cross-section
changes. For the technically important case of the thin-walled tubes with the variable thickness
of wall t(x) and the mean diameter of tube D(x), the second moments of:

I1(x) = I2(x) =
π

64

[
(D + t/2)4 − (D− t/2)4

]
=

π

16
tD3 +

π

64
Dt3 ≈ π

16
tD3 for t� D

The case α = 1 corresponds to the adjustable wall thickness (as the design variable)
and constant mean diameter of the tube. The analogous dependence arises in the case
of the bending of sandwich beams [7]. The case α = 3 corresponds the inconstant mean
diameter of the tubular shaft (as the design variable) and constant wall thickness.

Consider the shaft hinged on two supports x = L and x = −L:

y(L) = 0, Ejη1y′′ (L) = 0 z(L) = 0, Ejη2z′′ (L) = 0,
y(−L) = 0, Ejη1y′′ (−L) = 0, z(−L) = 0 Ejη2z′′ (−L) = 0.

(7)

The buckling equations of the shaft read:

(Ejη1y′′ )′′ = −Λ̃z′′′ , (Ejη2z′′ )′′ = Λ̃y′′′ (8)

For the boundary value problem (7) and (8), the actual curvatures and displacements
y∗, z∗ minimize the quotient:

Λ̃[j, ỹ, z̃] =

∫ L
−L Ej

(
η1ỹ′′ 2 + η2z̃′′ 2

)
dx∫ L

−L(z̃
′′ ỹ′ − z̃′ỹ′′ )dx

, Λ̃[j, y, z] ≡ Λ̃[
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αsα, y, z] = min
ỹ,z̃

Λ̃[j, ỹ, z̃] (9)

3. Optimization Problem and Isoperimetric Inequality for Stability

Based on the above solution, the distribution of material along the length of a twisted
beam will be optimized. The optimal distribution of the cross-sectional area along the
span of the beam is denoted by the capital letter S(x). The optimization problem examines
the shaft of the constant volume 2V0 that supports the maximal moment without spatial
buckling. If the density of the material is ρ, the mass 2M of the shaft is given by:

M = ρV, V[s] = 1
2

∫ L
−L s(x)dx s(x) > 0. (10)

The new variables will be introduced:

Y =
√

η1y, Z =
√

η2z, Λ̃ =
√

η1η2Λ

With the new variables, the formulation of the optimization problem is the following:

Λ[
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αsα, Y, Z] =
Λ̃
√

η1η2
→ max

s(t)
,

1
2

∫ L

−L
s(x)dx =

1
2

∫ L

−L
S(x)dx = V0, (11)
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Particularly, if both principal moments of the second order are equal I1(x) = I2(x),
the factors are: η1 = η2 = 1. For example, this setting is valid for the shaft with the
cross-section in form of an equilateral triangle or for the shaft with a circular cross-section.

The distribution of material along the length of a shaft is optimized so that the beam
is of constant volume and provides the maximal moment without spatial buckling. The
variational methods will be applied for the derivation of the necessary optimality conditions.
The augmented Lagrangian is related to, but not identical to the method of Lagrange
multipliers [10]. Augmented Lagrangian methods are a certain class of algorithms or
analytic techniques for solving constrained optimization problems. They have parallels to
penalty methods. Both methods replace a constrained optimization problem by a series of
unconstrained problems and add a penalty term to the objective. The difference between
both methods consists in their penalty terms. The augmented Lagrangian method adds the
term with the Lagrange multiplier. The augmented functional for the optimization problem
(10) and (11) reads:

L[s] = V[s] + λΛ[
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αsα, Y, Z] (12)

The derivation of the necessary optimality conditions is based on the concept of
functionals and the functional derivative. A mathematically precise discussion of the
functional derivative can be found in [10] or [17]. The necessary optimality condition
follows from the first functional derivative of the augmented Lagrangian (12):

−c + sα−1K2 = 0, K2 = κy
2 + κz

2 c = (Ekαα)−1λ. (13)

In Equation (13), c an auxiliary constant, that is proportional to Lagrange multiplier λ.
The spatial curvature is signed in Equation (13) as K, where the curvatures of the deformed
axis of the shaft in the planes 0xy and 0xz are:

κy = Z′′ , κz = Y′′

The application of Fermat’s principle for the optimization problems leads to the
necessary optimality condition:

S = (K/c)2/(1−α) (14)

The necessary optimality condition (14) is the requirement that the augmented La-
grangian has a stationary value. The optimal second moment of the cross-section follows
from (14) as:

J = E
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α·(K/c)2α/(1−α) =
(

Y′′ 2 + Z′′ 2
)α/(1−α)

(15)

The applied method of scaling allows the arbitrary selection of the constant c. For the
briefness of the governing equations, the constant c is introduced as the positive solution of
the equation:

Eα
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α(1/c)2α/(1−α) = 1

The bending stiffness reduces with this choice to:

EJ =
(

Y′′ 2 + Z′′ 2
)α/(1−α)

≡ K2α/(1−α) (16)

4. Closed-Form Solution of the Governing Equations

The order of both Equations (8) could be reduced by one using the boundary value
conditions (7). The buckling equations transform with Equation (16) to:(

Y′′ 2 + Z′′ 2
)α/(1−α)

Y′′ = −ΛZ′,
(

Y′′ 2 + Z′′ 2
)α/(1−α)

Z′′ = ΛY′ (17)
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Two Equations (17) with the corresponding boundary conditions for Z and Y are
simultaneous nonlinear ordinary differential equations of the second order. The standard
methods for the closed form solutions of such equations were apparently not reported in
the literature. The principal task of the actual manuscript is to obtain a closed form solution
of Equation (17). As the first step for the solution of two simultaneous Equations (17), the
unknowns will be represented over two new functions K(x), θ(x):

Z′′ = K·cosθ, Y′′ = K·sinθ. (18)

The substitution of Equation (18) in Equation (17) reduces it to two simultaneous
equations for the new unknowns K and θ:

−(α− 1)K2θ′′ + K′
[
2(α + 1)K θ′ + (α− 1)Λ K(3α−1)/(α−1)

]
= 0,(

1− α2)K4 K′′ −K5(1− α)2θ′2 + α(1 + α)K3 K′2 + (1− α)2Λθ′K(7α−5)/(α−1) = 0.
(19)

The area of the optimal cross-sections S vanishes in the ends of the shaft, where the
bending moment and spatial curvature K disappear. This requirement plays the role of the
boundary conditions for K and S at x = ±L. The function K(x) = K(−x) must be even,
and the function is odd θ(x) = −θ(−x). Thus, from the symmetry considerations are as
follows θ(0) = 0.

It is principally possible to solve Equation (19) for K, θ, but it is preferable to find the
solution for the functions S, θ. With this choice, the solution delivers the optimal cross-section
S directly. For this purpose, K in Equation (19) is replaced by S using Equation (14):

Sα+1θ′′ +
1
2

S′
[
2(α + 1)Sαθ′ + (α− 1)ΛS′

]
= 0 (20)

2(1 + α)S′′ −
(

1− α2
)

S−1S′2 − 4S θ′
2
+ 4S1−α Λθ′ = 0 (21)

For a given S(x), the solution to Equation (21) with respect to θ(x) reads:

θ(x) =
α− 1

2
Λ

x∫
0

S−α(ζ)dζ (22)

This choice of the lower integration limit satisfies the symmetry condition: θ(0) = 0.
Substitution of θ(x) into the Equation (20) leads to an equation in terms of S only:

(1− α)S′2 − 2S S′′ + Λ2(α− 1)S2−2α = 0 (23)

The Equation (23) is an ordinary nonlinear differential equation of the second or-
der. For the solution of Equation (23), the dependent and independent variables must
be exchanged:

d2x
dS2 =

1− α

2A

[
Λ2S2−2α

(
dx
dS

)2
− 1

]
dx
dS

(24)
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The Equation (24) is the equation of the second order with missing x(S). Thus, this
equation allows for the order reduction. It follows the differential equation of the first order
for the function χ = dx/dS:

dχ/dS =
1− α

2 S
·
[
Λ2S2−2αχ2 − 1

]
·χ

Its solution with an integration constant C1 reads:

χ(S) = ± 1√
C1 S1−α −Λ2S2−2α

The next integration permits the closed form solution of the Equation (24) with two
unknown constants C1, C2:

x = −
∫ S

0
tα√

C1tα+1−Λ2t2
dt + C2 for 0 < S < 1, right half;

x =
∫ S

0
tα√

C1tα+1−Λ2t2
dt− C2 for 0 < S < 1, left half.

(25)

According to the symmetry, the optimal solution S(x) is an even function of x. Thus,
dS/dx must vanish in the middle point x = 0. From this condition follows that C2 = L. The
integral Equation (25) will be summable, if C1 = Λ2. With this substitution, the quadrature
formulas (25) turn into:

x = L− 1
Λ

∫ S
0

tα−1
√

1−tα−1 dt for 0 < S < 1, right half;

x = 1
Λ

∫ S
0

tα−1
√

1−tα−1 da− L for 0 < S < 1, left half.
(26)

The function S(x), as specified by Equation (26), is an even function of the independent
variable along the axis of the shaft −L ≤ x ≤ L. Notably, the singular integral (26) is
expressed for the right half in terms of the higher functions [18]:

x = L− Sα

Λα ·2F2

([
1
2 , α

α−1

]
,
[

2α−1
α−1

]
, Sα−1

)
, α > 1 (27)

x = L− 1
Λ

√
π

α−1 ·
[
1− er f

(√
−ln(S)

)]
+ o(α− 1), α→ 1, α > 1. (28)

x = L− 2
3Λ ·
(

2− 2
√

1− S− S
√

1− S
)
+ o(α− 2), α→ 2 (29)

x = L− arcsin(S)−S
√

1−S2

2Λ + o(α− 3), α→ 3 (30)

The functions in Equations (27)–(30) are the real functions of 0 < S < 1. The limit in
Equation (28) is the right-hand limit α→ 1+ . The symbol 2F2([p, q], [r, s], x) designates the
hypergeometric function [18]. The expression er f x in Equation (28) is the Gauss error function.

As required above, the area of the optimal cross-sections vanishes at the ends of the
shaft x = ±L, where the bending moment disappears.

Substitution of the condition S(0) = 1 into (26) leads to the expression of the half-
length of the shaft:

L =
1
Λ

∫ 1

0

tα−1
√

1− tα−1
dt (31)
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The integral (31) evaluates in terms of the beta-function [19]:

L =
1
Λ

1
α− 1

B
(

1
2

,
α

α− 1

)
. (32)

For volume evaluation, the integrand in Equation (31) must be multiplied by area [18]:

v =
1
Λ

∫ 1

0

tα

√
1− tα−1

dt =
1
Λ

1
α− 1

B
(

1
2

,
α + 1
α− 1

)
(33)

For estimation of elastic energy E , the integrand in Equation (28) must be multiplied
by area tα:

ε =
1
Λ

∫ 1

0

tα+1
√

1− tα−1
da =

1
Λ

1
α− 1

B
(

1
2

,
2α

α− 1

)
(34)

The normalized coordinate X = x/L is introduced for the briefness of formulas. The
shape S(X) of the right side is given by the implicit function of the normalized coordinate
−1 ≤ X ≤ 1 [18,19]:

X = 1− α− 1
α
√

π
·

Γ
(

3α−1
2α−2

)
Γ
(

α
α−1
) ·2F2

([
1
2

,
α

α− 1

]
,
[

2α− 1
α− 1

]
, Sα−1

)
· Sα (35)

The expression for the volume of the half of the shaft with the unit length is:

V =
v
L
=

Γ
(

α−1
α+1

)
·Γ
(

3α−1
2α−2

)
Γ
(

3α+1
2α−3

)
·Γ
(

α
α−1
) (36)

The following formula is valid for an assessment of elastic energy E in the normalized
coordinates:

E =
ε

L
=

2
2α

α−1

2
√

π
·
Γ2
(

3α−1
2α−2

)
Γ
(

5α−1
2α−2

) (37)

For practically interesting cases, the shape reduces to the elementary functions, as
shown in Table 1.

Table 1. Normalized cross-sectional area along the span of the shaft, the normalized volume, and
normalized elastic energy.

Exponent Factor Cross-Sectional Area Normalized Volume Normalized Elastic
Energy

Ratio Elastic Energy to
Volume

α −1 ≤ X ≤ 1, 0 ≤ S ≤ 1 V = v
L E = ε

L . E
V

0 S = 1 V = 1 E = 2 2
1 X = er f

(√
−ln(S)

)
V = 1√

2
E = 1√

2
1

2 X =
√

1− S + S
√

1−S
2 V = 4

5 E = 24
35 6/7

3
π
2 X =

arccos(S) + S
√

1− S2 V = 8
3π E = 32

15π 4/5
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The buckling shape of the twisted column with the simply supported (hinged) ends is
demonstrated on Figure 1 for the exponent factor α = 2. For the other values of parameter α,
the buckling shapes are similar. Figure 2 displays the areas of cross-sections of the optimal
twisted columns for the exponent factors α = 1, 2, 3. Second moments of inertia of the
cross-sections of the optimal twisted columns are shown for the exponent factors α = 1, 2, 3
on Figure 3.
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5. Effectiveness

The influence of the exponent α influences the estimations for the optimization effects.
Another argument for the introduction of the invariant optimization factors is methodical.
In variational calculus, it is common to obtain one factor as the optimization objective and
the others as the a priori given constraints. To convert it into an unconstrained problem, the
method of Lagrange multipliers is commonly used. The resulting unconstrained problem
with Lagrange multipliers increases the number of variables. The new number of unknown
variables is the original number of variables plus the original number of constraints. The
constraints are usually solved for some of the variables in terms of the others, and the
former can be substituted out of the objective function, leaving an unconstrained problem
in a smaller number of variables. This method of solution leads to the nonlinear algebraic
equations for Lagrange multipliers. These nonlinear equations in most cases do not possess
the closed analytical solutions and are solvable only numerically.

The common method for the solution of the optimization problems with stability con-
straints uses Lagrange multipliers. In the present manuscript, the method of dimensionless
factors will be applied for the optimization analysis. This method delivers different lengths
and volumes of the optimal shafts. Instead of seeking for the twisted beams of the fixed
length and volume, the method of dimensionless factors allows for the comparison of the
shafts with the different lengths and cross-sections.
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Consider the shafts with the same form of cross-sections. The affine transformation of
the shaft is the product of two elementary transformations, namely homothety and scaling.
The homothety of ratio ζ multiplies lengths by ζ. Thus, ζ is the ratio of magnification, or
dilation factor, or scale factor, or similitude ratio. The cross-section function S(ξ) scales by
another factor $, such that for the affine transformed shaft, the cross-section function will
be $S(ξ). Apparently, the eigenvalue Λ alters in the course of the affine transformation of
the shaft.

For each fixed value of α, the two dimensionless factors will be studied:

FV = Λ
Lp1

vp2
, FE = 2Λ

vp3

εp4
. (38)

The factors FV , FE (38) will be used for the comparisons of different designs. For
arbitrary powers p1, p2, p3, p4, the factors will alter for any affine transformation of the
beam. The critical buckling moment M̃ = kαEΛ inherits the factor kα and is proportional to
this value. Evidently, that the ratios of the buckling loads for different designs with the same
form of the cross-sections do not depend on the constants kα. For different cross-sections,
the actual value of kα has to be used.

With the methods of dimensional analysis, the characteristic choice of powers is the
following:

p1 = 1 + α, p2 = α, p3 = 2 + α, p4 = 1 + α. (39)

Using the expressions (38) and (39), the factors result to:

FV =
L1+α

vα
FE = 2

v2+α

ε1+α
(40)

With the choice of the powers (38), the factors FV , FE do not alter for any affine trans-
formation of the shaft. In other words, the factors FV , FE are the invariants to the affine
transformation of the shaft and provide a natural basis for the comparison of different designs.

With the above factor, the estimation of the effect of mass optimization turns out to
be trivial. The reference design will be selected with the constant cross-section along the
span. The invariant factors for the reference design is F̃V . The factor is the same for all
exponents α and for the boundary conditions with both hinged ends. The factor F̃V reads
for the reference design with the constant cross-section as:

F̃V = 1 (41)

The greater the factor, the higher the buckling moment for the given length and volume
of the shaft. For example, the buckling force of the reference clamped shaft is four times
the buckling force of the reference shaft with the hinged ends.

The dual formulations are typical of the optimization of buckling as well. For the dual
formulations, the masses of the shafts for the fixed lengths and fixed buckling moments are
compared. The volumes and masses of the optimal and reference shafts relate to each other
as the inverse roots of the order α of the factors FV :

V
Ṽre f

=
α

√
F̃V
FV

(42)

Specifically, the shaft with the higher value of the factor FV possesses the lower mass. Con-
sequently, the optimality is expressed for the shaft in the form of the isoperimetric inequalities.

The results of the evaluation of the dimensionless volume factors and volumes for the
fixed critical eigenvalue Λ = π/2 and the half-length L = 1 are presented in Table 2. The
half-volumes of the optimal columns V and the volume optimization factor FV are shown
as the functions α of on Figure 4. Figure 5 demonstrates the half-volumes V and elastic
energy E of the optimal columns. Table 2 displays the dimensionless volume factor and
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volume for the fixed critical eigenvalue Λ = π/2 and the half-length L = 1 for different
exponent factors α. The reference serves the shaft of the constant cross section with the
same critical eigenvalue Λ = π/2. The area of its cross-section is one, such that the half
volume of the reference shaft is 1.

Table 2. Dimensionless volume factor and volume for the fixed critical eigenvalue Λ = π/2 and the
half-length L = 1.

Exponent Factor α FV V(Λ=π/2,L=1)

Constant cross section,
reference 1 1

α = 1
√

2
√

2/2
α = 2 25/16 4/5
α = 3 27π3/512 8/3π
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6. Conclusions

For the shaft, the optimal shape along the axis was searched. The cross section that
delivers the maximum or the minimum for the critical eigenvalue was to be determined
among all convex and simply connected domains. At the beginning, the validity of the
static Euler’s approach for the simply supported beam (hinged), twisted by the conservative
moment, was demonstrated. The applied method for integration of the optimization criteria
delivers different length and volumes of the optimal twisted beams. Instead of seeking for the
twisted shafts of the fixed length and volume, the twisted beams with the different lengths
and cross-sections using the invariant factors could be directly compared. The moments of
inertia of the rod are the powers of the cross-sectional area with the certain exponent. The
exponents are the positive rational numbers, which are equal to or greater than one. For all
admissible exponents, the optimal distribution of the cross-sectional area for the shaft was
given in the closed form. In the general case, the optimal distribution is stated in terms of the
higher transcendental functions. Particularly, for exponents 1, 2, and 3, the solution reduces to
certain elementary functions. The final formulas involve the length of the beam, its volume,
and critical torque. Remarkably, in the torsion stability problem, the optimal shape of the
beam is roughly parabolic along its length. In the torsion stability problem, the optimal shape
of the simply connected, convex cross-section is the equilateral triangle. Using the methods of
isoperimetric inequalities [20], the exact boundaries for the buckling eigenvalues for the fixed
volume and length of the hinged twisted shaft could be stated.

From the presented closed-form solution arises the open questions for the future
work. It is well known that different types of boundary conditions on both ends could
essentially influence the character of the optimal solution. If the Sturm–Liouville conditions
are not satisfied, multimodal buckling regimes are principally possible. The study of the
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optimization problems for the multimodal buckling could be investigated for the pure
twisted and twisted-compressed beams with the presented analytical solution methods.
Another task could be the study of the multiplication of supported beams of finite length
with the intermediate supports along the span of the beam. Special attention is required for
the optimization problem for an infinite, periodically supported shaft.

The applied Euler approach is applicable for the conservative systems and for special
classes of non-conservative systems. If the loads are non-conservative, the optimization
problems require the application of dynamic stability methods. For example, if the moment
direction follows the direction of the deformed axis, the loads will be non-conservative.
Seemingly, the closed form solutions of the nonconservative optimization problems are
unknown. An interesting question is whether any type of the nonconservative torsion load
acknowledges the closed-form solution of the optimization problem.
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