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Abstract: It is our main objective to find the critical load for three beams with cross sectional
heterogeneity. Each beam has three supports, of which the intermediate one is a spring support.
Determination of the critical load for these beams leads to three point boundary value problems
(BVPs) associated with homogeneous boundary conditions—the mentioned BVPs constitute three
eigenvalue problems. They are solved by using a novel solution strategy based on the Green functions
that belong to these BVPs: the eigenvalue problems established for the critical load are transformed
into eigenvalue problems governed by homogeneous Fredholm integral equations with kernels that
can be given in closed forms provided that the Green function of each BVP is known. Then the
eigenvalue problems governed by the Fredholm integral equations can be manipulated into algebraic
eigenvalue problems solved numerically by using effective algorithms. It is an advantage of the way
we attack these problems that the formalism established and the results obtained remain valid for
homogeneous beams as well. The numerical results for the critical forces can be applied to solve
some stability problems in the engineering practice.

Keywords: heterogeneous beam; three point BVP; Green function; eigenvalue problem; stability;
critical load

1. Introduction

Buckling of structures and various structural members has been subject to research
for a long time and is still a popular topic [1–4]. When it comes to the stability of beams
or columns, the number of available works is numerous. Notable articles [5–8] are subject
to the elastic stability of axially loaded beams. Not only analytical but also numerical
and experimental findings are available. In [9], the effect of end-restraints—by means of
linear rotational and translational springs—on the critical load is investigated. A novel
variational-iterational method is provided in [10] that is applicable even for non-uniform
cross-sections. Meanwhile, model [11] further incorporates functionally graded material
distribution. Such beams can identically be replaced with beams whose material and
geometrical properties are constant. In [12] the buckling of an inextensible column is in
the spotlight. A novel solution of the governing non-linear equation, namely the Adomian
decomposition method is presented through the Green function technique. The clear
advantage of this method is that, while being rapid, non-linear problems can be solved
without needing to use the perturbation theory. Material nonlinearity is included in [13]
when the spatial buckling of nanorods and nanotubes is investigated. The material law is
the helical Cauchy-Born rule. Interesting results are related to the stability problem of the
von Mises truss in [14] by taking into account the geometric and material nonlinearity and
the shear deformation as well.

Article [15] is about the buckling of straight Euler-Bernoulli beams with two supports.
Two approaches are detailed in this work, one of these is based on an integral equation
whose kernel is the Green function. The Green function is computed numerically. Other no-
table findings are mentioned about geometrically imperfect columns, which are addressed
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theoretically and experimentally in articles [16,17] to find the sensitivity of the buckling
loads under these circumstances. Apart from buckling, it is worthy to mention some further
results about the Green function. Early book [18] defines the Green function itself and
presents applications to electricity and magnetism. Since that pioneering work, the Green
function has widely been applied to various problems [19,20].

The Green function was introduced in [21] with possible applications to two-point
BVPs determined by ODEs. Furthermore, there are books [22–24] that deal with the general-
ization of the Green function for a given class of differential equations (DE). In relation with
degenerated ordinary differential equation systems, some new findings are reported in [25].
The existence of some three-point BVPs determined by non-linear DEs of order three is
assessed in [26] by means of Green functions. In [27], for a class of ordinary differential
equations of order two, a method is presented in order to find the Green functions for
three-point BVPs. Paper [28] is dedicated to a specific class of third-order three-point
BVPs. A technique is detailed about how to find the Green function. A kind of non-linear
third-order non-local BVP problem is investigated in [29], where the Schauder fixed point
theorem is used in order to get a solution. A non-local three-point BVP is examined in [30].
Existence and uniqueness of solutions are proven and the corresponding Green func-
tion is also constructed. A third-order linear differential equation is investigated in [31].
The existence of the Green function is proven and solution is given.

This work is dedicated to the linear stability problem of three partially elastically
supported beams. The results obtained are the generalizations of similar investigations
presented in paper [32] for ideal, rigid supports. Accordingly, the beams in question have
cross-sectional inhomogeneity and are supported at three different points—the corre-
sponding mathematical problems are three-point BVPs. The applied procedure requires the
solution of Fredholm integral equations with kernels constituted by the second derivative
of the related Green functions. Thus, the Green functions should also be determined.
A boundary element approach is used in order to find numerical solution to the issue
in question. In general, the position of the middle support has significant effects on the
ultimate load bearing abilities.

As regards the problems attacked in this article, it should be noted that the relevant
formulation is a classical one. However, the difference in contrast to the classical formu-
lation of these problems is that the material of the beams is not homogeneous and the
solution procedure is also novel, as it is based on the use of integral equations.

The paper is organized in eight sections. After the Introduction, Section 2 gathers the
most important assumptions and the typical equilibrium equations. Section 3 clarifies the
properties of the Green functions for the considered three point eigenvalue problems and
provide their calculations. Section 4 presents the kernels of the integral equations that can
be utilized for finding the critical axial forces. Computational results are given in Section 5
both in tabular and graphical format to reveal the effects of the end supports and spring
stiffness. Finally, the Section 6 and Appendix A conclude the manuscript.

2. Differential Equations
Governing Equations

We shall consider three heterogeneous beams of length L with uniform cross-section
shown in Figure 1. The axial force N (N > 0) is compressive. The first beam is a fixed-fixed
beam with an intermediate spring support (FssF beam), the second is a fixed-pinned beam
also with an intermediate support (FssP beam) and the third is a pinned-pinned beam
which also has an intermediate spring support (PssP beam). If the intermediate support is
a roller the beams are referred to as FrF, FrP and PrP beams. The E-weighted centerline
(called centerline for brevity) of each beam coincides with axis x̂ of the coordinate system
x̂, ŷ, ẑ. Note that the E-weighted first moment Qŷ is zero in this coordinate system [32,33]:

Qŷ =
∫

A
ẑE(ŷ, ẑ)dA = 0 . (1)
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We shall assume that the coordinate plane x̂ẑ is a symmetry plane of the beams not
only in geometry but also in material distribution. The modulus of elasticity E can vary
as E(ŷ, ẑ) = E(−ŷ, ẑ)—it is, therefore, independent of x̂. Besides the end-supports, the
intermediate one is placed at the coordinate denoted by b̂.

ŵ

z

L

ŵ

b
L

ŵ

N

N

N

Figure 1. Fixed-fixed, fixed-pinned and pinned-pinned beams each with an intermediate spring support.

As is well known the simple equilibrium problems of these non-homogeneous beams
are governed by the ordinary differential equation (ODE) [33]:

d4ŵ
dx̂4 =

f̂z

Iey
(2)

with ŵ being the transversal displacement, while f̂z(x) is the distributed load and Iey is
defined by the equation

Iey =
∫

A
E(ŷ, ẑ)z2 dA . (3)

Let ξ̂ be also a coordinate measured on the centerline with the same origin the coordi-
nate x̂ has—ξ̂ is independent of x̂. In what follows we shall use the dimensionless variables:

x = x̂/L, ξ = ξ̂/L, w = ŵ/L,

y =
dŵ
dx̂

=
dw
dx

, b = b̂/L̂ , ` =
x
L

∣∣∣
x=L

= 1 ,
(4)

Therefore, Equation (2) becomes

d4w
dx4 = fz , fz =

L3 f̂z

Iey
(5)

which is paired with the typical boundary and continuity conditions given in Table 1.

Table 1. Boundary and continuity conditions.

Boundary Conditions

(FssF beam) (FssP beam) (PssP beam)

w(0) = 0 , dw
dx

∣∣∣
x=0

= 0 w(0) = 0 , dw
dx

∣∣∣
x=0

= 0 w(0) = 0 , d2w
dx2

∣∣∣
x=0

= 0

w(`) = 0 , dw
dx

∣∣∣
x=`

= 0 w(`) = 0 , d2w
dx2

∣∣∣
x=`

= 0 w(`) = 0 , d2w
dx2

∣∣∣
x=`

= 0
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Table 1. Cont.

Continuity Conditions

w(b− 0) = w(b + 0)
dw
dx

∣∣∣
b−0

= dw
dx

∣∣∣
b+0

d2w
dx2

∣∣∣
b−0

= d2w
dx2

∣∣∣
b+0

d3w
dx3

∣∣∣
b−0
− χw(b) = d3w

dx3

∣∣∣
b+0

Here it has been taken into account that

d3ŵ
dx̂3

∣∣∣∣
(b̂−0)

− χ̂ŵ(b̂) =
d3ŵ
dx̂3

∣∣∣∣
(b̂+0)

; χ̂ =
k

Iey
,

where k is the stiffness of the spring and

χ =
k

Iey
L3 = χ̂L3.

We remark that the general solution of the homogeneous differential equation

d4w
dx4 = 0 (6)

is the linear combination of the particular solution system, that is

w =
4

∑
`=1

a`w`(x) = a1 + a2x + a3x2 + a4x3 . (7)

With the Green functions G(x, ξ) of the three point BVPs determined by ODE (5)
and the boundary and continuity conditions presented in Table 1 the solution for the
dimensionless deflection w can be given in the following closed form:

w(x) =
∫ `

0
G(x, ξ) fz(ξ)dξ . (8)

The Green functions we shall need are presented later, in Section 3.
When the beam is subjected to a compressive force N, the problem is described by ODE

d4w
dx4 ±N

d2w
dx2 = fz, N = L2 N

Iey
, (9)

in which the axial force N is constant (N > 0) while the sign of N in this equation is
positive if the axial force is compressive and it is negative if the force is tensile.

If the stability problem is considered fz = 0. The related eigenvalue problem is,
therefore, governed by ODE

d4w
dx4 = −N d2w

dx2 (10)

which is also associated with the boundary and continuity conditions given in Table 1.
The problems of the FssF, FssP and PssP beams we are going to consider are basically

the same as those of fixed-fixed, fixed-pinned and pinned-pinned beams with an intermedi-
ate roller support (called FrF, FrP and PrP beams for simplicity) presented in [32] except one
thing: the middle support is now a spring. If the rigidity of the spring tends to infinity, i.e.,
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χ→ ∞ our solutions, for instance the Green functions to be determined, should coincide
with the those presented in the paper mentioned.

Writing fz for −N d2w/dx2 in (8) and performing then partial integration by taking
the boundary conditions into account we get

w(x) = N
∫ `

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ .

Let us derive this equation with respect to x. We get the following homogeneous
Fredholm integral equation:

y(x) = N
∫ `

0
K(x, ξ) y(ξ)dξ,

dw
dx

= y,
∂2G(x, ξ)

∂x ∂ξ
= K(x, ξ) . (11)

Note that integral Equation (11)1 is formally the same as integral equation (2.17) in [32]
derived for FrF, FrP and PrP beams. The Green functions and the kernels for our case, i.e.,
for FssF, FssP and PssP beams are obviously different though for χ → ∞ we have to get
back the kernel functions published in paper [32].

3. Green Function for Three-Point BVPs

First, the Green function and its most important properties are presented for three-
point BVPs—as regards further details concerning the Green functions the reader is referred
to [34]. Consider the following inhomogeneous ODE:

L[y(x)] =
2k

∑
n=0

pn(x)
dny
dxn = r(x) ,

(
dny
dxn = y if n = 0

)
(12)

where L is a differential operator and r is a given inhomogeneity. Here, k ∈ N, while pn(x)
and r(x) are continuous functions and p2k(x) 6= 0 if x ∈ [0, `] (` > 0). Moreover, b is an
intermediate point within [0, `]: b = `1, `− b = `2 and `1 + `2 = `.

Equation (12) is paired with the boundary and continuity conditions
2k−1

∑
n=0

αnrI
dnyI
dxn

∣∣∣∣
x=0

= 0 , r = 1, 2, . . . , k

2k−1

∑
n=0

βnrI
dnyI
dxn

∣∣∣∣
x=b
−

2k−1

∑
n=0

dnyI I
dxn

∣∣∣∣
x=b

= 0 , r = 1, 2, ...., 2k

2k−1

∑
n=0

αnrI
dnyI
dxn

∣∣∣∣
x=`

= 0 . r = 1, 2, . . . , k

(13)

The Roman subscripts I and I I identify the intervals [0, b] and [b, `], while yI , yI I are
solutions to the homogeneous ODE L[y(x)] = 0 in intervals I and I I. It is assumed that
αnrI , βnrI , βnrI I and γnrI I are known constants.

The solution of the three-point BVP given by (12) and (13) is sought in the following form

y(x) =
∫ `

0
G(x, ξ)r(ξ)dξ. (14)

where G(x, ξ) is the Green function, partitioned as

G(x, ξ) =


G1I(x, ξ) if x, ξ ∈ [0, b],
G2I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
G1I I(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
G2I I(x, ξ) if x, ξ ∈ [b, `].

(15)

and it has the following properties [32,34].
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1. G1I(x, ξ) is continuous in x and ξ if 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤ x ≤ b. It is 2k times
differentiable in x and the derivatives

∂nG1I(x, ξ)

∂xn = G(n)
1I (x, ξ) , n = 1, 2, . . . , 2k (16)

are also continuous in x and ξ in the intervals 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤ x ≤ b.
2. For a given ξ ∈ [0, b], the function G1I(x, ξ)

G(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn , n = 1, 2, . . . , 2k− 2 (17)

is continuous if x = ξ:

lim
ε→0

[
G(n)

1I (ξ + ε, ξ)− G(n)
1I (ξ − ε, ξ)

]
=

=
[

G(n)
1I (ξ + 0, ξ)− G(n)

1I (ξ − 0, ξ)
]
= 0 , n = 0, 1, 2, . . . 2k− 2 (18)

The derivative G(2k−1)
1I (x, ξ) has, however, a discontinuity if x = ξ:

lim
ε→0

[
G(2k−1)

1I (ξ + ε, ξ)− G(2k−1)
1I (ξ − ε, ξ)

]
=

=
[

G(2k−1)
1I (ξ + 0, ξ)− G(2k−1)

1I (ξ − 0, ξ)
]
=

1
p2k(ξ)

. (19)

The function G2I(x, ξ) and its derivatives

G(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn , n = 1, 2, . . . , 2k (20)

are also continuous for any x ∈ [b, `].
3. If ξ is fixed in [b, `] the function G1I I(x, ξ) and its derivatives

G(n)
1I I (x, ξ) =

∂nG1I I(x, ξ)

∂xn , n = 1, 2, . . . , 2k (21)

are continuous for any x ∈ [0, b].
4. Though the function G2I I(x, ξ) and its derivatives

G(n)
2I I (x, ξ) =

∂nG2I I(x, ξ)

∂xn , n = 1, 2, . . . , 2k− 2 (22)

are continuous for x = ξ:

lim
ε→0

[
G(n)

2I I (ξ + ε, ξ)− G(n)
2I I (ξ − ε, ξ)

]
=

=
[

G(n)
2I I (ξ + 0, ξ)− G(n)

2I I (ξ − 0, ξ)
]
= 0 , n = 0, 1, 2, . . . 2k− 2 (23)

the derivative G(2k−1)
2I I (x, ξ) has a discontinuity if x = ξ:

lim
ε→0

[
G(2k−1)

2I I (ξ + ε, ξ)− G(2k−1)
21I (ξ − ε, ξ)

]
=

=
[

G(2k−1)
2I I (ξ + 0, ξ)− G(2k−1)

2I I (ξ − 0, ξ)
]
=

1
p2k(ξ)

. (24)

5. For a given ξ ∈ [0, `] the product G(x, ξ)α, (α 6= 0 is a finite constant) as a function
of x 6= ξ should fulfill

L[G(x, ξ)α] = 0 .
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6. It follows from (13) that the product G(x, ξ)α should also fulfill the boundary- and
continuity conditions in x:

∑2k
n=1 αnrI G(n−1)(0) = 0 , r = 1, . . . , k

∑2κ
n=1

(
βnrI G(n−1)(b− 0)− βnrI I G(n−1)(b + 0)

)
= 0 , r = 1, . . . , 2k

∑2k
n=1 γnrI I G(n−1)(`) = 0 . r = 1, . . . , k

(25)

It is obvious on the base of (15) that conditions (25) should be applied to the function
pairs G1I(x, ξ), G2I(x, ξ) and G1I I(x, ξ), G2I I(x, ξ).

In Sections 3.1–3.3 we present the Green functions that belong to differential Equation (5)
under the boundary conditions presented in Table 1. The calculation steps are detailed for
FssF beams only. For FssP and PssP beams we shall give the final formulae only.

3.1. Green Function for FssF Beams
3.1.1. Calculation of the Green Function if ξ ∈ [0, b]

As regards the function G1I(x, ξ) we shall assume that

G1I(x, ξ) =
4

∑
m=1

(amI(ξ) + bmI(ξ))wm(x), x < ξ

G1I(x, ξ) =
4

∑
m=1

(amI(ξ)− bmI(ξ))wm(x), x > ξ.

(26)

However, we search G2I(x, ξ) in the form:

G2I(x, ξ) =
4

∑
m=1

cmI(ξ)wm(x). (27)

Here, wm(x) is defined by (7), while amI(ξ), bmI(ξ) and cmI(ξ) are unknowns.
The continuity and discontinuity conditions (18) and (19) yield the following equations

4

∑
m=1

bmI(ξ)
dnwm

dxn

∣∣∣∣
x=ξ

= 0, n = 0, 1, 2 (28)

4

∑
m=1

bmI(ξ)
d3wm

dx3

∣∣∣∣
x=ξ

= −1
2

. (29)

Equations (28) and (29) results in the following solutions

b1I =
ξ3

12
, b2I = −

ξ2

4
, b3I =

ξ

4
, b4I =

1
12

. (30)

Since G1I(x, ξ) and G2I(x, ξ) should satisfy the boundary and continuity conditions in
Table 1, the following linear equation system can be established.

(i) Boundary conditions at x = 0:

4

∑
m=1

amIwm(0) = −
4

∑
m=1

bmI(ξ)wm(0) , (31)

4

∑
m=1

amI
d3wm

dx

∣∣∣∣
x=0

= −
4

∑
m=1

bmI(ξ)
d3wm

dx3

∣∣∣∣
x=0

. (32)
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(ii) Continuity conditions at x = b:

4

∑
m=1

amIwm(b)−
4

∑
m=1

cmIwm(b) =
4

∑
m=1

bmI(ξ)wm(b) , (33)

4

∑
m=1

amI
dwm

dx

∣∣∣∣
x=b
−

4

∑
m=1

cmI
dwm

dx

∣∣∣∣
x=b

=
4

∑
m=1

bmI(ξ)
dwm

dx

∣∣∣∣
x=b

, (34)

4

∑
m=1

amI
d2wm

dx2

∣∣∣∣
x=b
−

4

∑
m=1

cmI
d2wm

dx2

∣∣∣∣
x=b

=
4

∑
m=1

bmI(ξ)
d2wm

dx2

∣∣∣∣
x=b

, (35)

4

∑
m=1

amI
d3wm

dx3

∣∣∣∣
x=b
−

4

∑
m=1

cmI
d3wm

dx3

∣∣∣∣
x=b
− χ

4

∑
m=1

cmIwm(b) =
4

∑
m=1

bmI(ξ)
d3wm

dx3

∣∣∣∣
x=b

. (36)

(iii) Boundary conditions at x = `:

4

∑
m=1

cmIwm(`) = 0 , (37)

4

∑
m=1

cmI
dwm

dx

∣∣∣∣
x=`

= 0 . (38)

In matrix form we have

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 b b2 b3 −1 −b −b2 −b3

0 1 2b 3b2 0 −1 −2b −3b2

0 0 2 6b 0 0 −2 −6b
0 0 0 6 −χ −χb −χb2 −χb3 − 6
0 0 0 0 1 ` `2 `3

0 0 0 0 0 1 2` 3`2





a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I


=

1
12



−ξ3

3ξ2

ξ3 − 3ξ2b + 3ξb2 − b3

−3ξ2 + 6ξb− 3b2

6ξ − 6b
−6
0
0


, (39)

Substituting the solutions for bmI and amI , cmI into (26) and (27) yields

G1I(x, ξ) =
4

∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =
(
− ξ3

12
± 1

12
ξ3
)
+

(
3

12
ξ2 ±

(
−3ξ2

12

))
x+

+

 3
12

ξ
3`4 − 12`3ξ + 6`2ξ2 + χb(`− b)3(b2`− 3b`ξ + `ξ2 + ξ2b− ξb2)

`
(

χb3(`− b)3 + 3`3
) ± 3ξ

12

x2+

+

− 1
12

12`ξ3−18`2ξ2+3`4+χ(`−b)3(b3`+`ξ3−3b2ξ2−3b`ξ2+3ξ3b
)

`
(

χb3(`− b)3 + 3`3
) ± −1

12

x3 (40)

and

G2I(x, ξ) =
4

∑
`=1

c`I(ξ)w`(x) =

= −1
4

ξ2

`

(x− `)2

χb3(`− b)3 + 3`3

(
2ξ`2 − 6x`2 + 4xξ`+ χb2(`− b)2(b− x)(ξ − b)

)
(41)
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3.1.2. Calculation of the Green Function if ξ ∈ [b, `].

The following assumptions are applied:

If x ∈ [b, `] then

G2I I(x, ξ) =
4

∑
m=1

(amII(ξ) + bmII(ξ))wm(x), x < ξ

G2I I(x, ξ) =
4

∑
m=1

(amII(ξ)− bmII(ξ))wm(x), x > ξ

(42)

and if x ∈ [0, b] then

G1I I(x, ξ) =
4

∑
m=1

cmII(ξ)wm(x), (43)

where amII(ξ), bmII(ξ) and cmII(ξ) are again unknowns.
Utilizing the continuity- and discontinuity conditions (18) and (19) yields again the

equation system (28) and (29) but this time the coefficients bmII(ξ), m = 1, 2, 3, 4 are the
unknowns. Thus, bmII(ξ) = bmI(ξ).

Making use of the boundary and continuity conditions presented in Table 1 the
following equations are obtained for the unknown coefficients amII(ξ) and cmII(ξ):

(i) Boundary conditions at x = 0:

4

∑
m=1

cmIIwm(0) = c1I I = 0 ,
4

∑
m=1

cmII
dwm

dx

∣∣∣∣
x=0

= c2I I = 0 . (44)

(ii) Continuity conditions at x = b:

4

∑
m=1

amIIwm(b)−
4

∑
m=3

cmIIwm(b) = −
4

∑
m=1

bmII(ξ)wm(b) , (45)

4

∑
m=1

amII
dwm

dx

∣∣∣∣
x=b
−

4

∑
m=3

cmII
dwm

dx

∣∣∣∣
x=b

= −
4

∑
m=1

bmII(ξ)
dwm

dx

∣∣∣∣
x=b

, (46)

4

∑
m=1

amII
d2wm

dx2

∣∣∣∣
x=b
−

4

∑
m=3

cmII
d2wm

dx2

∣∣∣∣
x=b

= −
4

∑
m=1

bmII
d2wm

dx2

∣∣∣∣
x=b

, (47)

4

∑
m=1

amII
d3wm

dx3

∣∣∣∣
x=b
−

4

∑
m=3

cmII
d3wm

dx3

∣∣∣∣
x=b
−χ

4

∑
m=3

cmIIwm(b)=−
4

∑
m=1

bmII(ξ)
d3wm

dx3

∣∣∣∣
x=b

. (48)

(iii) Boundary conditions at x = `:

4

∑
m=1

amIIwm(`) =
4

∑
m=1

bmII(ξ)wm(`) , (49)

4

∑
m=1

amII
dwm

dx

∣∣∣∣
x=`

=
4

∑
m=1

bmII(ξ)
dwm

dx

∣∣∣∣
x=`

. (50)
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Equations (45)–(50) can be rewritten in matrix form:

1 b b2 b3 −b2 −b3

0 1 2b 3b2 −2b −3b2

0 0 2 6b −2 −6b
0 0 0 −6 −χb2 −χb3 + 6
1 ` `2 `3 0 0
0 1 2` 3`2 0 0





a1I I
a2I I
a3I I
a4I I
c3I I
c4I I

 =
1

12



−ξ3 + 3bξ2 − 3b2ξ + b3

3ξ2 − 6bξ + 3b2

−6ξ + 6b
−6

ξ3 − 3ξ2`+ 3ξ`2 − `3

−3ξ2 + 6ξ`− 3`2

. (51)

It is therefore found that

G1I I(x, ξ) =
4

∑
`=1

c`I(ξ)w`(x) =

= −1
4

x2

`

(ξ − `)2

χb3(`− b)3 + 3`3

(
2x`2 − 6ξ`2 + 4xξ`+ b2χ(b− `)2(ξ − b)(b− x)

)
(52)

and

G2I I(x, ξ) =
4

∑
`=1

(a`I I(ξ)± b`I I(ξ))w`(x) =

= − 1
12

3`3ξ3 + χb3(`3ξ3 + `3b3 + b3ξ3 − 3b3ξ2`− 3b2`3ξ − 3b`2ξ3 + 6b2ξ2`2)
χb3(`− b)3 + 3`3

± ξ3

12
+

+

(
3
12

3`3ξ2+ χb3(b2`3+ 2b2ξ3+ 3bξ2`2− 3b`ξ3+ `3ξ2− 3b`3ξ− b3ξ2)
χb3(`− b)3 + 3`3

±−3ξ2

12

)
x+

+

(
3
12

3`4ξ − 12`3ξ2 + 6`2ξ3

`
(

χb3(`− b)3 + 3`3
) +

+
3
12

χb3(`4ξ − 4`3ξ2+ 2`2ξ3− 2b2`3− b3`ξ − b2ξ3+ b3ξ2+ `2b3+ 3b`3ξ
)

`
(

χb3(`− b)3 + 3`3
) ± 3ξ

12

)
x2+

+

(
1
12

18ξ2`2 − 3`4 − 12`ξ3

`
(

χb3(`− b)3 + 3`3
) x3+

+
1

12
χb3(3bξ3 − 3b2ξ2 + 3b`3 − 9b`2ξ + 6ξ2`2 − 4`ξ3 + 6b2ξ`− b3`− `4)

`
(

χb3(`− b)3 + 3`3
) ± −1

12

)
x3 (53)

Figure 2 depicts the Green function of an FssF beam provided that L = 100 mm,
ξ̂ = 75 mm while the dimensionless spring constant χ is a parameter. If (χ = 0) [χ→ ∞]
the beam behaves as if it were (a fixed-fixed beam) [an FrF beam]. The curves that show
the Green function for these cases are drawn with thick black lines. The red diamonds
and crosses depict the computed values. It is also worthy of mentioning that the Green
function is the dimensionless vertical displacement of the material points on the centerline
due to a dimensionless and positive unit force applied to the beam at the point on the
centerline with coordinate ξ.
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Figure 2. The Green function (the dimensionless vertical displacement field) of an FssF beam subjected
to a dimensionless unit force at ξ = 0.75.

3.2. Green Function for FssP Beams

Repeating the calculation steps presented in Section 3.1 but now for FssP beams yields
the elements of the Green function (the calculation steps are omitted):

G1I(x, ξ) =
4

∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =
(
− ξ3

12
± ξ3

12

)
+

(
3ξ

12
±
(
−3ξ2

12

))
x+

+

(
3
12

ξ
12`
(
`2 + ξ2− 3ξ`

)
−χb(b− `)2(b3 − 4b2`− 2ξ2b + 12b`ξ − 4`ξ2)
χb3(4`− b)(b− `)2 + 12`3

± 3ξ

12

)
x2+

+

(
1
12

12ξ2(3`− ξ)− 12`3

χb3(4`− b)(b− `)2 + 12`3
+

+
1

12
χ(b− `)2(b4 − 4b3`+ 6b2ξ2 − 8ξ3b + 12ξ2b`− 4ξ3`

)
χb3(4`− b)(b− `)2 + 12`3

± −1
12

)
x3, (54)

G2I(x, ξ)=
4

∑
m=1

cmI(ξ)wm(x)=
1
2
(`−x)ξ2

(
2
(
6x`2 − 2`2ξ − 3x2`− 2`ξx + ξx2)

χb3(4`− b)(`− b)2 + 12`3
+

+
χb2(b− x)(`− b)(2`− b− x)(b− ξ)

χb3(4`− b)(`− b)2 + 12`3

)
, (55)

G1I I(x, ξ)=
4

∑
m=1

cmII(ξ)wm(x)=
1
2
(`−ξ)x2

(
2
(
6ξ`2−2`2x−3ξ2`−2`xξ + xξ2)

χb3(4`− b)(`− b)2 + 12`3
+

+
χb2(b− ξ)(`− b)(2`− b− ξ)(b− x)

χb3(4`− b)(`− b)2 + 12`3

)
, (56)
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G2I I(x, ξ) =
4

∑
`=1

(a`I I(ξ)± b`I I(ξ))w`(x) =

= − 1
12

12`3ξ3+χb3(b3ξ3−9b`2ξ3−6b3ξ2`−12b2ξ`3+4`3ξ3+18b2`2ξ2+4b3`3)
χb3(4`− b)(`− b)2 + 12`3

± ξ3

12
+

+

(
3

12
12`3ξ2+χb3(4b2`3−12bξ`3+4`3ξ2+9b`2ξ2+2b2ξ3−b3ξ2−6b`ξ3)

χb3(4`− b)(`− b)2 + 12`3
±−3ξ2

12

)
x+

+

(
3

12
12`ξ

(
ξ2 − 3`ξ + `2)

χb3(4`− b)(`− b)2 + 12`3
+

+
3
12

χb3(9bξ`2 − 12`2ξ2 + 4`ξ3 + 2b3`− b3ξ + 4ξ`3 − 6b2`2)
χb3(4`− b)(`− b)2 + 12`3

± 3ξ

12

)
x2+

+

(
− 1

12
12
(
ξ3 − 3`ξ2 + `3)

χb3(4`− b)(`− b)2 + 12`3
−

− 1
12

χb3(4`3 − 9b`2 + 18bξ`− 12ξ2`− 6b2ξ + 4ξ3 + b3)
χb3(4`− b)(`− b)2 + 12`3

± −1
12

)
x3. (57)

Figure 3 shows the Green function of an FssP beam under the same conditions as
Figure 2 depicts the Green function of an FssF beam. If (χ = 0) [χ→ ∞] the beam behaves
as if it were (a fixed-pinned beam) [an FrP beam].
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Figure 3. The Green function (the dimensionless vertical displacement field) of an FssP beam
subjected to a dimensionless unit force at ξ = 0.75.

3.3. Green Function for PssP Beams

As regards PssP beams, the following equations provide the elements of the Green
function (the calculation steps are again omitted):
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G1I(x, ξ) =
4

∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =
(
− ξ3

12
± ξ3

12

)
+

+

 1
12

ξ
12`3+ 6ξ2`−9`2ξ + χb(`−b)2(4b2`−3b`ξ + 2ξ2`+ ξ2b−b3)

`
(

χb2(`−b)2 + 3`
) ±

(
−3ξ2

12

)x+

+

(
−3ξ

12
± 3ξ

12

)
x2 +

− 1
12

3`2 − 6`ξ + χ(`−b)2(b2`− 2b`ξ − ξb2 + ξ3)
`
(

χb2(`− b)2 + 3`
) ± −1

12

x3, (58)

G2I(x, ξ)=
4

∑
`=1

c`I(ξ)w`(x)=
ξ

12
1

`
(

χb2(`−b)2 + 3`
)(6`(`−x)

(
2x`− x2 − ξ2

)
+

+ χb(b− x)(`− x)(`− b)(2`− b− x)
(

b2 − ξ2
))

, (59)

G1I I(x, ξ)=
4

∑
`=1

c`I I(ξ)w`(x)=
x

12
1

`
(

χb2(`−b)2 + 3`
)(6`(`−ξ)

(
2ξ`− ξ2 − x2

)
+

+ χb(b− ξ)(`− ξ)(`− b)(2`− b− ξ)
(

b2 − x2
))

(60)

G2I I(x, ξ) =
4

∑
`=1

(a`I I(ξ)± b`I I(ξ))w`(x) =

= − 1
12

3`ξ3 − χb2(2b2`2ξ − `2ξ3 − 3`b2ξ2 + 2b`ξ3 − `b4 + b4ξ
)

χb2(`− b)2 + 3`
± ξ3

12
+

+

(
1

12
3`ξ
(
2ξ2 − 3`ξ + 4`2)

`
(

χb2(`− b)2 + 3`
) +

+
1

12
χb2(3`3ξ2− 8b`3ξ + 2`3b2 + 6bξ2`2− 4b`ξ3 + `b4− b4ξ + b2ξ3)

`
(

χb2(`− b)2 + 3`
) ± −3ξ2

12

)
x+

+

(
3

12
−3`ξ + χb2(ξ3 + 2bξ`− 3ξ2`+ ξ`2 − b2`

)
χb2(`− b)2 + 3`

± 3ξ

12

)
x2+

+

− 1
12

3`2 − 6`ξ + χb2(−b2ξ + ξ3 + `3 − 2b`2 + 4bξ`− 3ξ2`
)

`
(

χb2(`− b)2 + 3`
) ± −1

12

x3. (61)

Figure 4 depicts the Green function of pinned-pinned beams with an intermediate
spring support. If (χ = 0)[χ→ ∞] the beam behaves as if it were (a pinned-pinned beam)
[a PrP beam].
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Figure 4. The Green function (the dimensionless vertical displacement field) of a PssP beam subjected
to a dimensionless unit force at ξ = 0.75.

It is worthy of mention that the three BVPs for which we have determined the Green
functions are all self-adjoint. Hence, the Green functions given by Equations (40), (41), (52)
and (53) (FssF beams), (54)–(57) (FssP beams), (58)–(61) (PssP beams) satisfy the symmetry
condition G(x, ξ) = G(ξ, ξ)

The Green functions (40), (41), (52) and (53) (FssF beams), (54)–(57) (FssP beams),
(58)–(61) (PssP beams) are dimensionless quantities. However, if we write b̂, L, x̂, ξ̂ and χ̂
for b, `, x, ξ and χ in these equations we obtain the Green function for the case of a selected
length unit. Then the unit of the Green function will coincide with the cube of the length
unit selected and the displacement field ŵ(x̂) due to the distributed load fz(x̂) can be given
in a closed form:

ŵ(x̂) =
1

Iey

∫ L

0
G(x̂, ξ̂) fz(ξ̂)dξ . (62)

Assume that χ→ ∞. Then the limit values of the Green functions given by Equations (40),
(41), (52) and (53) (FssF beams), (54)–(57) (FssP beams), (58)–(61) (PssP beams) coincide with the
Green functions given by Equations (3.22) (3.23) (FrF beams), (3.30), (3.31) (FrP beams) in [32] and
(64), (65), (74), (75) (PrP beams) in [34].

These limit values are presented in Appendix A as well.
It is also worthy of mention that Figures 2–4 depict the deformed E-weighted centerline

of the beams considered due to a dimensionless and vertical unit load fz—see Equation (5)—
applied to the beams at the point ξ. For χ→ ∞ the curves representing the Green functions
in Figures 2–4 coincide, obviously, with those curves presented in [32] for FrF, FrP and
PrP beams.

4. The Stability Problem of FssF, SssP and PssP Beams with Three Supports
4.1. Solution Procedures

The critical loads are found numerically by solving the eigenvalue problem determined
by the homogeneous Fredholm integral Equation (11) with the boundary element technique
based on the procedure presented in [35]—see Subsection 8.12.5 for details in the book cited.
The beam was subdivided into 40 quadratic elements in the developed Fortran 90 code.
The obtained algebraic eigenvalue problem was solved with tha DGVLRG subroutine of
the International Mathematical Science Library.
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The kernel in Equation (11) has the form

K(x, ξ) =


K1I(x, ξ) if x, ξ ∈ [0, b],
K2I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
K1I I(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
K2I I(x, ξ) if x, ξ ∈ [b, `],

(63)

where

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
, K2I(x, ξ) =

∂2G2I(x, ξ)

∂x ∂ξ
,

K1I I(x, ξ) =
∂2G1I I(x, ξ)

∂x ∂ξ
, K2I I(x, ξ) =

∂2G2I I(x, ξ)

∂x ∂ξ
.

(64)

4.2. The Kernel for FssF Beams

Making use of Equations (40), (41), (52), (53), (63) and (64) we obtain the elements of
the kernel function for FssF beams in the following form:

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
=

(
ξ

2
±
(
− ξ

2

))
+

+

1
2

3`2(6ξ2 − 8ξ`+ `2)+ χb(`− b)3(b2`− 2b2ξ + 3bξ2 − 6`bξ + 3`ξ2)
`
(

χb3(`− b)3 + 3`3
) ± 1

2

x+

+

1
4

36ξ`(`− ξ) + χ(`− b)3(6b2ξ − 9bξ2 + 6`bξ − 3`ξ2)
`
(

χb3(`− b)3 + 3`3
) x2

, (65)

K2I(x, ξ) =
∂2G2I(x, ξ)

∂x ∂ξ
=

= −
12`ξ(x− `)

(
`2 − 3x`+ 3xξ

)
+ χb2(`− b)2ξ(2b− 3ξ)(`− x)(2b− 3x + `)

4`
(

χb3(`− b)3 + 3`3
) , (66)

K1I I(x, ξ) =
∂2G1I I(x, ξ)

∂x ∂ξ
=

= −
12x`(ξ − `)

(
3xξ − 3ξ`+ `2)+ χb2(`− b)2x(2b− 3x)(`− ξ)(2b− 3ξ + `)

4`
(

χb3(`− b)3 + 3`3
) , (67)

K2I I(x, ξ)=
∂2G2I I(x, ξ)

∂x ∂ξ
=

=
1
4

6`3ξ + χb3(6b2ξ2 − 2b3ξ − 9bξ2`+ 6bξ`2 − 3b`3 + 2ξ`3)
χb3(`− b)3 + 3`3

±− ξ

2
+

+

1
2

3`2(`2− 8ξ`+6ξ2)+χb3(2b3ξ−b3`−3b2ξ2+3b`3+6ξ2`2−8ξ`3+`4)
`
(

χb3(`− b)3 + 3`3
) ± 1

2

x−

− 3
4

12ξ`(ξ − `) + χb3(ξ − `)
(
4ξ`− 3b`− 3bξ + 2b2)

`
(

χb3(`− b)3 + 3`3
) x2. (68)

Figure 5 represents the kernel function of an FssF beam for various values of χ if
b̂ = L/2 and ξ = 0.75.
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Figure 5. The kernel function of an FssF beam against x = x̂/L; χ is a parameter and ξ = 0.75.

4.3. The Kernel for FssP Beams

A comparison of Equations (54)–(57), (63) and (64) yields the elements of the kernel
function for FssP beams:

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
=

(
ξ

2
±
(
− ξ

2

))
+

+

(
−1

2
χb(`− b)2(b3 − 4`b2 − 6bξ2 + 24`bξ − 12`ξ2)− 12`

(
3ξ2 − 6ξ`+ `2)

χb3(4`− b)(b− `)2 + 12`3
± 1

2

)
x+

+

(
1
4

12χξ(`− b)2(2b`− 2bξ − ξ`+ b2)− 36ξ(ξ − 2`)

χb3(4`− b)(b− `)2 + 12`3
x2

)
, (69)

K2I(x, ξ) =
∂2G2I(x, ξ)

∂x ∂ξ
=

=
1
2

χb2ξ(2b−3ξ)(b− `)
(
−b2+2b`+3x2−6x`+2`2)+6ξ

(
4`3−3x(ξ−2`)(x−2`)

)
χb3(4`− b)(b− `)2 + 12`3

, (70)

K1I I(x, ξ) =
∂2G1I I(x, ξ)

∂x ∂ξ
=

=
1
2

χb2x(2b−3x)(b−`)
(
−b2+2b`+3ξ2−6ξ`+2`2)+6x

(
4`3−3ξ(ξ−2`)(x−2`)

)
χb3(4`− b)(`− b)2 + 12`3

, (71)
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K2I I(x, ξ) =
∂2G2I I(x, ξ)

∂x ∂ξ
=

=
1
4

b3χ
(
−2b3ξ + 6b2ξ − 18bξ2`+ 18bξ`2 − 12b`3 + 8ξ`3)+ 24`3ξ

χb3(4`− b)(`− b)2 + 12`3
± −1

2
ξ+

+

(
1
2

χb3(−b3 + 9b`2 + 12ξ2`− 24ξ`2 + 4`3)+ 12`
(
3ξ2 − 6ξ`+ `2)

χb3(4`− b)(`− b)2 + 12`3
± 1

2

)
x+

+

(
− 3

12
χb3(6b2 − 18`b− 12ξ2 + 24`ξ

)
− 36ξ(ξ − 2`)

χb3(4`− b)(`− b)2 + 12`3

)
x2. (72)

Figure 6 depicts the kernel function of an FssP beam for various values of χ if b̂ = L/2
and ξ = 0.75.
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Figure 6. The kernel function of an FssP beam against x = x̂/L; χ is a parameter and ξ = 0.75.

4.4. The Kernel for PssP Beams

Utilizing Equations (58)–(61), (63) and (64), it can be checked that the elements of the
kernel function for PssP beams assume the following forms:

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
=

=

 1
12

χb(`−b)2(6ξ2`−6b`ξ+4b2`−b3+3ξ2b
)
+6`

(
2`2+3ξ2−3ξ`

)
`
(

3`+ χb2(`− b)2
) ±

(
−6ξ

12

)+

+

(
− 6

12
± 6

12

)
x +

− 3
12
−6`+ χ(`− b)2(−2b`− b2 + 3ξ2)

`
(

3`+ χb2(`− b)2
)

x2, (73)
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K2I(x, ξ) =
∂2G2I(x, ξ)

∂x ∂ξ
=

=
1

12`
(

3`+ χb2(`− b)2
)(6`(3x2 − 6x`+ 3ξ2 + 2`2

)
+

+ χb(`− b)
(

2`2 − 6x`+ 2b`− b2 + 3x2
)(

3ξ2 − b2
))

, (74)

K1I I(x, ξ) =
∂2G1I I(x, ξ)

∂x ∂ξ
=

=
1

12`
(

χb2(`− b)2 + 3`
)(6`(3ξ2 − 6ξ`+ 3x2 + 2`2

)
+

+ χb(`− b)
(

2`2 − 6ξ`+ 2b`− b2 + 3ξ2
)(

3x2 − b2
))

, (75)

K2I I(x, ξ) =
∂2G2I I(x, ξ)

∂x ∂ξ
=

=
1

12`
(

χb2(`− b)2 + 3`
)(3`(6ξ2 − 6ξ`+ 4`2

)
+

+ χb2
(
−b4 + 3b2ξ2 − 12ξ2`b + 12`2ξb− 8`3b + 6`3ξ

))
± −6ξ

12
+(

6
12
−3`+ χb2(3ξ2 + 2b`− 6ξ`+ `2)

χb2(`− b)2 + 3`
± 6

12

)
x+

+

− 3
12
−6`+ χb2(−b2 + 4b`+ 3ξ2 − 6ξ`

)
`
(

χb2(`− b)2 + 3`
)

x2. (76)

Figure 7 shows the kernel function of a PssP beam for various values of χ if b̂ = L/2
and ξ = 0.75.
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Figure 7. The kernel function of a PssP beam against x = x̂/L; χ is a parameter and ξ = 0.75.
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The kernel functions given by (65)–(68) (FssF beams), (69)–(72) (FssP beams), (73)–(76)
(PssP beams) satisfy the symmetry condition K(x, ξ) = K(ξ, x).

Assume that χ→ ∞. Then, the limit values of the kernel functions given by (65)–(68)
(FssF beams), (69)–(72) (FssP beams), (73)–(76) (PssP beams) coincide with the kernel
functions given by Equations (4.2) (FrF beams), (4.5) (FrP beams) and (4.7) in [32].

These limit values are also presented in Appendix A.
For χ → ∞ the curves representing the kernel functions in Figures 5–7 coincide,

obviously, with those curves presented in [32] for the kernel functions of FrF, FrP and
PrP beams.

5. Computational Results
5.1. FssF Beams

Tables 2 and 3 contain the values of the dimensionless critical force
√
Ncrit /π as a

function of b. The dimensionless spring constant χ is a parameter. For symmetry reasons it
is sufficient to present the results obtained for b ∈ [0, 0.5].

Table 2. The critical forces of FssF beams if χ = 25, . . . , 125.√
Ncrit /π

b χ = 25 χ = 50 χ = 75 χ = 100 χ = 125

0.0000 2.000000 2.000000 2.000000 2.000000 2.000000
0.0250 2.000008 2.000013 2.000018 2.000023 2.000028
0.0500 2.000080 2.000157 2.000233 2.000310 2.000386
0.0750 2.000383 2.000761 2.001136 2.001509 2.001880
0.1000 2.001166 2.002313 2.003444 2.004561 2.005663
0.1250 2.002723 2.005379 2.007972 2.010506 2.012982
0.1500 2.005355 2.010514 2.015489 2.020289 2.024922
0.1750 2.009325 2.018181 2.026601 2.034609 2.042232
0.2000 2.014822 2.028690 2.041678 2.053850 2.065267
0.2250 2.021935 2.042170 2.060845 2.078091 2.094027
0.2500 2.030643 2.058561 2.083989 2.107147 2.128241
0.2750 2.040804 2.077623 2.110792 2.140630 2.167450
0.3000 2.052156 2.098938 2.140749 2.177991 2.211072
0.3250 2.064324 2.121912 2.173171 2.218522 2.258424
0.3500 2.076823 2.145766 2.207159 2.261337 2.308701
0.3750 2.089075 2.169522 2.241546 2.305276 2.360891
0.4000 2.100433 2.191993 2.274805 2.348745 2.413589
0.4250 2.110217 2.211797 2.304954 2.389443 2.464612
0.4500 2.117777 2.227448 2.329532 2.424019 2.510233
0.4750 2.122562 2.237538 2.345833 2.447969 2.543998
0.5000 2.124201 2.241031 2.351573 2.456659 2.556943

Table 3. The critical forces of FssF beams if χ = 150, . . . , 1500 and χ→ ∞.√
Ncrit /π

b χ = 150 χ = 200 χ = 325 χ = 500 χ = 1500 χ → ∞

0.0000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.0250 2.000033 2.000042 2.000067 2.000100 2.000293 2.038216
0.0500 2.000462 2.000613 2.000990 2.001511 2.004361 2.077889
0.0750 2.002249 2.002979 2.004767 2.007183 2.019289 2.119074
0.1000 2.006750 2.008884 2.013983 2.020605 2.049702 2.161815
0.1250 2.015401 2.020078 2.030899 2.044229 2.094262 2.206145
0.1500 2.029394 2.037888 2.056787 2.078661 2.148228 2.252082
0.1750 2.049491 2.063007 2.091798 2.122924 2.207134 2.299619
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Table 3. Cont. √
Ncrit /π

b χ = 150 χ = 200 χ = 325 χ = 500 χ = 1500 χ → ∞

0.2000 2.075983 2.095515 2.135248 2.175238 2.268186 2.348715
0.2250 2.108766 2.135051 2.186031 2.233702 2.330019 2.399278
0.2500 2.147465 2.181004 2.242947 2.296665 2.392061 2.451142
0.2750 2.191547 2.232672 2.304889 2.362820 2.454057 2.504040
0.3000 2.240399 2.289358 2.370903 2.431136 2.515766 2.557558
0.3250 2.293366 2.350419 2.440155 2.500707 2.576781 2.611080
0.3500 2.349744 2.415267 2.511842 2.570559 2.636388 2.663708
0.3750 2.408718 2.483339 2.585016 2.639404 2.693437 2.714177
0.4000 2.469216 2.554051 2.658291 2.705314 2.746205 2.760765
0.4250 2.529572 2.626716 2.729274 2.765312 2.792309 2.801259
0.4500 2.586620 2.700418 2.793376 2.814985 2.828768 2.833058
0.4750 2.633089 2.773688 2.841720 2.848596 2.852393 2.853522
0.5000 2.652952 2.833793 2.860604 2.860604 2.860604 2.860604

Figure 8 shows the dimensionless critical force against b. χ is a parameter. If χ = 0 the

beam is a fixed-fixed beam for which
√
Ncrit /π = 2.000. It is obvious that the dimensionless

critical force has a maximum if b = 0.5.
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Figure 8. The dimensionless critical force of FssF beams as a function of b; χ is a parameter.

5.2. FssP Beams

Tables 4–6 contain the values of the dimensionless critical force
√
Ncrit /π as a function

of b. The dimensionless spring constant χ is a parameter.

Table 4. The critical forces of FssP beams if χ = 15, . . . , 115.√
Ncrit /π

b χ = 15 χ = 35 χ = 55 χ = 80 χ = 115

0.0000 1.430302 1.430302 1.430302 1.430302 1.430302
0.0500 1.430334 1.430377 1.430420 1.430473 1.430547
0.1000 1.430784 1.431422 1.432052 1.432831 1.433905
0.1500 1.432544 1.435455 1.438280 1.441695 1.446273
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Table 4. Cont. √
Ncrit /π

b χ = 15 χ = 35 χ = 55 χ = 80 χ = 115

0.2000 1.436662 1.444720 1.452328 1.461255 1.472769
0.2500 1.443950 1.460773 1.476177 1.493662 1.515280
0.3000 1.454692 1.484013 1.510111 1.538821 1.572915
0.3500 1.468509 1.513634 1.552947 1.595125 1.643523
0.4000 1.484348 1.547702 1.602312 1.660025 1.724640
0.4500 1.500535 1.583160 1.654563 1.729929 1.813437
0.5000 1.514927 1.615748 1.704260 1.799175 1.905547
0.5500 1.525206 1.640163 1.743538 1.857971 1.991783
0.6000 1.529367 1.651044 1.762835 1.890806 2.050418
0.6500 1.526294 1.645008 1.755043 1.882616 2.046060
0.7000 1.516169 1.622456 1.720727 1.833762 1.975444
0.7500 1.500463 1.587353 1.667434 1.758843 1.871752
0.8000 1.481573 1.545450 1.604616 1.672479 1.757022
0.8500 1.462350 1.502853 1.540969 1.585485 1.642410
0.9000 1.445718 1.465619 1.484801 1.507815 1.538331
0.9500 1.434358 1.439708 1.444994 1.451512 1.460475
0.9750 1.431330 1.432696 1.434058 1.435753 1.438115
0.9800 1.430961 1.431838 1.432713 1.433804 1.435326
0.9900 1.430467 1.430687 1.430907 1.431182 1.431566
0.9975 1.430312 1.430326 1.430340 1.430357 1.430381

Table 5. The critical forces of FssP beams if χ = 170, . . . , 2500.√
Ncrit /π

b χ = 170 χ = 250 χ = 500 χ = 1000 χ = 2500

0.0000 1.430302 1.430302 1.430302 1.430302 1.43030
0.0500 1.430674 1.430833 1.431353 1.432366 1.43519
0.1000 1.435700 1.437868 1.444538 1.455748 1.47845
0.1500 1.453609 1.461967 1.484671 1.514784 1.55600
0.2000 1.490195 1.508606 1.551816 1.596797 1.64233
0.2500 1.546037 1.576049 1.637247 1.689125 1.73202
0.3000 1.618623 1.659962 1.734342 1.787809 1.82642
0.3500 1.705053 1.756927 1.840447 1.892859 1.92721
0.4000 1.803191 1.865196 1.955048 2.004906 2.03510
0.4500 1.911581 1.984124 2.077841 2.123440 2.14901
0.5000 2.028652 2.113167 2.206504 2.244631 2.26416
0.5500 2.150917 2.250231 2.332179 2.357130 2.36848
0.6000 2.266076 2.386936 2.429884 2.437159 2.44005
0.6500 2.293059 2.452225 2.457446 2.457895 2.45806
0.7000 2.172303 2.316725 2.402885 2.418421 2.42438
0.7500 2.026359 2.154562 2.296332 2.339839 2.35800
0.8000 1.876349 1.986250 2.157401 2.236818 2.27423
0.8500 1.726880 1.812434 1.985291 2.106331 2.17705
0.9000 1.586370 1.639609 1.773783 1.919260 2.04977
0.9500 1.475409 1.493344 1.547757 1.635968 1.79607
0.9750 1.442131 1.447093 1.463185 1.493419 1.57070
0.9800 1.437921 1.441141 1.451681 1.471908 1.52642
0.9900 1.432224 1.433044 1.435766 1.441151 1.45684
0.9975 1.430422 1.430474 1.430646 1.430990 1.43201
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Table 6. The critical forces of FssP beams if χ = 5000, . . . , 500,000 and χ→ ∞.√
Ncrit /π

b χ = 5000 χ = 50,000 χ = 500,000 χ → ∞

0.0000 1.430302 1.430302 1.430302 1.430302
0.0500 1.439304 1.467133 1.483508 1.486263
0.1000 1.498693 1.539600 1.546449 1.547261
0.1500 1.579860 1.609894 1.613513 1.613924
0.2000 1.662822 1.684347 1.686682 1.686943
0.2500 1.748836 1.765158 1.766854 1.767044
0.3000 1.840403 1.853428 1.854753 1.854900
0.3500 1.939021 1.949752 1.950830 1.950950
0.4000 2.045077 2.053978 2.054864 2.054962
0.4500 2.157153 2.164302 2.165007 2.165085
0.5000 2.270140 2.275295 2.275799 2.275855
0.5500 2.371795 2.374598 2.374870 2.374900
0.6000 2.440857 2.441527 2.441591 2.441598
0.6500 2.458107 2.458144 2.458148 2.458148
0.7000 2.426022 2.427372 2.427501 2.427515
0.7500 2.363057 2.367247 2.367649 2.367693
0.8000 2.284880 2.293734 2.294583 2.294677
0.8500 2.198218 2.215921 2.217618 2.217805
0.9000 2.096723 2.137438 2.141358 2.141792
0.9500 1.909498 2.051914 2.067177 2.068868
0.9750 1.665896 1.969510 2.027310 2.033900
0.9800 1.600374 1.929960 2.016812 2.027035
0.9900 1.481535 1.736193 1.865164 2.013432
0.9975 1.433728 1.463150 1.659478 2.003187

Figure 9 depicts the dimensionless critical force against b. χ is a parameter. If χ = 0 the

beam is a fixed-pinned beam for which
√
Ncrit /π = 1.43029. Note that the dimensionless

critical for reaches its maximum if b ∈ [0.62, 0.645].
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Figure 9. The dimensionless critical force of FssP beams as a function of b; χ is a parameter.

5.3. PssP Beams

Tables 7–9 contain the values of the dimensionless critical force
√
Ncrit /π as a function

of b. The dimensionless spring constant χ is a parameter. For symmetry reasons it is
sufficient to present the results obtained for b ∈ [0, 0.5].
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Table 7. The critical forces of PssP beams if χ = 15, . . . , 115.√
Ncrit /π

b χ = 15 χ = 35 χ = 55 χ = 80 χ = 115

0.0050 1.000038 1.000089 1.000139 1.000203 1.000291
0.0250 1.000946 1.002203 1.003454 1.005009 1.007171
0.0500 1.003744 1.008664 1.013501 1.019434 1.027537
0.0750 1.008283 1.018999 1.029356 1.041818 1.058417
0.1000 1.014401 1.032695 1.050019 1.070410 1.096801
0.1250 1.021899 1.049184 1.074473 1.103551 1.140070
0.1500 1.030560 1.067907 1.101790 1.139857 1.186254
0.1750 1.040153 1.088335 1.131176 1.178259 1.234011
0.2000 1.050443 1.109986 1.161977 1.217974 1.282501
0.2250 1.061192 1.132414 1.193647 1.258436 1.331245
0.2500 1.072159 1.155206 1.225725 1.299237 1.380002
0.2750 1.083106 1.177960 1.257790 1.340055 1.428676
0.3000 1.093790 1.200274 1.289427 1.380600 1.477247
0.3250 1.103973 1.221726 1.320183 1.420549 1.525707
0.3500 1.113416 1.241869 1.349530 1.459481 1.574002
0.3750 1.121889 1.260218 1.376823 1.496781 1.621959
0.4000 1.129173 1.276257 1.401272 1.531525 1.669148
0.4250 1.135072 1.289461 1.421934 1.562324 1.714591
0.4500 1.139416 1.299330 1.437770 1.587206 1.756046
0.4750 1.142077 1.305442 1.447778 1.603709 1.788296
0.5000 1.142973 1.307513 1.451208 1.609538 1.801390

Table 8. The critical forces of PssP beams if χ = 150, . . . , 1000.√
Ncrit /π

b χ = 150 χ = 250 χ = 500 χ = 1000 χ = 2500

0.0050 1.000380 1.000632 1.001263 1.002520 1.006254
0.0250 1.009316 1.015351 1.029852 1.056549 1.121698
0.0500 1.035409 1.056708 1.103187 1.174045 1.290759
0.0750 1.074091 1.114340 1.191978 1.286865 1.396462
0.1000 1.120924 1.179364 1.278177 1.375881 1.463389
0.1250 1.172332 1.245932 1.355211 1.445158 1.513286
0.1500 1.225865 1.310985 1.422771 1.501934 1.555706
0.1750 1.280037 1.373333 1.482749 1.551418 1.594801
0.2000 1.334066 1.432842 1.537309 1.596787 1.632513
0.2250 1.387633 1.489886 1.588239 1.639912 1.669810
0.2500 1.440701 1.545030 1.636849 1.681877 1.707165
0.2750 1.493394 1.598853 1.684026 1.723276 1.744759
0.3000 1.545916 1.651863 1.730301 1.764355 1.782554
0.3250 1.598500 1.704442 1.775890 1.805074 1.820303
0.3500 1.651374 1.756798 1.820677 1.845096 1.857524
0.3750 1.704736 1.808878 1.864149 1.883732 1.893431
0.4000 1.758730 1.860203 1.905266 1.919853 1.926867
0.4250 1.813415 1.909478 1.942270 1.951800 1.956240
0.4500 1.868675 1.953769 1.972551 1.977382 1.979566
0.4750 1.923800 1.987051 1.992816 1.994141 1.994726
0.5000 1.966030 2.000000 2.000000 2.000000 2.000000
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Table 9. The critical forces of PssP beams if χ = 5000, . . ., 500,000 and χ→ ∞.√
Ncrit /π

b χ = 5000 χ = 50,000 χ = 500,000 χ → ∞

0.0050 1.012356 1.101002 1.337454 1.432062
0.0250 1.196323 1.408628 1.449777 1.454511
0.0500 1.367709 1.467128 1.478710 1.479979
0.0750 1.447720 1.500308 1.505839 1.506440
0.1000 1.497758 1.530319 1.533634 1.533994
0.1250 1.537763 1.560180 1.562432 1.562676
0.1500 1.574108 1.590676 1.592328 1.592507
0.1750 1.609223 1.622078 1.623355 1.623493
0.2000 1.644166 1.654485 1.655507 1.655618
0.2250 1.679429 1.687905 1.688743 1.688833
0.2500 1.715212 1.722274 1.722971 1.723046
0.2750 1.751529 1.757450 1.758033 1.758096
0.3000 1.788237 1.793189 1.793676 1.793729
0.3250 1.825015 1.829106 1.829507 1.829551
0.3500 1.861331 1.864623 1.864946 1.864981
0.3750 1.896371 1.898902 1.899150 1.899176
0.4000 1.928968 1.930770 1.930946 1.930964
0.4250 1.957555 1.958677 1.958786 1.958798
0.4500 1.980206 1.980750 1.980803 1.980809
0.4750 1.994896 1.995041 1.995055 1.995056
0.5000 2.000000 2.000000 2.000000 2.000000

Figure 10 shows the graphs the dimensionless critical force against b. χ is a parameter.

If χ = 0 the beam is a pinned-pinned beam for which
√
Ncrit /π = 1.0. The dimensionless

critical force reaches its maximum if b = 0.5.
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Figure 10. The dimensionless critical force of PssP beams as a function of b; χ is a parameter.

For χ→ ∞ the curves representing the dimensionless critical forces in Figures 8–10
coincide with those curves presented in [32] for the dimensionless critical forces of FrF, FrP
and PrP beams.

6. Conclusions

Making use of the definition given in paper [34] we have determined the Green
functions for those three point BVPs, which describe the mechanical behavior of fixed-fixed,
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fixed-pinned and pinned-pinned beams with an intermediate spring support. It is assumed
that the beams have cross sectional heterogeneity [33].

With the Green functions the dimensionless displacement field due to the dimen-
sionless distributed forces acting on the E-weighted centerline can be calculated using
the formula

w(x) =
∫ `=1

0
G(x, ξ) f (ξ)dξ . (77)

The dimensionless bending moment m(x) is defined by the relation

m(x) = −
∫ `=1

0

∂2

∂x2 G(x, ξ) f (ξ)dξ . (78)

If χ → ∞ the Green functions of FssF, FssP and PssP beams results in the Green
functions of FrF, FrP and PrP beams. We remark that these Green functions are presented
in Sections A.1–A.3. See paper [32] for a comparison.

It can be checked that the Green functions of FssF, FssP and PssP beams simplify to
the Green functions of fixed-fixed, fixed-pinned and pinned-pinned beams if χ = 0 —see
Table 8.1 in [35].

Utilizing the Green functions the linear stability problems of these beams are transformed
into eigenvalue problems governed by the homogeneous Fredholm integral equation:

y(x) = N
∫ `=1

0
K(x, ξ)y(ξ)dξ, K(x, ξ) =

∂2G(x, ξ)

∂x ∂ξ
, y(x) =

dw(x)
dx

. (79)

The numerical solution for the eigenvalues of the homogeneous Fredholnm integral
equations (for the critical forces) is based on a novel solution procedure published in [35].

The published formalism, the solution procedure that is based on the use of homoge-
neous Fredholm integral equations with kernels obtained from the Green functions and the
numerical results we computed are all valid for beams with cross sectional heterogeneity—
these constitute the main novelty in our paper-, however, everything remains valid for
homogeneous beams as well provided that Iey is replaced by the product IyE, where Iy is
the second moment of inertia of the cross section with respect to the axis ŷ, while E is the
modulus of elasticity.

The numerical results presented in Tables 2–9 for the dimensionless critical force Ncrit
can be applied in the engineering practice if stability problem should be solved.

If χ → ∞ the kernel functions of FssF, FssP and PssP beams coincide with the
kernel functions of FrF, FrP and PrP beams. These kernel functions are presented in
Sections A.4–A.6. See paper [32] for a comparison.

For FssP beams the critical force reaches its maximum if b ∈ (0.62− 0.645). The actual
value for the optimum location depends on the spring stiffness—see Figure 9.

For completeness Section A.7 gives the characteristic equations that provide also the
dimensionless critical force.

The eigenvalue problem governed by the integral Equation (79)1 is transformed into
an algebraic eigenvalue problem using the boundary element technique. The solutions
for the algebraic eigenvalue problem are compared to the solutions obtained from the
numerical solutions of the nonlinear characteristic equations presented in Appendix A.7.
The correlation is excellent: the computed values of the dimensionless critical forces agree
with each other with four digit accuracy.
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Appendix A. Limit Cases

Appendix A.1. The Green Function for FrF Beams

Assume that χ −→ ∞. Then, Equations (40), (41), (52) and (53) (FssF beams) yield

G1I(x, ξ) =
1
12

[(
−ξ3 ± ξ3

)
+
(

3ξ2 ±
(
−3ξ2

))
x+

+

(
3ξ

`b2

(
b2`− 3b`ξ + `ξ2 + ξ2b− ξb2

)
± 3ξ

)
x2+

+

(
− 1
`b3

(
b3`+`ξ3−3b2ξ2−3b`ξ2+3ξ3b

)
± (−1)

)
x3

]
, (A1)

G2I(x, ξ) = − 1
4`b(`− b)

ξ2(x− `)2(b− x)(ξ − b), (A2)

G1I I(x, ξ) = − 1
4(`− b)`b

x2(ξ − `)2(b− ξ)(x− b), (A3)

G2I I(x, ξ) = − 1
12

`3ξ3 + `3b3 + b3ξ3 − 3b3ξ2`− 3b2`3ξ − 3b`2ξ3 + 6b2ξ2`2

(`− b)3 ± ξ3

12
+

+

(
3

12
b2`3+ 2b2ξ3+ 3bξ2`2− 3b`ξ3+ `3ξ2− 3b`3ξ− b3ξ2

(`− b)3 ± −3ξ2

12

)
x+

+

(
3

12
`4ξ − 4`3ξ2+ 2`2ξ3− 2b2`3− b3`ξ − b2ξ3+ b3ξ2+ `2b3+ 3b`3ξ

`(`− b)3 ± 3ξ

12

)
x2+

+

(
1

12
3bξ3 − 3b2ξ2 + 3b`3 − 9b`2ξ + 6ξ2`2 − 4`ξ3 + 6b2ξ`− b3`− `4

`(`− b)3 ± −1
12

)
x3. (A4)

These equations provide the Green function for FrF beams.

Appendix A.2. The Green Function for FrP Beams

If χ −→ ∞, Equations (54)–(57) (FssP beams), yield

G1I(x, ξ) =

(
− 1

12
ξ3 ± 1

12
ξ3
)
+

(
3ξ2

12
±
(
−3ξ2

12

))
x+

+

(
− 3

12
ξ

b3 − 4b2`− 2ξ2b + 12b`ξ − 4`ξ2

b2(4`− b)
± 3ξ

12

)
x2+

+

(
1

12
b4 − 4b3`+ 6b2ξ2 − 8ξ3b + 12ξ2b`− 4ξ3`

b3(4`− b)
± −1

12

)
x3, (A5)

G2I(x, ξ) =
(`− x)ξ2

2b(4`− b)(`− b)
(b− x)(2`− b− x)(b− ξ), (A6)

G1I I(x, ξ) =
(`− ξ)x2

2b(4`− b)(`− b)
(b− ξ)(2`− b− ξ)(b− x), (A7)
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G2I I(x, ξ) = − 1
12

b3ξ3− 9b`2ξ3− 6b3ξ2`− 12b2ξ`3 + 4`3ξ3 + 18b2`2ξ2 + 4b3`3

(4`− b)(`− b)2 ± ξ3

12
+

+

(
3
12

4b2`3 − 12bξ`3 + 4`3ξ2 + 9b`2ξ2 + 2b2ξ3 − b3ξ2 − 6b`ξ3

(4`− b)(`− b)2 ± −3ξ2

12

)
x+

+

(
3
12

9bξ`2 − 12`2ξ2 + 4`ξ3 + 2b3`− b3ξ + 4ξ`3 − 6b2`2

(4`− b)(`− b)2 ± 3ξ

12

)
x2+

+

(
− 1

12
4`3 − 9b`2 + 18bξ`− 12ξ2`− 6b2ξ + 4ξ3 + b3

(4`− b)(`− b)2 ± −1
12

)
x3. (A8)

These equations constitute the Green function for FrP beams.

Appendix A.3. The Green Function for PrP Beams

If χ −→ ∞, Equations (58)–(61) (PssP beams) results in the following relations:

G1I(x, ξ) =

(
− ξ3

12
± ξ3

12

)
+

(
1

12
ξ

4b2`− 3b`ξ + 2ξ2`+ ξ2b− b3

b`
±
(
−3ξ2

12

))
x+

+

(
−3ξ

12
± 3ξ

12

)
x2 +

(
− 1

12
b2`− 2b`ξ − ξb2 + ξ3

b2`
± −1

12

)
x3, (A9)

G2I(x, ξ) =
ξ

12
1

b`(`− b)
(b− x)(`− x)(2`− b− x)

(
b2 − ξ2

)
, (A10)

G1I I(x, ξ) =
x

12
1

b`(`− b)
(b− ξ)(`− ξ)(2`− b− ξ)

(
b2 − x2

)
, (A11)

G2I I(x, ξ) =
1

12
2b2`2ξ − `2ξ3 − 3`b2ξ2 + 2b`ξ3 − `b4 + b4ξ

(`− b)2 ± ξ3

12
+

+

(
1

12
3`3ξ2 − 8b`3ξ + 2`3b2 + 6bξ2`2 − 4b`ξ3 + `b4 − b4ξ + b2ξ3

`(`− b)2 ± −3ξ2

12

)
x+

+

(
3

12
ξ3 + 2bξ`− 3ξ2`+ ξ`2 − b2`

(`− b)2 ± 3ξ

12

)
x2+

+

(
− 1

12
−b2ξ + ξ3 + `3 − 2b`2 + 4bξ`− 3ξ2`

`(`− b)2 ± −1
12

)
.x3 (A12)

These relations give the Green function for PrP beams.

Appendix A.4. The Kernel Function for FrF Beams

For χ −→ ∞, the elements of the kernel function of FssF beams—see Equations (65)–(68)—
assume the following forms:

K1I(x, ξ) =
ξ

2
± ξ

2
+

(
1

2b2`

(
b2`− 2b2ξ + 3bξ2 − 6`bξ + 3`ξ2

)
± 1

2

)
x+

1
4b3`

(
6b2ξ − 9bξ2 + 6`bξ − 3`ξ2

)
x2, (A13)

K2I(x, ξ) = − 1
4b

ξ

`(`− b)
(2b− 3ξ)(`− x)(2b− 3x + `), (A14)
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K1I I(x, ξ) = − 1
4b

x
`(`− b)

(2b− 3x)(`− ξ)(2b− 3ξ + `) , (A15)

K2I I(x, ξ) =
1

4(`− b)3

(
6b2ξ2 − 2b3ξ − 9bξ2`+ 6bξ`2 − 3b`3 + 2ξ`3

)
±
(
− ξ

2

)
+

+
1

2`(`− b)3

(
2b3ξ − b3`− 3b2ξ2 + 3b`3 + 6ξ2`2 − 8ξ`3 + `4

)
x± 1

2
x+

+
3

4`(`− b)3 (`− ξ)
(

4ξ`− 3b`− 3bξ + 2b2
)

x2 . (A16)

The above equations are the elements of the kernel function for FrF beams.

Appendix A.5. The Kernel Function for FrP Beams

If χ −→ ∞, the elements of the kernel function of FssP beams—see Equations (69)–(72)
assume the following forms:

K1I(x, ξ) =
ξ

2
±
(
− ξ

2

)
+

(
− b3 − 4`b2 − 6bξ2 + 24`bξ − 12`ξ2

2b2(4`− b)
± 1

2

)
x+

+
12ξ
(
2b`− 2bξ − ξ`+ b2)

4b3(4`− b)
x2, (A17)

K2I(x, ξ) =
1
2b

ξ(3ξ − 2b)
(
−b2 + 2b`+ 3x2 − 6x`+ 2`2)
(4`− b)(`− b)

, (A18)

K1I I(x, ξ) =
1
2b

x(3x− 2b)
(
−b2 + 2b`+ 3ξ2 − 6ξ`+ 2`2)
(4`− b)(`− b)

, (A19)

K2I I(x, ξ) =
1
4
−2b3ξ + 6b2ξ − 18bξ2`+ 18bξ`2 − 12b`3 + 8ξ`3

(4`− b)(`− b)2 + 12`3
± −1

2
ξ+

+

(
1
2
−b3 + 9b`2 + 12ξ2`− 24ξ`2 + 4`3

(4`− b)(`− b)2 ± 1
2

)
x+

+

(
1
4

6b2 − 18`b− 12ξ2 + 24`ξ

(4`− b)(`− b)2

)
x2 . (A20)

These equations constitute the elements of the kernel function for FrP beams.

Appendix A.6. The Kernel Function for PrP Beams

Assume that χ −→ ∞. Then, the elements of kernel function of PssP beams—see
Equations (73)–(76)—will take the following forms:

K1I(x, ξ) =
1

12`b

(
6ξ2`− 6b`ξ + 4b2`− b3 + 3ξ2b

)
±
(
−6ξ

12

)
+

+

(
− 6

12
± 6

12

)
x +

(
1

4`b2

(
2b`+ b2 − 3ξ2

))
x2, (A21)

K2I(x, ξ) =
1

12`b(`− b)

(
2`2 − 6x`+ 2b`− b2 + 3x2

)(
3ξ2 − b2

)
, (A22)

K1I I(x, ξ) =
1

12`b(`− b)

(
2`2 + 2b`− 6ξ`+ 3ξ2 − b2

)(
3x2 − b2

)
, (A23)
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K2I I(x, ξ) =
1

12`(`− b)2

(
−b4 + 3b2ξ2 − 12ξ2`b + 12`2ξb− 8`3b + 6`3ξ

)
± −ξ

2
+

+

(
1

2(`− b)2

(
3ξ2 + 2b`− 6ξ`+ `2

)
± 1

2

)
x+

+

(
− 1

4`(`− b)2

(
−b2 + 4b`+ 3ξ2 − 6ξ`

))
x2 . (A24)

These equations are the elements of the kernel function for PsP beams.

Appendix A.7. Characteristic Equations

In this Appendix we present the characteristic equations. In this respect it is worth
referring the reader to Table 2.8. in book [2].

For a non zero but compressive axial force (N 6= 0) the stability problem of beams are
governed by the following ODE:

d4w
dx4 + p2 d2w

dx2 = 0 p2 = N = L2 N
Iey

(A25)

The general solutions and their derivatives for ODE (A25) are presented below:

wr = a1 + a2x + a3 cos px + a4 sin px

w(1)
r = a2 − pa3 sin px + pa4 cos px

w(2)
r = −p2a3 cos px− p2a4 sin px

w(3)
r = p3a3 sin px− p3a4 cos px

x ∈ [0, b] (A26)

and

w` = c1 + c2x + c3 cos px + c4 sin px

w(1)
` = c2 − pc3 sin px + pc4 cos px

w(2)
` = −p2c3 cos px− p2c4 sin px

w(3)
` = p3c3 sin px− p3c4 cos px

x ∈ [b, ` = 1] (A27)

where the coefficients ak and ck (k = 1, . . . , 4) are integration constants.
For FssF beams the following boundary and continuity conditions belong to ODE (A25):

wr(0) = 0 ,
dwr

dx

∣∣∣∣
x=0

= 0 ; w`(1) = 0 ,
dw`

dx

∣∣∣∣
x=0

= 0 , (A28a)

wr(b− 0) = w`(b + 0) ,

dwr

dx

∣∣∣∣
b−0

=
dw`

dx

∣∣∣∣
b+0

d2wr

dx2

∣∣∣∣
b−0

=
d2w`

dx2

∣∣∣∣
b+0

d3wr

dx3

∣∣∣∣
b−0
− χwr(b) =

d3w`

dx3

∣∣∣∣
b+0

.

(A28b)

ODE (A25) with the boundary and continuity conditions (A28) determine a self adjoint
eigenvalue problem in which p is the eigenvalue. Boundary and continuity conditions (A28)
yields the following homogeneous equation system:
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Boundary conditions for x = 0:

a1 + a3 = 0 ,

a2 + pa4 = 0 .

Continuity conditions for x = b:

c1 + c2b + c3 cos pb + c4 sin pb− (c1 + c2b + c3 cos pb + c4 sin pb) = 0,

a2 − pa3 + pa4 cos pb− (c2 − pc3 sin pb + pc4 cos pb) = 0,

−a3 cos pb− a4 sin pb− (−c3 cos pb− c4 sin pb) = 0,

p3a3 sin pb− p3a4 cos pb− χ(a1 + a2b + a3 cos pb + a4 sin pb)−
− (p3c3 sin pb− p3c4 cos pb) = 0

Boundary conditions for x = 1:

c1 + c2 + c3 cos p + c4 sin p = 0 ,

c2 − pc3 sin p + pc4 cos p = 0 .

These equations constitute a homogeneous linear equation system. As is well known
non-zero solutions for the integration constants a1, . . . , a4 and c1, . . . , c4 exist if and only if
the determinant of the coefficient matrix vanishes:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb −1 −b − cos pb − sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
χ χb χ cos pb− p3 sin pb χ sin pb + p3 cos pb 0 0 p3 sin pb −p3 cos pb
0 0 0 0 1 1 cos p sin p
0 0 0 0 0 1 −p sin p p cos p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= 2p4 cos p + p5 sin p− 2p4 + χp
(
2(sin p(b− 1) + sin p− sin bp)−

− 1
2

p
(

cos(p− 2bp)− 2p cos(p− bp) +
3
2

p cos p
)
− 2p2b(cos p(b− 1)− cos bp)+

+ p2b(b− 1) sin p
)
= 0 . (A29)

If χ→ ∞ or χ = 0 we have

2(sin p(b− 1) + sin p− sin bp)− 1
2

p
(

cos(p− 2bp)− 2p cos(p− bp) +
3
2

p cos p
)
−

− 2p2b(cos p(b− 1)− cos bp) + p2b(b− 1) sin p = 0 (A30)

and
2 cos p + p sin p− 2 = 0 . (A31)

Equations (A30) and (A31) are the characteristic equations for FrF beams and fixed-
fixed beams with no intermediate support. It follows from Figure 4 or from equation (A31)
that the critical value of p is 2π for fixed-fixed beams.
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For FssP beams, the boundary and continuity conditions lead to the following charac-
teristic equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb −1 −b − cos pb − sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
χ χb χ cos pb− p3 sin pb χ sin pb + p3 cos pb 0 0 p3 sin pb −p3 cos pb
0 0 0 0 1 1 cos p sin p
0 0 0 0 0 0 cosp sinp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= χ(bp2(1− b) cos p− p(1− b) sin p + 2p(1− b) sin p(1− b)− p cos pb sin p(1− b)

− cos p + cos pb cos p(1− b)) + p3 sin p− p4 cos p (A32)

If χ→ ∞ or χ = 0 we have

bp2(1− b) cos p− p(1− b) sin p + 2p(1− b) sin p(1− b)− p cos pb sin p(1− b)

− cos p + cos pb cos p(1− b) = 0 (A33)

and
sin p− p cos p = 0 . (A34)

Equations (A33) and (A34) are the characteristic equations for FrP beams and fixed-
pinned beams. It is obvious from Equation (A34) that the critical value of p is 1.43029π for
fixed-pinned beams.

As regards PssP beams it can easily be shown that a1 = a3 = 0. Hence∣∣∣∣∣∣∣∣∣∣∣∣

b sin pb −1 −b − cos pb − sin pb
1 p cos pb 0 −1 p sin pb −p cos pb
0 − sin pb 0 0 cos pb sin pb
−χb −p3 cos pb− χ sin pb 0 0 −p3 sin pb p3 cos pb

0 0 1 1 cos p sin p
0 0 0 0 cos p sin p

∣∣∣∣∣∣∣∣∣∣∣∣
=

= p3 sin p− χ(pb(1− b) sin p− (cos pb) cos p(1− b) + cos p) = 0 (A35)

is the characteristic equation. If χ→ ∞ or χ = 0 we have

pb(1− b) sin p− (cos pb) cos p(1− b) + cos p = 0 (A36)

and
sin p = 0 . (A37)

Equations (A36) and (A37) are the characteristic equations for PrP beams and pinned-
pinned (simply supported) beams. It is obvious from Equation (A37) that the critical value
of p is π for pinned-pinned beams.
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