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Abstract: In order to achieve realistic simulations of the chip formation, high quality input data
regarding the flow stress and damage behavior of the materials are required. The split Hopkinson
pressure bar (SHPB) test setup for the characterization of highly dynamic material properties offers
a suitable method for generating high strain rates, similar to those in the chip formation zone.
However, the strain measurement in SHPB is usually performed by means of strain gauges. This
leads to an unreliable evaluation of strain rate and flow stress/shear flow stress in the case of an
inhomogeneous material deformation, since this method presents the total strain whilst excluding
local deformations. Inhomogeneous deformations are induced deliberately in special shear specimens,
as they are also observed in the investigated cylindrical specimens. The present work deals with
this issue by providing two additional measurement techniques, which are applied in SHPB tests
for cylindrical specimens made of AISI 1045 and Ti6Al4V. To enable a local strain resolution, digital
image correlation (DIC) is applied to high-speed images of the deformation process. In order to allow
for the detection of shear bands in the specimens, a deep-learning-based approach is presented. The
two measurement methods (strain gauges and DIC) are compared and discussed. In particular, the
findings regarding the inhomogeneous deformation of Ti6Al4V allow for future improvements in the
result quality of SHPB tests. The presented algorithm shows promising predictions for shear band
detection and creates the basis for an automated evaluation of shear sample results, as well as an
AI-based pre-selection of frames for the DIC evaluation of SHPB tests.

Keywords: split Hopkinson pressure bar (SHPB); digital image correlation (DIC); high strain rate
testing; deformation behavior; microstructure; deep learning

1. Introduction

Numerical simulations have become an indispensable element of the further develop-
ment of processes and tools for metal cutting [1] and metal forming [2]. One of the most
influential inputs in the underlying models is the description of plastic material behavior,
where adequate modeling primarily requires a suitable material characterization [3]. In the
case of chip formation simulations, however, material characterization is challenging as a
result of high strains (up to 1000%), strain rates (up to 106 s−1), and temperatures (more
than 1000 ◦C). In order to achieve a realistic representation of the chip formation zone,
these parameters have to be considered [4]. A proven method for characterizing plastic
deformation behavior at high strain rates is the SHPB test. In this experiment, a highly
dynamic impulse is introduced into a bar system (comprising incident and transmission
bars). The specimen is positioned between those two bars and thus deformed. Strain
measurements applied to the bars can be used to estimate the plastic deformation behavior
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of the specimens. To assess the thermal conditions in the chip formation zone, SHPB test
rigs can be extended by heating devices. High temperatures and heating rates are needed
to adequately fit the conditions in cutting. Therefore, inductive specimen heaters are the
most suitable method for this purpose [5]. The history and more details on the principle of
the test can be found in [6].

Although the experimental principle of the SHPB has been known and proven for a
long time, the results are used in increasingly complex plasticity models, which is why a
further addition of multi-axial deformations and the improvement of accuracy in SHPB
tests is an important objective. It should be noted that the measurements and evaluations
based on strain gauges are accompanied by simplifying assumptions. Within these tests,
there are deviations from these assumed ideal conditions depending on the detailed test
setup, the material to be tested, and the specimen geometry. Moreover, the history of
deformation, which also influences the flow stress behavior [7], can only be mapped to
a limited extent by such measurements. In their study, Lu et al. found that, despite
high-quality specimen preparation and the tribological processes in the interface of the
specimen and the bars, the influence of face friction cannot be neglected, as it influences the
measurement results [8]. Jaspers and Dautzenberg further explained that inhomogeneous
material deformation occurs when using conventional cylindrical specimens since, contrary
to theoretical assumptions, friction at the end faces cannot be avoided completely. For this
reason, they use so-called Rastegaev specimens, which exhibit a reduced cross-sectional
area at the end face. However, this leads to a higher preparation effort. Moreover, it is not
fully known how this specimen geometry affects the deformation in addition to the friction
reduction [9].

In addition to the friction between the specimen and the bar, another challenge in
characterization accuracy occurs for materials that tend to have inhomogeneous defor-
mation behaviors, which is also the case for titanium alloys [10]. Ran et al. investigated
the flow-stress behavior of a different titanium alloy over a wide range of strain rates. As
is typical for titanium materials, shear bands and cracks appeared in several specimens,
particularly at high strain rates and high temperatures. Qualitative statements on the shear
behavior could be made by subsequent analysis of the specimens. However, these results
cannot be transferred into a quantitative analysis by evaluating the measurement signals at
the SHPB [11].

High-speed cameras represent a promising approach for quantifying the inaccuracy
in the evaluation of SHPB tests, achieving an appropriate compensation, and developing
alternatives for quantifying deformation behavior. However, since very high recording
rates are required to capture the highly dynamic deformation in SHPB, this possibility has
only existed for a few years, and the number of publications on this topic is still fairly
low. In 2005, Whitenton reported on a SHPB test rig with a high-speed camera [12]. At
that time, however, no quantitative evaluation of the images to determine the strains was
possible. The measurement of SHPB using DIC is still not a common procedure. While
Cao et al. performed a DIC-based strain measurement in quasi-static tensile tests, the
SHPB tests presented in this work were performed without DIC [13]. The usage of DIC in
quasi-static tensile tests has been proven to be valid and corresponds with measurements by
means of a tactile extensometer [14]. Cui et al. did not apply a high-speed camera directly
to the SHPB, but compared strain measurement results from chip pulling experiments
using a high-speed camera setup, with results from SHPB. In the chip pulling experiments,
digital image correlation (DIC) in combination with force measurements is used for flow
stress characterization. In this case, the difference in flow stress between the chip pulling
experiments and the SHPB experiments was only 3%. However, the results of the two
test setups are not fully comparable in terms of the boundary conditions [15]. In contrast
to this study, Lee and Huh used a high-speed camera for shear and tension flow stress
characterization experiments on two different devices, leading to a large interval of strain
rates between

.
ϕ = 0.001 . . . 1000 s−1. For this purpose, a new kind of shear specimen

was developed, which was designed with the help of finite element simulations. The
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experiments identified a significant effect of the strain rate on the flow stress for shear
and tension experiments, as well as differing effects between the two deformation modes.
At low strain rates, the flow stress in the shear case is below that of the tension case,
but then it increases more rapidly as the strain rate increases and exceeds tension from
about

.
ε = 103 s−1 [16]. In a comparable work on shear flow stress characterization at the

SHPB, Jia et al. developed a novel design for a shear specimen and characterized the
shear deformation over a wide strain rate interval. The measurements and subsequent
calculations of strain, strain rate, and yield stress based on strain gauges for their specimen
showed a large deviation compared to evaluations using a high-speed camera, as the strain
gauges were not suitable for complex specimen geometries. Based on these findings, a
correction factor for the strain-gauge-based flow curve calculation was developed from the
high-speed DIC measurements [17]. Another possible application for using high-speed
cameras in SHPB measurements was found by Guo et al. They used DIC analysis for strain
and strain rate measurements, in addition to strain gauges, measuring stress in SHPB tests
on composite specimens of pure titanium and Ti6Al4V. The motivation for these combined
analyses is to determine which portion of the deformation and material failure occurs in
which part of the composite specimen. It is known that the role of DIC analysis in SHPB
needs further investigation [18].

Challenges regarding the application of high-speed cameras with subsequent DIC
analysis in SHPB occur due to the high testing speeds, and thus the high strain rates, which
emerge during those tests. The nominal strain rate during SHPB tests with standardized
specimen geometries is usually about 2000 s−1, meaning a minimum recording rate of
10,000 Hz is necessary to receive at least one picture within the test time.

High-speed camera detectors are designed to perform pixel reading line-wisely, so
higher recording rates can only be achieved by reducing the number of pixels of the
frame. In addition, a small specimen geometry is used in SHPB tests, further impeding
the resolution of the recorded area of the specimen. Since the specimens to be observed
are cylindrical, they exhibit a curved surface, which generally leads to a smaller light
output, following the scattered reflection of additional light sources. However, this light
output is needed for the detector of the camera in order to minimize exposure times and
thus maximizing recording rates. Additionally, the curved surface and thus the scattered
reflection of the light also results in varying light outputs depending on the radial position,
since the amount of reflection of ambient and additional light sources is different. As
a consequence, the usage of polarizing filters, which absorb certain light directions, is
mandatory. In doing so, the overall amount of light output is decreased. It is assumed
that the validity of the DIC results is greater than those obtained by strain gauges, since
variations in the behavior of different specimens, as well as inhomogeneous deformations,
are considered.

Due to the high deformation speed in SHPB tests, plastic flow leads to high local
dissipation. In combination with low heat conduction, local thermal softening is introduced
in highly strained areas. This results in local reductions in the material strength and the
continuation of strain accumulation in shear zones, which are called adiabatic shear bands.
SHPB experiments can also introduce these adiabatic zones under controlled conditions,
as a means of evaluating the flow stress under shear deformation. Within this kind of
experiment, there is a need for detailed evaluation of the specimen’s deformation, since
general calculations for strain, strain rate, and stress do not work reliably due to the lack of
standardization of experimental setups and specimen geometries [19]. Microscopic studies
by Johansson et al. suggest that the shear zones introduced by SHPB are similar to those of
chips, both in structure and texture, as well as the transition zone [20].

Recent developments in deep learning have led to the development of segmentation
models with excellent segmentation quality, even when applied to small data sets [21]. By
training segmentation models on shear bands in SHPB samples which are introduced in a
controlled way, the resulting textures are learned from the model, allowing these models to
detect identical textures in chips. While the location of the shared zone in the SHBP test is
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well defined, the distribution of the shear zone in chips is more complex. This means that
it is significantly more challenging to detect the shear zone in chips than in SHPB shear
specimens. By using the same segmentation model for segmenting the sheared areas in
chips, a reliable method for detecting the shear band without human bias was developed,
focusing on the automation of the microstructural analyses of SHPB specimens and chips.

Following on from the aforementioned investigations, this work aims to compare the
results of SHPB tests that use strain gauges to those that use high-speed DIC measurements,
each for a steel material and a titanium alloy. It is hypothesized that there will be a
discrepancy between the two measurement techniques, with the deviation presumed to be
greater for the titanium specimens, which tend towards inhomogeneous deformation, than
for the more ductile steel material.

In order to achieve this, the paper unfolds as follows. First, the materials and experi-
mental boundary conditions are explained. In the main section, the results are presented
and discussed. Finally, a conclusion is drawn and an outlook for future investigation
approaches is given.

2. Materials and Methods

During the machining of metallic materials with commonly used cutting speeds, high
rates of deformation and high strain rates occur. Accordingly, to accurately characterize
the behavior of metallic materials for chip formation simulations, it is necessary to gain
information about the influences of strain, strain rate, and temperature on the flow stress,
specifically at high strain rates. The experimental setup used for dynamic flow stress
characterization using the SHPB is shown in Figure 1.
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A cylindrical specimen is positioned between two steel bars, which are subjected to
a mechanical pulse by means of a pneumatic pulse generator. This impulse first travels
through the incident bar and is partly reflected at the interface with the specimen, as well
as being partly introduced into the specimen, which is then deformed. At the other end of
the specimen, the pulse is partly reflected into the specimen and partly transmitted into the
transmission bar. The reflected pulse and the transmitted pulse are recorded with the help
of strain gauges, which are applied in a diagonal bridge circuit. The signal is captured with
a sampling frequency of fS = 1 MHz using the HBM GEN3i transient recorder. Based on
these results, the plastic deformation behavior can be inferred in the form of a stress–strain
curve as well as a strain-rate–time curve, based on Equations (1)–(3). In addition, a mean
value is calculated by the strain rate over time, which is characteristic of the respective test.

σsp = εa Abar Ebar A−1
sp (1)

where h σsp: stress of the specimen (MPa), εa: elastic strain in the transmitted bar (-), Abar: bar
cross section (mm2), Ebar: E-modulus of the bar (N·mm−2), Asp: specimen cross section (mm2).

ϕsp = 2 cs l−1
sp

∫ t

0
εrdt (2)

where ϕsp: plastic strain of the specimen (-), cs: speed of sound (m·s−1), lsp: specimen
length (mm), εr: reflected elastic strain in the incident bar (-).

.
ϕsp = 2 εr cs l−1

sp (3)

where
.
ϕsp: strain rate of the specimen (s−1), εr: reflected elastic strain in the incident bar (-),

cs: speed of sound (m·s−1), lsp: specimen length (mm).
Within this work, the experimental setup was modified by integrating a high-speed

camera system (GOM ARAMIS HHS, fmax = 900,000 s−1). For the purpose of visual strain
measurement of the specimen surface utilizing DIC analysis (GOM Correlate 2019), a
pattern with white coating and black speckles was attached to the specimen using spray
cans. First, the general high-speed camera setup at the SHPB was arranged such that a
frame rate of f1 = 64,000 s−1, with a related exposure time of texp,1 = 1.5·10−5 s, could be
achieved by using two light projectors, which were directed at the top and the bottom of
the specimen. As such, the resolution was limited to 256 × 256 pixels.

Since the formation of cracks and shear bands in high-strength materials is known to
be a challenge in the evaluation of SHPB tests, and since these are additionally deliberately
induced when shear specimens are used, a deep learning approach was developed to ac-
company the investigations, which allowed for the automated detection and quantification
of shear bands. For this purpose, each pixel in the microscopy images was classified and
divided into areas with shear bands and without shear bands. This image segmentation
was carried out by a neuronal network, which learns the specific pattern of shear bands. In
this study, unsupervised pre-training was performed using an autoencoder. This type of
machine learning model reproduces its input by compressing it into a low-resolution latent
space. A decoder reconstructs the data in the latent space representation to the original
input. The reconstruction is compared with the input data by the mean squared error.
The weights of the encoder and decoder are adapted until the optimum reconstruction
is achieved by backpropagation. Due to the low degrees of freedom in the latent space,
the encoder selects the most imported feature for the reconstruction and therefore learns
an efficient encoding of the data. By transversal learning, the pre-trained weight of the
encoder is used for segmentation as the initial network weight. This reduces the duration
of convergence while training, and can boost the network’s accuracy [22]. To prove the
transferability to chip formation, the segmentation network is also applied to segmented
shear bands of chips. An overview of the procedure is shown in Figure 2.
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Figure 2. Sequence diagram of the deep learning approach.

Twelve high-resolution images of shear specimens were manually segmented to
guarantee high segmentation quality. Due to the resolution of 1200 × 1600 pixels, these
images provide sufficient information for deep learning. Three images were kept in a
holdout subset to prove the generalization capability of the network. Therefore, nine
images were available for training. By varying the input images, the variance of the
training data was increased, which reduces overfitting. Therefore, data augmentation, such
as random rotation, horizontal and vertical flipping of the image, and random variation of
contrast and brightness, is applied. While training, the augmented images were cropped
in 500 × 500 patches and are stored in the GPU memory as a batch. After each training
iteration, a new batch with new augmented image patches was generated and used for
training (Figure 3).
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A UNet [23] was used for segmentation. The initial number of kernels for the first
convolution was reduced from 64 in the original architecture in [23] to 8, to account for
the size of the training dataset. Instead of a ReLU activation function, leaky ReLU was
utilized to overcome the “dying ReLU” problem [24]. The operation of fully convolutional
networks is essentially independent of the input variable. The network is implemented
with the PyTorch library [25], which makes it possible to dynamically adapt the network to
the given input size. The encoder uses the resize transform from the Torchvision library
of PyTorch to interpolate the output to the required shape after transposed convolution
to compensate for shape variations in transposed convolution related to padding. The
network architecture with the number of kernels used for each convolution in the encoder
and decoder blocks is shown in Figure 4.
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Figure 4. Structure of the autoencoder and UNet.

Pre-trained networks consistently outperform random initialized networks [26]. The
decoder is pre-trained by an autoencoder to improve the segmentation quality. The au-
toencoder uses the eval structure of the UNet encoder; however, the skip connections are
missing (Figure 4). For both the autoencoder and the UNet, the same training parameters,
training data, and validation data were used. The network weights were adapted by an
Adam optimization algorithm with a learning rate of γ = 1 × 10−4 [27]. The performance
of each model was computed after each batch and the best performance model was saved.
The mean squared error loss was used as a loss function for the autoencoder, and a loss
function based on the Dice score was used for the segmentation; this compensates for the
small portion of the sheared area, which leads to a highly unbalanced class derivation of
the background and sheared areas in the image.

3. Results

The first test on Ti6AlV4 with the named parameters showed that the chosen integra-
tion and exposure times would not fit the high strain rates occurring at the specimen’s
surface, so motion blur occurred on the recordings (Figure 5a). This necessitated further
adjustments to the camera settings. Subsequently, the light output was increased using
four light projectors, which were positioned along the radial direction of the specimen. In
doing so, the exposure time was reduced to texp,2 = 5·10−6 s, simultaneously increasing
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the recording rate to f2 = 90,000 s−1 and further reducing the resolution to 256 × 160 pixel.
However, the frame still included the whole specimen geometry (Figure 5b). It is apparent
that the optimization of the camera parameters results in significantly less pronounced
motion blur.
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point for this measurement, as the difference remains unchanged. Figure 7a shows the 
absolute strain differences in the eleven measurements. It can be seen that the maximum 
deviation of the extensometer measurement is roughly double the areal strain calculation. 
The same difference in areal and extensometer strain measurements can be seen from the 
length change (Figure 7b). Nevertheless, the maximum deviation of 9 μm is low, consid-
ering the resolution of 39 μm per pixel in this test setup. 

Figure 5. Comparison of high-speed camera parameters with (a) motion blur and (b) no motion
blur occuring.

In order to define the camera system’s accuracy, eleven recordings were taken of the
specimen in an undeformed initial state. The subsequent DIC analysis was evaluated
regarding the maximum deviation in the engineering surface strain εx and length change
∆lx. The evaluation was conducted on the one hand by using the arithmetic mean strain
of the entire visible specimen’s surface, and, on the other hand, by means of a digital
extensometer, which was positioned in the center of the specimen (Figure 6). In order
to establish a testing strategy under authentic and application-oriented conditions, the
measurement was carried out with the optimized parameters as described above.
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Figure 6. Areal and extensometer strain interpretation.

The evaluated maximum deviations of the eleven pictures are shown in Figure 7. Since
the first picture is referred to as the initial state (reference), the value for both strain and
length change is zero. The following data points show deviations in relation to the first
picture, while the mentioned value is the difference in the maximum deviations in positive
and negative directions. This means there is no need for a particular reference point for this
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measurement, as the difference remains unchanged. Figure 7a shows the absolute strain
differences in the eleven measurements. It can be seen that the maximum deviation of
the extensometer measurement is roughly double the areal strain calculation. The same
difference in areal and extensometer strain measurements can be seen from the length
change (Figure 7b). Nevertheless, the maximum deviation of 9 µm is low, considering the
resolution of 39 µm per pixel in this test setup.
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From previous investigations, the maximum strain in the tests is expected to be approx.
20%, so the relative deviation is about 0.16% for extensometer and 0.075% for areal strain
measurements. However, this method presents the accuracy of the measurement in the
initial state of the specimen and thus does not include any changes in pattern quality due
to deformation.

With respect to the material behavior in SHPB tests, the extensometer measurement is
applied, regardless of the better results for areal strain measurement in previous investi-
gations, since it has been proven to be less vulnerable to high deformations and thus to
artefacts occurring on the specimen’s surface (Figure 6b).

3.1. AISI 1045 Specimens

To illustrate the procedure for evaluating the data, Figure 8 shows the time course of
the elastic strains in the bars of the SHPB and the course of the plastic strain in the AISI 1045
(C45, 1.0503) steel specimen calculated from them (green line) and the strain calculated with
point tracking (black line). At a glance, it is clear that, according to the assumption behind
the SHPB principle, the plastic compression of the sample takes place during the first pulse
pass. From the stochastic pattern, it can be seen that elastoplastic post-deformation occurs
after the reflection of the pulse at the bar’s ends (t = 0.6 ms). The main focus of the diagram
(Figure 8) is the comparison of the development of plastic strains. A more detailed analysis
can be undertaken with the help of Figure 9, which does not include a representation of the
elastic bar strain.
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Figure 9 shows the strain curves supplemented by a plot of the strains measured at
six different times. Frame (i) shows the initial state of the specimen. Frames (ii) and (iii)
illustrate the plastic deformation during the actual test. Finally, frames (iv) to (vi) depict the
elastoplastic post-deformation after the actual test, resulting from the reflected pulse. The
strain distributions show that a homogeneous strain state exists both during deformation
and in the final state of the specimen. It should be noted that the upper and lower visible
edge areas of the specimen are not added to the evaluation since they are not aligned with
the camera optics due to their cylindrical shape. Overall, the curves of strain gauges and
DIC do not differ much, proving that the assumptions used for calculating the strain by
strain gauges provide valid results. Moreover, the maximum strain measured by both
methods, which depends on the kinetic energy of the projectile, corresponds with works
from the literature for AISI 1045 [28,29].

However, there is a limitation: the strain gauges record an increase in strain over
a longer period than DIC. This results in a maximum value of εt ≈ −22%, while DIC
calculates εx ≈ −18.5%. This can be attributed to the hysteresis effects that occur in highly
dynamic material testing [6]. Mates et al. found that the deformation rate in SHPB tests
of AISI 1045 measured by strain gauges increases up to a strain of εt ≈ 5.5% and then
stabilizes [30]. The same behavior can be seen from the green curve in Figure 9, which has
a changing gradient until a strain of εt ≈ −4%. In the case of the DIC measurements, this
effect does not occur and the strain is linear from the beginning, which aligns with the
theoretical assumption.

A further finding regarding the DIC analysis is that the elastoplastic post-deformation
of the specimen occurs as a consequence of the pulses being reflected multiple times at
the bar ends. The plastic fraction of the first post-deformation is εx = −0.46% and for the
second one it is εx = 0% (Figure 10). Even though post-deformation can be considered small
compared to the initially characterized compression, it must be noted that the specimens only
have limited suitability for characterizing the deformation recorded via the strain gauges.
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3.2. Ti6Al4V Specimens

In the next step, the flow stress behavior of the titanium alloy Ti6Al4V (3.7165) was
characterized using the methods previously described. Figure 11 shows the related results.
Again, six selected strain distributions are shown in addition to the strain–time diagram
for the strain gauges and the DIC. Equivalent to Figure 9, frame (i) shows the initial
state of the specimen. In frames (ii) and (iii), the plastic deformation occurring in the
actual test procedure are depicted. The second row (frame (iv) to (vi)) illustrates the
influence of a reflected impulse after the actual test. The evaluation of the individual
strain steps clearly shows the inhomogeneous strain distribution of the titanium alloy, as
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well as crack initiation. In this case, the crack formed in the lower region of the specimen
(marked in green) and led to an interruption in the course of the facet-tracking-based strain
measurement. Immediately before crack initiation, local strains in the range of εx ≈ −25%
were present in the region of subsequent material failure. The magnitude of these strains
at failure is consistent with studies in the literature. Chiou et al. were able to determine
strains at failure of εx ≈ −35% for Ti6Al4V under comparable test conditions [31], while
Ran et al. found a value slightly below εx ≈ −20% [11]. This inhomogeneous deformation
behavior causes significant differences in the two strain measurements. While DIC detects
non-uniform strain distribution, the strain gauge measurement assumes homogeneous
specimen deformation. Therefore, the measurement result is significantly distorted by
bulges in the specimen. On the one hand side, the determined compression strain increases
faster in the case of the strain gauges; on the other hand, it extends over a longer period,
similar to AISI 1045 steel, which is again attributed to the hysteresis effects typical for SHPB.
In the case of the Ti6Al4V alloy, the post-deformation due to the reflected pulses is of an
exclusively elastic character.
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Bulging at the circumference of the specimen, which was observed in particular for
Ti6Al4V alloy, was identified as the main mechanism of the inhomogeneous specimen
deformation as well as the main reason for non-compliant measurements between the two
methods. Figure 12 compares the bulging of AISI 1045 and Ti6Al4V based on the radii
formed. While the radius for AISI 1045 steel is of insignificant magnitude (r = 28 mm)
compared to the ideal conditions of an infinite radius, for Ti6Al4V alloy it is r = 17 mm
and therefore significantly more bulged. Typically, this bulging is attributed to the friction
between the bars of the SHPB and the specimens [9]. However, in this case, Ti6Al4V is
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assumed to have comparable or even reduced friction compared to AISI 1045 steel. This
behavior is assumed to be more non-uniform compared to AISI 1045 steel, as is clearly
observable by comparing Figures 9 and 11. It is deduced that, for corresponding materials,
alternative methods for the data evaluation of flow stress and damage characterization at
SHPB have to be developed.
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In the following section, the results of the deep learning approach for the characteri-

zation of shear bands in the Ti6Al4V-specimen are presented. Despite the limited amount 
of training data, the network achieves a total dice score of 0.81, with the worst perfor-
mance from the five-fold-cross validation being 0.77. An example segmentation result 
from the test data is shown in Figure 13. In addition to this high performance, given the 
limited amount of training data, the model was also tested on chips to demonstrate its 
ability to detect shear surfaces. Although no chip images were used in the training pro-
cess, the network was able transfers the structures’ features and detect deformed surfaces 
in the chips (Figure 14). However, full detection of the sheared surface is still not possible, 
due to the small amount of training data. Nevertheless, the model’s strong generalization 
capabilities show its good suitability for further analysis of kinetically similar material 
deformation. Therefore, deep learning could be used for the transverse analysis of shear 
specimens in a more general analysis of chips. 

  
(a) (b) 

Figure 13. (a) Segmentation result and (b) prediction of the shear band by the network, shown in 
red. 
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3.3. Deep Learning

In the following section, the results of the deep learning approach for the characteriza-
tion of shear bands in the Ti6Al4V-specimen are presented. Despite the limited amount of
training data, the network achieves a total dice score of 0.81, with the worst performance
from the five-fold-cross validation being 0.77. An example segmentation result from the test
data is shown in Figure 13. In addition to this high performance, given the limited amount
of training data, the model was also tested on chips to demonstrate its ability to detect shear
surfaces. Although no chip images were used in the training process, the network was
able transfers the structures’ features and detect deformed surfaces in the chips (Figure 14).
However, full detection of the sheared surface is still not possible, due to the small amount
of training data. Nevertheless, the model’s strong generalization capabilities show its good
suitability for further analysis of kinetically similar material deformation. Therefore, deep
learning could be used for the transverse analysis of shear specimens in a more general
analysis of chips.
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Figure 14. (a) Microscopic images of a chip and (b) prediction of the shear band by the network,
shown in red.

4. Conclusions

Based on the presented comparative studies of strain measurement in the SHPB test
using conventional strain gauges as well as a high-speed camera setup with subsequent
digital image correlation (DIC), the following conclusions can be drawn:

1. Results from both measurements correlate well if a ductile material such as AISI 1045
steel is used, which tends to homogeneous deformation. However, due to hysteresis
effects, the maximum strain determined with the strain gauges (εt ≈ −22%) is higher
than that determined with DIC evaluation (εx ≈ −18.5%).

2. Post-deformation occurred due to the repeatedly reflected pulses with a plastic com-
ponent of εx = −0.46% in the AISI 1045 steel after the first reflection. As a result, a
subsequent investigation for further characterization of the deformation state can only
be correlated with the measurement results of the strain gauges to a limited extent.

3. Significant deviations in the strain curves between the two measurement methods
were found for the Ti6Al4V alloy. The maximum strain determined by the strain
gauges (εt ≈ −8%) is more than twice as large as the measured strain from the DIC
(εt ≈ −19.5%). The DIC analysis seems to be more valid, and the deviation in the
strain gauge measurement can be attributed to inhomogeneous material deformation,
bulging, and cracking during the SHPB test.

4. Elastic post-deformation occurred due to multiple reflected pulses in the Ti6Al4V
alloy. In contrast to AISI 1045, no plastic post-deformation could be identified due to
the reflected pulses.

5. Alternative data evaluation needs to be developed for reducing the discrepancy in
calculations for the material characterization of the Ti6Al4V alloy at the SHPB.

6. Deep learning shows promising results for the detection of shear bands in the Ti6Al4V
alloy, and thus enables a transfer learning approach to detect shear band formation in
different types of SHPB specimens as well as chips.
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