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Abstract: Aviation authorities require, from aircraft seat manufacturers, specific performance metrics
that maximize the occupants’ chances of survival in the case of an emergency landing and allow
for the safe evacuation of the aircraft cabin. Therefore, aircraft seats must comply with specific
requirements with respect to their structural integrity and potential occupant injuries, which are
certified through the conduction of costly, full-scale tests. To reduce certification costs, computer-
aided methods such as finite element analysis can simulate and predict the responses of different
seat configuration concepts and potentially save time and development costs. This work presents
one of the major steps of an aircraft seat development, which is the design and study of preliminary
design concepts, whose structural and biomechanical response will determine whether the concept
seat model is approved for the next steps of development. More specifically, a three-occupant aircraft
seat configuration is studied for crash landing load cases and is subjected to modification iterations
from a baseline design to a composite one for its structural performance, its weight reduction and the
reduction of forces transmitted to the passengers.
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1. Introduction

The main safety-related requirements of aircraft seats emerge in the case of an aircraft
emergency landing, where the transmitted loads to the passengers can be fatal, both in
terms of intensity and duration time. Therefore, the energy absorbing systems play a
fundamental role in the energy unleashed during the impact [1]. Moreover, in the event of
a minor crash landing, the individuals who can freely evacuate the interior of the plane
have a higher chance of surviving. Thus, authorities related to the flight safety, such as
the Federal Aviation Administration (FAA), European Aviation Safety Agency (EASA)
and Joint Aviation Authorities (JAA), have applied specific regulations concerning matters
of passengers’ safety during emergency landings. Most of the research and consequent
certification requirements are confined to the seating capacity of impact energy absorption,
assuming a rigid behavior of the surrounding structure [1]. Furthermore, biomechanical
loads that apply to the occupants and the structural integrity of the seat’s main body are of
high priority in the aircraft seat’s study, since the seat is an interface between the individual
and the fuselage [2].

In addition to the protection of the occupants and the energy-absorbing capabili-
ties of the seats, a second design parameter that emerges is the overall weight of the
structure, which is related to the fuel consumption of the aircraft. The factor of the
strength/weight ratio has always been one of the greatest concerns of the aircraft in-
dustry. The strength/weight ratio is the main reason why composite materials were used
in military aviation in the 1960s and later in civil aviation, where their use was confined to
the development of secondary structural components. However, during the 2000s, a great
innovation in the use of composites took place with the production of two aircraft types,
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the Airbus A380 and the Boeing Dreamliner, which extensively used composites in their
primary structures [3].

As shown in Figure 1, contemporary aircraft structures have their major components
constructed of composite materials, while at the same time, a procedure of innovated
lightweight seats development is also observed, along with their deployment by the airlines.
Thus, the study of composite materials in aircraft seat structures is of high importance for
the advancement of the air transport.
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The main advantages of composite materials are their high strength and stiffness,
combined with their low density, when compared with bulk materials, allowing for a
weight reduction in the finished part [5]. The reinforcing phase provides the strength
and stiffness. Composites are a subclass of anisotropic materials that are classified as
orthotropic. Orthotropic materials have properties that are different in three mutually
perpendicular directions. They have three mutually perpendicular axes of symmetry, and
a load applied parallel to these axes produces only normal strains. However, loads that
are not applied parallel to these axes produce both normal and shear strains. Therefore,
orthotropic mechanical properties are a function of orientation [6].

The analysis of composites under mechanical loads uses different finite element
formulations and techniques, which can be categorized into two main categories [7]. The
first is using micromechanics approaches, while the second is treating the composite as an
equivalent homogenous material [8–13]. Micromechanical approaches are very demanding
from a computational point of view, whereas the equivalent homogenous method is much
more efficient at the expense of its ability to predict local effects such as the failure of the
fiber/matrix interface. For this reason, the equivalent homogenous material method is used
for preliminary sizing and investigations using allowable strains and associated failure
criteria [14–16], and it is more suited for the mechanical response evaluation of full-scale
structures, such as this study.

The certification of an aircraft seat requires meeting aviation authorities’ regulations
and is studied with the conduction of multiple full-scale tests, which are time-consuming
and costly; thus, it is considered necessary to deploy methods such as Finite Element
Analysis (FEA) in an effort to increase the possibility of successful full-scale tests. Hence,
the FEA methods have been conventionalized and considered as a beneficial tool for the
study of the structural response by the aviation industries. Finally, studies have been
conducted that aim toward the deployment of FEA methods as a validation tool during the
certification process of aircraft components [17].

This work aims at the development of a lightweight aircraft seat of a three-occupant
configuration, which will satisfy the FAA safety regulations and aerospace industry stan-
dards such as functionality and weight. The steps that were followed for the design and
computational testing of the seats constitute a methodology for the development of every
design concept. The initial phase consists of the design and a simplified geometry and
concludes with a complicated multibody 3D nonlinear Finite Element (FE) model.
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This study is a conceptual study, as it does not rely on laboratory or industrial test data
and does not follow optimization procedures of already-validated aircraft seats. It begins
with the design of an initial aircraft seat model of isotropic materials, which is based on the
global dimensions of three-occupant seats and concludes with a mass efficient composite
seat model that exhibits a satisfying structural response. The Federal Aviation Regulation
(FAR) 25.562 was used as a guideline to virtually test the seat design iterations, which
describes the safety parameters of the two main tests: the vertical and longitudinal crash
test. These two cases simulate the scenario of an emergency landing and the loads that
are transferred from the aircraft structure to the occupants of the seats. The two variables
monitored during the simulated tests were the structural response of the seats and the
biomechanical loads that apply to the passengers of the aircraft’s cabin. In addition, the
structural integrity and the survivability of the passengers during the crash test are the
primary approval criteria, which are described in the FAR regulations. Lastly, it should be
noted that the innovation of this work consists in the substitution of aircraft seats’ metallic
parts with composite ones, which leads to reduced weight compared to the reference one
without compromising structural safety and occupant safety. To the best of the authors’
knowledge, such work concerning passenger seats has never been published before.

2. Materials and Methods

The certification procedure of an aircraft seat configuration requires the conduction
of specific static and dynamic tests, which are mentioned in 14 of the Code of Federal
Regulations (CFR) Part 25, Subpart C and are CFR 25.561 & 25.562, which refer to the
loading conditions that simulate a minor crash landing. CFR 25.561 refers to general rules
regarding the safety of the occupants, where the aircraft must be designed such that a
quick evacuation of the cabin is ensured, with the proper use of seats, belts and other safety
provisions. Additionally, static loads are described, which apply to the seat-occupants in
multiple directions, to verify the structural integrity of the seat. Any secondary component
of the aircraft’s interior that presents material failure and breaks loose should be unlikely
to cause injury to the occupants or the fuel tanks of the aircraft [18].

CFR 25.562 describes the emergency landing dynamic conditions, where the seats
should protect the occupants with the proper use of materials, belt harnesses and other
safety attachments.

For the needs of this study, the seat structure was examined with the guidance of CFR
25.562, which includes two categories of dynamic tests: a horizontal–longitudinal and a
downward–vertical impact loading.

Table 1 summarizes the dynamic tests that must be conducted with an approximately
77.1 kg (170 pounds) anthropometric dummy model, which can simulate the occupant
response to the applied dynamic loads, according to 49 CFR Part 572, Subpart B.

Table 1. Summary of the dynamic tests of CFR 25.562.

Test 1 Test 2

Appl. Mech. 2023, 4, FOR PEER REVIEW 3 
 

 

every design concept. The initial phase consists of the design and a simplified geometry 
and concludes with a complicated multibody 3D nonlinear Finite Element (FE) model. 

This study is a conceptual study, as it does not rely on laboratory or industrial test 
data and does not follow optimization procedures of already-validated aircraft seats. It 
begins with the design of an initial aircraft seat model of isotropic materials, which is 
based on the global dimensions of three-occupant seats and concludes with a mass 
efficient composite seat model that exhibits a satisfying structural response. The Federal 
Aviation Regulation (FAR) 25.562 was used as a guideline to virtually test the seat design 
iterations, which describes the safety parameters of the two main tests: the vertical and 
longitudinal crash test. These two cases simulate the scenario of an emergency landing 
and the loads that are transferred from the aircraft structure to the occupants of the seats. 
The two variables monitored during the simulated tests were the structural response of 
the seats and the biomechanical loads that apply to the passengers of the aircraft’s cabin. 
In addition, the structural integrity and the survivability of the passengers during the 
crash test are the primary approval criteria, which are described in the FAR regulations. 
Lastly, it should be noted that the innovation of this work consists in the substitution of 
aircraft seats’ metallic parts with composite ones, which leads to reduced weight 
compared to the reference one without compromising structural safety and occupant 
safety. To the best of the authors’ knowledge, such work concerning passenger seats has 
never been published before. 

2. Materials and Methods 
The certification procedure of an aircraft seat configuration requires the conduction 

of specific static and dynamic tests, which are mentioned in 14 of the Code of Federal 
Regulations (CFR) Part 25, Subpart C and are CFR 25.561 & 25.562, which refer to the 
loading conditions that simulate a minor crash landing. CFR 25.561 refers to general rules 
regarding the safety of the occupants, where the aircraft must be designed such that a 
quick evacuation of the cabin is ensured, with the proper use of seats, belts and other 
safety provisions. Additionally, static loads are described, which apply to the seat-
occupants in multiple directions, to verify the structural integrity of the seat. Any 
secondary component of the aircraft’s interior that presents material failure and breaks 
loose should be unlikely to cause injury to the occupants or the fuel tanks of the aircraft 
[18]. 

CFR 25.562 describes the emergency landing dynamic conditions, where the seats 
should protect the occupants with the proper use of materials, belt harnesses and other 
safety attachments. 

For the needs of this study, the seat structure was examined with the guidance of 
CFR 25.562, which includes two categories of dynamic tests: a horizontal–longitudinal 
and a downward–vertical impact loading. 

Table 1 summarizes the dynamic tests that must be conducted with an approximately 
77.1 kg (170 pounds) anthropometric dummy model, which can simulate the occupant 
response to the applied dynamic loads, according to 49 CFR Part 572, Subpart B. 

Table 1. Summary of the dynamic tests of CFR 25.562. 

Test 1 Test 2 

 
 

Appl. Mech. 2023, 4, FOR PEER REVIEW 3 
 

 

every design concept. The initial phase consists of the design and a simplified geometry 
and concludes with a complicated multibody 3D nonlinear Finite Element (FE) model. 

This study is a conceptual study, as it does not rely on laboratory or industrial test 
data and does not follow optimization procedures of already-validated aircraft seats. It 
begins with the design of an initial aircraft seat model of isotropic materials, which is 
based on the global dimensions of three-occupant seats and concludes with a mass 
efficient composite seat model that exhibits a satisfying structural response. The Federal 
Aviation Regulation (FAR) 25.562 was used as a guideline to virtually test the seat design 
iterations, which describes the safety parameters of the two main tests: the vertical and 
longitudinal crash test. These two cases simulate the scenario of an emergency landing 
and the loads that are transferred from the aircraft structure to the occupants of the seats. 
The two variables monitored during the simulated tests were the structural response of 
the seats and the biomechanical loads that apply to the passengers of the aircraft’s cabin. 
In addition, the structural integrity and the survivability of the passengers during the 
crash test are the primary approval criteria, which are described in the FAR regulations. 
Lastly, it should be noted that the innovation of this work consists in the substitution of 
aircraft seats’ metallic parts with composite ones, which leads to reduced weight 
compared to the reference one without compromising structural safety and occupant 
safety. To the best of the authors’ knowledge, such work concerning passenger seats has 
never been published before. 

2. Materials and Methods 
The certification procedure of an aircraft seat configuration requires the conduction 

of specific static and dynamic tests, which are mentioned in 14 of the Code of Federal 
Regulations (CFR) Part 25, Subpart C and are CFR 25.561 & 25.562, which refer to the 
loading conditions that simulate a minor crash landing. CFR 25.561 refers to general rules 
regarding the safety of the occupants, where the aircraft must be designed such that a 
quick evacuation of the cabin is ensured, with the proper use of seats, belts and other 
safety provisions. Additionally, static loads are described, which apply to the seat-
occupants in multiple directions, to verify the structural integrity of the seat. Any 
secondary component of the aircraft’s interior that presents material failure and breaks 
loose should be unlikely to cause injury to the occupants or the fuel tanks of the aircraft 
[18]. 

CFR 25.562 describes the emergency landing dynamic conditions, where the seats 
should protect the occupants with the proper use of materials, belt harnesses and other 
safety attachments. 

For the needs of this study, the seat structure was examined with the guidance of 
CFR 25.562, which includes two categories of dynamic tests: a horizontal–longitudinal 
and a downward–vertical impact loading. 

Table 1 summarizes the dynamic tests that must be conducted with an approximately 
77.1 kg (170 pounds) anthropometric dummy model, which can simulate the occupant 
response to the applied dynamic loads, according to 49 CFR Part 572, Subpart B. 

Table 1. Summary of the dynamic tests of CFR 25.562. 

Test 1 Test 2 

 
 

Vertical loading Horizontal loading
Seat rotation: 60◦ 10◦ pitch, 10◦ yaw, 10◦ roll

Initial velocity: 10.67 m/s Initial velocity: 13.41 m/s
Maximum deceleration: 14 g at 80 ms Maximum deceleration: 16 g at 90 ms

Injury criteria: Spinal loading Injury criteria: HIC, Femur loading
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In addition, the appropriate study of the injury criteria for the occupant (Head and
the Femur in Test 2) can be achieved when there is contact with other solid bodies. Thus, a
third test can be defined based on Test 2, which studies two seat rows, whose distance is
obtained by the global dimensions of the airline’s seat arrangement (Table 2).

Table 2. Test 3 description.

Test 3

Appl. Mech. 2023, 4, FOR PEER REVIEW 4 
 

 

Vertical loading Horizontal loading 
Seat rotation: 60°  10° pitch, 10° yaw, 10° roll 

Initial velocity: 10.67 m/s Initial velocity: 13.41 m/s 
Maximum deceleration: 14 g at 80 ms Maximum deceleration: 16 g at 90 ms 

Injury criteria: Spinal loading Injury criteria: HIC, Femur loading 

In addition, the appropriate study of the injury criteria for the occupant (Head and 
the Femur in Test 2) can be achieved when there is contact with other solid bodies. Thus, 
a third test can be defined based on Test 2, which studies two seat rows, whose distance 
is obtained by the global dimensions of the airline’s seat arrangement (Table 2). 

Table 2. Test 3 description. 

Test 3 

 
Horizontal loading 

10° pitch, 10° yaw, 10° roll 
Initial velocity: 13.41 m/s 

Maximum deceleration: 16 g at 90 ms 
Injury criteria: HIC, Femur loading 

The attachment points of the aircraft seat must remain intact, and the restraint belts 
must remain constrained to the seat configuration while the primary loading path 
maintains its integrity. In the case of permanent plastic deformations of the aircraft seat 
or its attachments, they must not hinder the quick evacuation of the aircraft. In case of 
failure, tests must be repeated [19]. 

Crashworthiness requirements guide the design of the aircraft structures in order to 
improve their passive safety performance and to protect occupants from fatal injuries. To 
calculate the injury level of the occupants, experiments and numerical simulations are 
necessary [20]. The regulation CFR 25.562 examines three main categories of occupant 
injury, which are the head, lumbar and femur. 

The Head Injury Criterion (HIC) is a measure of the likelihood of head injury arising 
from an impact. In the crash-landing scenario, this criterion is examined only if there is 
contact of the occupant’s head with the interior features, such as the seat structures or 
aircraft frame, while body-to-body contacts are not taken into account [21]. The HIC is 
calculated by Equation (1): 

𝐻𝐼𝐶 = [(𝑡 − 𝑡 )[ 1𝑡 − 𝑡 𝑎(𝑡)𝑑𝑡] . ]  (1)

HIC must generally not exceed the 1000 units [22]. Otherwise, an HIC score of 1000 
represents the “safe” limit of human tolerance, above which the risk of a severe head 
injury is nonzero. Additionally, the maximum compressive force of the Lumbar column 
must not exceed 6.67 KN, while the maximum compressive force of each femur bone of 
the occupant must not exceed 10.012 KN. Finally, the torso restraint straps maximum 
tension load must not exceed 7.78 KN for single straps or 8.9 KN for dual straps. 

Horizontal loading
10◦ pitch, 10◦ yaw, 10◦ roll
Initial velocity: 13.41 m/s

Maximum deceleration: 16 g at 90 ms
Injury criteria: HIC, Femur loading

The attachment points of the aircraft seat must remain intact, and the restraint belts
must remain constrained to the seat configuration while the primary loading path main-
tains its integrity. In the case of permanent plastic deformations of the aircraft seat or its
attachments, they must not hinder the quick evacuation of the aircraft. In case of failure,
tests must be repeated [19].

Crashworthiness requirements guide the design of the aircraft structures in order to
improve their passive safety performance and to protect occupants from fatal injuries. To
calculate the injury level of the occupants, experiments and numerical simulations are
necessary [20]. The regulation CFR 25.562 examines three main categories of occupant
injury, which are the head, lumbar and femur.

The Head Injury Criterion (HIC) is a measure of the likelihood of head injury arising
from an impact. In the crash-landing scenario, this criterion is examined only if there is
contact of the occupant’s head with the interior features, such as the seat structures or
aircraft frame, while body-to-body contacts are not taken into account [21]. The HIC is
calculated by Equation (1):

HIC =

[
(t2 − t1)[

1
t2 − t1

∫ t2

t1

a(t)dt]
2.5
]

max

(1)

HIC must generally not exceed the 1000 units [22]. Otherwise, an HIC score of 1000
represents the “safe” limit of human tolerance, above which the risk of a severe head injury
is nonzero. Additionally, the maximum compressive force of the Lumbar column must not
exceed 6.67 KN, while the maximum compressive force of each femur bone of the occupant
must not exceed 10.012 KN. Finally, the torso restraint straps maximum tension load must
not exceed 7.78 KN for single straps or 8.9 KN for dual straps.

For this work, a three-occupant seat configuration was selected, which is typical for
economy class airlines.

The overall dimensions of the model were based on the combination of the known
global dimensions of the seats and the Anthropomorphic Test Devices (ATD). Two configu-
rations were examined: (i) a baseline model using metallic components and (ii) a second
one utilizing composites in several parts.
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The study model was subjected to a parametric analysis involving design modifications
to improve the structural response while complying with the occupant injury criteria. The
discrete steps followed are shown in the flow chart of Figure 2.
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As a first step, the interior of the aircraft cabin is studied regarding the arrangement of
the seats, the number of occupants that can be restrained per seat and the seat orientation
and distancing. The global dimensions of the seat configuration, such as the width, the
length and the distance between two rows of seats, are defined by the aerospace industry
and depend on whether the comfort and spaciousness are of high importance. An aircraft
cabin with small-sized seats and narrow space between the seat rows can transport more
passengers and thus be more profitable for the airline company. For this study, the global
distances of the seat rows were chosen with the guidance of the UK Civil Aviation Authority
Airworthiness Notice 64 [23], as summarized in Table 3 and depicted in Figure 3.

Table 3. Distancing of aircraft seats [23].

Dimension Description Minimum

A
The minimum distance between the back

support cushion of a seat and the back of the
seat or another fixed structure in the front

26 inches
(660 mm)

B The minimum distance between a seat and the
seat or another fixed structure in the front

7 inches
(178 mm)

C
The minimum vertically projected distance

between seat rows or between a seat and any
fixed structure in front of the seat

3 inches
(76 mm)
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The study of the structural integrity during an impact can be achieved with the
dynamic approach of the event, where the solution is given by nonlinear differential
equations. The unknown variables of the problem, such as displacement, velocity and
acceleration, are calculated directly by numerical solutions and are used to evaluate the
stress, stain and energy of the structure. For the needs of this study, the simulation of
the impact dynamic event was achieved with the use of the LS-Dyna explicit integration
method. LS-Dyna is a Finite Element Analysis (FEA) package that can numerically approach
the static and dynamic response of structural components, where the explicit method is its
primary analysis procedure. The main equilibrium equation of a dynamic event is given by
Equation (2) [24]:

M
{ ..

U
}
+ C

{ .
U
}
+ K{U} = {Fext(t)} (2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, Fext is
the external load,

..
U is the acceleration,

.
U is the velocity and U is the displacement. The

numerical approach for the calculation of the unknown variables in LS-Dyna for the explicit
method is based on the Central Difference scheme, which directly calculates (without
matrix inversion) the value of displacement U at time level n + 1 and therefore every
other variable of the problem, such as the velocity, acceleration, stress, strain, etc., using
Equations (3) and (4): [

[M]
∆t2 + [C]

2∆t

]
{U}n+1 =

{Fext}n − {Fint}n +
[M]
∆t2

[
2{U}n − {U}n−1

]
+ [C]

2∆t{U}n−1

(3)

{U}n−1 = {U}n − ∆t
{

dU
dt

}
n
+

∆t2

2

{
d2U
dt2

}
n

(4)

The FE model was created after a geometry cleaning procedure that was applied to
the Computer-Aided Designs (CAD), and several seat attachments were removed from
the model since they had no load-bearing contribution, which resulted in the reduction
of the computational cost. In addition, the focus in the conceptual study model is the
failure of the composite material and the injury criteria obtained from specific metrics
from anthropomorphic models. Therefore, the parts of the structure included are the ones
capturing the transmittance of the loads in an effort to increase computational efficiency
and avoid further complexity that would add further uncertainties to anthropomorphic
device kinematics. For this reason, fasteners are represented by contact algorithms assigned
a linear elastic stiffness without any damage behavior and are only used to compute the
transferred fastener load for detailed analysis, which is beyond the scope of this study [25].

The ATDs that were used are the LSTC Hybrid III 50th Fast Dummies [26,27], and
their positioning and seating restraint and the preparation of the dynamic tests were
carried out with the guidance of the Advisory Circular (AC) 20-146 [28,29]. The final
models of the occupant seats, shown in Figure 4, were used for the non-linear dynamic
crash simulations, where the structural response and the biomechanical loading of the
dummies were observed, and modifications took place to achieve the satisfaction of the
certification criteria.

The finite element model generation was completed with the definition of the consti-
tutive models of the materials concerning their nonlinear response and failure, the element
topology parameters and the model boundary conditions.

The selection of the materials for the seat structure was carried out with regard to
multiple factors that are associated with stiffness, energy absorption and material density.
In general, the choice of the right material is made knowing the requirements that the
system must fulfil [30]. For the needs of this study, most of the components are composed
of aluminum alloys, such as Al 2024-T3, which has an acceptable structural response to the
mechanical loads of the study case. For injection molded components such as covers for the
main body of the seating, foams for the seat pans and backrests, T85 ABS-Polycarbonate



Appl. Mech. 2023, 4 7

blend was used. The usage of materials in different parts of the seats in both the initial and
improved versions is shown in Figure 5.
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The mechanical properties of the isotropic materials (Aluminum, plastic T85 and
foams) are summarized in Tables 4 and 5, whereas the properties of the composite material
are shown in Table 6.

Table 4. Isotropic materials’ mechanical properties.

Material Density Young
Modulus

Ultimate
Strength (σSU)

Yield Strength
(σSF) Poisson’s Ratio Elongation at

Break

Aluminum
2024-T3 2780 kg/m3 73.1 GPa 483 MPa 345 MPa 0.33 18%

Aluminum
6082-T6 2700 kg/m3 70.0 GPa 300 MPa 255 MPa 0.33 10%

Aluminum
7075-T6 2810 kg/m3 71.7 GPa 572 MPa 502 MPa 0.33 11%

Titanium
3AL-2.5V 4480 kg/m3 107 GPa 790 MPa 690 MPa 0.33 15%

PC ABS T85 1115 kg/m3 2.3 GPa 54 MPa 50 MPa 0.35 80%
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Table 5. Cushion foam’s mechanical properties.

Material Density Compressive Deflection

Polyethylene foam
ETHAFOAM 4191FR

35.2 kg/m3
10% 0.055 MPa
25% 0.069 MPa
50% 0.138 MPa

Table 6. Composite material T300/5208’s mechanical properties.

Property Value

Ply thickness, t 0.125 mm

Modulus of elasticity 0◦, E1 181 GPa

Modulus of elasticity 90◦, E2 10.3 GPa

Poisson’s ratio, v12 0.28

Shear Modulus, G12 7.17 GPa

Tensile strength 0◦, Xt 1500 MPa

Compressive strength 0◦, Xc 1500 MPa

Tensile strength 90◦, Yt 40 MPa

Compressive strength 90◦, Yc 246 MPa

Shear strength, Sc 68 MPa

Density, ρ 1760 kg/m3

Isotropic materials were modeled on the von Mises failure criterion, since it predicts,
with accuracy, the yield and fracture failure mechanisms [31]. The calculation of von Mises
stress is given by Equation (5). Equation (6) gives the yield failure if nSF is less than 1, and
Equation (7) gives the fracture failure if nSU is less than 1.

σvM =

√
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6
(
σ2

12 + σ2
23 + σ2

13
)

2
(5)

nSF =

∣∣∣∣σvM
σSF

∣∣∣∣ (6)

nSU =

∣∣∣∣σvM
σSU

∣∣∣∣ (7)

For the composite components, the Material model MAT_54 was used, and their
response was evaluated with the Chang–Chang failure criterion that is implemented
in LS-Dyna due to its ability to consider failure in the fiber and matrix independently.
This material model simulates the progressive damage under crash conditions, where
the elements are deleted when the Chang–Chang criterion is fulfilled [32]. The ability to
calculate the degradation of the material mechanical properties requires extensive tuning
and calibration to produce reliable results [33], and, thus, the composite components of
this study were designed to withstand the impact loads without any material failures. The
Chang–Chang failure criterion equations are shown in Equations (8)–(11) [24].

Fiber failure Tensile fiber mode, σ11 ≥ 0

e2
f =

(
σ11

Xt

)2
+

(
σ12

Sc

)2
− 1

{
≥ 0 : f ailed
< 0 : elastic

(8)
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Compressive fiber mode, σ11 < 0

e2
c =

(
σ11

Xc

)2
− 1

{
≥ 0 : f ailed
< 0 : elastic

(9)

Matrix failure Tensile matrix mode, σ22 ≥ 0

e2
m =

(
σ22

Yt

)2
+

(
σ12

Sc

)2
− 1

{
≥ 0 : f ailed
< 0 : elastic

(10)

Compressive matrix mode, σ22 < 0

e2
d =

(
σ22

2Sc

)2
+

[(
Yc

2Sc

)2
− 1

]
σ22

Yc
+

(
σ12

Sc

)2
− 1

{
≥ 0 : f ailed
< 0 : elastic

(11)

Some of the most important considerations that must be taken into account by the
Computer-Aided Engineering (CAE) user are the element types and the level of refinement
of the mesh. In addition, it is of high importance to define the appropriate number of
elements for the mesh in order to ensure the optimum accuracy of the results, which can
be achieved with convergence studies. Element convergence studies can aid engineers
in establishing the mesh refinement requirements and at the same time aid reviewers in
evaluating the quality of the fine element model [34].

For the requirements of this study, the following element formulations from LS-Dyna
were used (Table 7) [35]:

Table 7. Element formulations used in the models.

Element Type Element Formulation

Shell elements Formulation (2)
Belytscho–Tsay

Solid elements

Formulation (1)
Constant stress solid element
&
Formulation (2)
Fully integrated S/R solid

Beam elements Formulation (1)
Hughes–Liu with cross-section integration

1D seatbelt elements Seatbelt formulation

2D seatbelt elements Formulation (9)
Fully integrated Belytscho–Tsay membrane

The unit system that was used in this study is presented in Table 8 and was determined
by the unit system of the LS-Dyna’s ATD.

Table 8. Unit system.

Mass Length Time Force Stress Energy Gravity
kg mm ms kN GPa KN-mm 9.806 × 10−3

The convergence study was conducted by splitting the assembly of the structure to
individual sub-models, which were studied for their mesh refinement level. The sub-
modeling procedure requires analysis results from the initial model, which will be used to
clarify the model locations of high interest and the components that are critically loaded.
First, the structure is categorized and distinguished by its subcomponents with respect
to their location and their role in the overall response of the structure. The study of each
distinguished sub-model is achieved with the isolation of the appropriate boundary and
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loading conditions that can simulate the exact structural response with an integral seat
model. In addition, the convergence study was conducted considering the computational
capabilities and time-cost of the simulation, while balancing it with the desirable accuracy
of the results.

In Figures 6 and 7 are shown the mesh refinement process for the rear legs of the seat
structure, which were proved to be the most highly loaded components of the structure.
The von Mises stress corresponding to each mesh size is shown in Figure 8 and summarized
in Table 9.
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The evaluation of the convergence results indicates that the use of the initial mesh,
which consists of the fewest finite elements, produces fairly accurate stress results, and
the stress fields of the three mesh cases seem to be similar. In addition, it is observed that
the computational time that is needed for the analysis changes relative to the number of
elements; thus, the mesh that is selected for the analysis of the full model is the one in the
first case.
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The study of a structural problem requires the definition of its boundary conditions,
which are the forces that are required to solve a model or the deformations associated with
these forces. In this study, the seating system is considered rigidly attached to the aircraft’s
floor, and, thus, restrictions were applied to the degrees of freedom (d.o.f) of the seat leg’s
lower structure, While the model was subjected to the application of the gravity field, the
prescribed acceleration was 14 g for test 1 and 16 g for test 2 and test 3. Additionally, the
applied boundary and loading conditions for the sled tests of this study can be summarized
in Figure 9.
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3. Results

The accurate examination and evaluation of the produced results from the crash
simulations require the detection of the most critical areas of the structure. For this reason,
the numbering convention of the primary loaded parts of the seat is shown in Figure 10.
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Additionally, regarding the study of the occupant injury criteria, a proper numbering
of the dummies is needed. The calculation of the accelerations and loads that apply to the
passengers and thus the potential injuries that may occur follows the numbering shown in
Figure 11.
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The worst-case scenario, regarding the structure’s loading, is observed in Test 3 for
the study of two seat rows, where the frontal seat rows are stressed more intensively than
the rear. Except for the examination of the structural response, this simulation also studies
the biomechanical forces that apply to the head (HIC) of the rear passengers when they hit
their frontal seats, as seen in Figure 12. The materials that were chosen and the geometric
characteristics of the backrests make them energy-absorbing and thus smooth the head’s
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impact and decrease the probability of a serious injury during the event of a minor crash
landing. From the kinematical representation of the crash test, it can be assumed that the
aircraft seat and all its components remain attached to the main body of the structure. The
dummies that represent the hypothetical passengers also remain constrained to their seats.
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The examination of the stress results shows that the seat structure maintains its
integrity and that there are not material failures or critically loaded areas. In addition, the
structure’s components that are responsible for the inherent energy-absorbing behavior
of the seat configuration exhibit intense plastic deformation, which results in the energy
extraction from the system of seat occupants. The frontal seat row has a more intense
loading than the rear because it is stressed with both the applied deceleration of the crash
test and the impact of the rear passengers, which can be observed in the von Mises stress
diagram of Figure 13 and in the study of the safety factor for the isotropic materials of
Table 10.
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Table 10. Isotropic material safety factor against the fraction for test 3.

Seat Component Location Material Frontal Seat Row Safety Factor Rear Seat Row Safety Factor
7 PC ABS T85 1.10 5.56

8 PC ABS T85 1.12 7.66

9 PC ABS T85 1.07 5.04

10 PC ABS T85 1.12 2.82

11 PC ABS T85 1.12 1.95

12 PC ABS T85 1.17 4.35

13 Aluminum 6082-T6 1.63 1.80

14 Aluminum 6082-T6 1.57 2.38

15 Aluminum 6082-T6 1.22 1.22

17 Titanium 3AL-2.5V 3.51 11.62

19 Titanium 3AL-2.5V 3.24 13.39

21 Titanium 3AL-2.5V 3.97 13.28

23 Titanium 3AL-2.5V 3.50 13.37

24 Aluminum 2024-T3 1.41 4.47

25 Aluminum 2024-T3 1.40 3.83

26 Aluminum 2024-T3 1.40 4.95

27 Aluminum 2024-T3 1.40 4.47

28 Aluminum 2024-T3 1.39 3.72

29 Aluminum 2024-T3 1.41 4.09

30 Aluminum 7075-T6 2.60 2.05

31 Aluminum 7075-T6 2.50 1.40

32 Aluminum 7075-T6 2.49 2.04

33 Aluminum 7075-T6 2.32 2.25

34 Aluminum 2024-T3 1.50 3.80

35 Aluminum 2024-T3 1.67 5.60

36 Aluminum 2024-T3 1.73 5.08

37 Aluminum 2024-T3 1.64 5.55

38 Aluminum 2024-T3 1.68 4.31

39 Aluminum 2024-T3 1.50 3.83

40 Aluminum 2024-T3 2.68 3.80

41 Aluminum 2024-T3 1.37 1.45

42 Aluminum 2024-T3 1.53 1.52

43 Aluminum 2024-T3 1.45 1.57

44 Aluminum 2024-T3 1.37 1.47

45 Aluminum 2024-T3 2.30 4.03

52 Aluminum 2024-T3 1.40 1.80

53 Aluminum 2024-T3 1.13 1.37

56 Aluminum 2024-T3 1.42 1.67

57 Aluminum 2024-T3 1.12 1.38

Lastly, the laminated composite components remained intact, without exhibiting any
material failure in the matrix or fiber direction. Specifically, the Chang–Chang criterion of
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the LS-Dyna’s MAT_54 studies the potential types of composite damage separately, which
can be examined by the user with the study of the package’s history variables. In Figure 14,
the results of the LS-Dyna’s history variable 5 are presented, which indicates the total
composite failure for every time-step of the simulation, with its values varying from 0 for
total composite failure to 1 for intact material. Considering that, at the last time-step of the
simulation (t = 180 ms), there are not any values below 1 in the unit scale, it can be assumed
that there are no material failures throughout the impact test [36].
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The evaluation of the injury possibility of an occupant during the crash test, with the
calculation of the occupant’s lumbar compressive forces in Figure 15, head acceleration in
Figure 16 and the femur compressive forces in Figures 17–19, is conducted for test 1 and
test 3 for the case of the two seat rows. The results from the injury criteria study indicate
that the occupants are well protected and that they are likely to survive a minor crash
landing (Tables 11–13).
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Figure 19. Test 3: Dummy 3’s compressive force (KN) vs. the time (ms) of (a) the left femur and (b)
the right femur.

Table 11. Summary of Test 1: Lumbar maximum compressive force values.

Dummy Position Lumbar Compressive Load Critical Value

1 −3.53 KN −6.67 KN

2 −3.40 KN −6.67 KN

3 −3.54 KN −6.67 KN

Table 12. Summary of Test 3: HIC injury criteria values.

Dummy Position HIC Critical Value

1 477.6 units 1000 units

2 430.7 units 1000 units

3 520.7 units 1000 units

Table 13. Summary of Test 3: Femurs’ maximum compressive force values.

Dummy Position Left Femur
Compressive Load

Right Femur
Compressive Load Critical Value

1 −2.19 KN −2.12 KN −10.012 KN

2 −1.99 KN −3.15 KN −10.012 KN

3 −2.06 KN −4.51 KN −10.012 KN

4. Weight Reduction

The weight reduction that was achieved with the use of composite materials is approx-
imately 48% and is summarized in Table 14.

Table 14. Weight calculations for the assembly of the three-seat configuration models.

Structural Component Model 1 Weight (kg) Model 2 Weight (kg) Weight Reduction

Back rests 15 8.42 43.8%

Seat pans 13.6 6.93 49.0%

Spreaders 4.73 4.45 5.9%

Tubular axis 6 2.62 56.3%

Seat legs 12.67 4.61 63.6%

Total 52 27.02 48%

5. Discussion

A 27 kg custom design of the aircraft seat exhibits an acceptable mechanical behavior
as a matter of structural integrity and occupant safety. There are no major material failures
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of the isotropic metallic and polymer plastic components that exist in the primary loading
path of the seat structure, nor are there minor failures for the anisotropic composites.
The aluminum and plastic components that deform intensively and thus enter the plastic
region of the material behavior result in the energy absorption of the system seat-occupant
and decrease the possibility of the material fracture of the critically stressed areas of
the seat or the occurrence of occupant injury. In addition, it should be noted that even
though the produced results of the FE simulation are acceptable and promising, the CAE
methods cannot replace the full-scale physical tests. However, the methodology that was
followed for the design and study of this concept of an aircraft seat model, combined with
the satisfaction of FEA reliability factors, such as convergence analysis and FE quality
parameters, indicate that the produced model has promising characteristics and thus can
proceed to the next steps of the development, such as the enhancement of the FE model
and the further reduction of the seats’ weight. Lastly, it should be underlined that the
main accomplishment of this study is the parallel replacement of isotropic materials with
composites as a means of weight reduction, along with the structural behavior enhancement
of the remaining isotropic materials in order to maintain the energy-absorbing behavior of
the aircraft seats in the impact event.
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