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Abstract: Defects in crystalline solids play a crucial role in determining properties of materials at the
nano, meso- and macroscales, such as the coalescence of vacancies at the nanoscale to form voids
and prismatic dislocation loops or diffusion and segregation of solutes to nucleate precipitates, phase
transitions in magnetic materials via disorder and doping. First principles Density Functional Theory
(DFT) simulations can provide a detailed understanding of these phenomena. However, the number
of atoms needed to correctly simulate these systems is often beyond the reach of many widely used
DFT codes. The aim of this article is to discuss recent advances in first principles modeling of crystal
defects using the spectral quadrature method. The spectral quadrature method is linear scaling
with respect to the number of atoms, permits spatial coarse-graining, and is capable of simulating
non-periodic systems embedded in a bulk environment, which allows the application of appropriate
boundary conditions for simulations of crystalline defects. In this article, we discuss the state-of-the-
art in ab-initio modeling of large metallic systems of the order of several thousand atoms that are
suitable for utilizing exascale computing resourses.
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1. Introduction

Crystal defects, often present in small concentrations, are crucial in determining
macroscopic properties of materials. Vacancies are fundamental to creep, spall and radiation
aging, even when they are present in parts per million. Solutes, present in parts per
hundred, are responsible for strengthening by interacting with the motion of dislocations.
Solutes can also cluster to nucleate a precipitate. Dislocations are the primary carriers of
plasticity in metals even when their density is as small as 10−8 per atomic row. Defects not
only influence structural properties but also affect electronic and magnetic properties as
well. For example, p-type and n-type semiconductors are primarily achieved by dopants.
Doping and site mixing by magnetic ions in magnetic compounds can bring about magnetic
phase transitions. Defects affect the macroscopic properties of crystals. This is because
they simultaneously couple the chemical effects of the defect core, the discrete effects of
the lattice and the long range effects of the elastic fields. Thus, to understand defects at
physically relevant concentrations, we need to simultaneously study the details near the
core and the long range elastic fields.

Density Functional Theory (DFT), developed by Hohenberg, Kohn and Sham [1,2],
is one of the most successful first principles methods for predicting, understanding and
developing insights into a wide range of material behavior. The phenomenal success
and popularity of DFT is because of its excellent predictive power with high accuracy to
cost ratio compared to other theories that solve for the electronic structure. In spite of
this, the efficient solution of Kohn–Sham equations is computationally daunting, as the
computational complexity of DFT calculations scale cubically with the number of atoms N
(i.e., O(N3)). This restricts the range of physical systems that can be investigated. A num-
ber of methods have been proposed that reduce the prefactor by subspace projection [3–6].
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Other methods focus on overcoming the cubic scaling bottleneck which can scale sub-
quadratic [7] linear [8,9] and sub-linear [10] with the number of atoms. Methods that
solve for orbitals achieve linear scaling by localizing the orbitals in real-space. However
this approach only works for insulating or semiconducting systems. Other linear scaling
methods do not solve the orbitals, and instead are based on the exponential decay of the
density matrix and expand the density matrix using polynomials followed by truncation
of off-diagonal components. The primary issue with this type of approach is the compli-
cated interprocessor communication arising from distributed matrix–matrix products with
changing sparsity patterns.

The Spectral Quadrature method is an alternative linear scaling formulation [8,10–15]
suited for first-principles simulations of metallic as well as insulating and semiconducting
systems. The key idea of this formulation is to write the electron density and energies as
integrals over the spectrum of the linearized Hamiltonian, and then approximate these
integrals by quadrature rules. The order of the quadrature is independent of system size,
thereby allowing the evaluation of the electron density and energy with O(1) effort at each
spatial point. The number of spatial points scale linearly with system size, and therefore
the method scales linearly. This method has other attractive features as well. First, it allows
the application of non-zero Dirichlet boundary conditions on the electronic fields [15].
This is specifically attractive for studying crystalline defects, where periodic boundary
conditions can introduce artificial interactions. Second, the local nature of the spectral
quadrature calculation allows variable resolution and coarse graining [8,10,14]. Specifically,
fine resolution is maintained where necessary and sub-grid sampling is employed in
regions of uniform deformation. See Figure 1 for different modeling schemes used for
studying defects.

Figure 1. Modeling schemes and boundary conditions used for studying defects in crystalline solids.
(a) shows dipolar and (b) shows a quadrapolar arrangement of defects. In both (a,b), periodic
boundary conditions are used. (c) shows the schematic of the flexible boundary condition technoque
used to simulate dislocations [16–18]. (d) shows the specified Dirichlet boundary conditions in the
spectral quadrature method. In (d), the inner box is the simulation domain, and the region outside is
used to specify pre-computed electronic fields. (e) shows the spatial coarse-grained atomic mesh [14].
The region close to the defect has full atomic resolution, and the resolution is gradually decreased
with distance increasing from the defect core.
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The spectral quadrature method and the coarse grained approximation have been
applied to the study of crystal defects [10,14,15], and high temperature simulations of
materials [13,19,20]. In this paper, we present an overview of the spectral quadrature
formulation and discuss results on defects in magnesium.

2. Spectral Quadrature

In Kohn–Sham Density Functional Theory, the ground state energy (E0) of a system
with atomic positions R is given by minimizing the Kohn–Sham energy functional E over
the set of orbitals {ψn}.

E0 = inf
{ψn}
E({ψn}, R) . (1)

The orbitals {ψn} are orthonormal, which give rise to the typical cubic scaling of Kohn–
Sham DFT. As a consequence of their orthonormality, the orbitals are long ranged, oscil-
latory and do not decay in metallic systems. Several linear scaling approaches have been
developed by localizing or truncating the orbitals in real space. Though these approaches
are limited to insulating and semiconducting systems, they do not work for metallic sys-
tems i.e., absence of a band-gap. An alternate route is to work with the density operator
formulation of DFT. The density operator (γ) is

γ = ∑
n

g(εn)ψn(x)ψn(x′) , (2)

where g(εn) are the occupancies of the nth orbital with energy εn.
The Kohn–Sham energy functional can be expressed in terms of the density oper-

ator, and the ground state energy is then given by minimizing this functional over the
density operator.

E0 = inf
γ
E(γ, R) . (3)

The diagonal of the density operator is the electron density (i.e., ρ = diag(γ)).
The solution to Equation (3) is given by the following fixed-point problem:

γ = 2
(

1 + exp
(
H− µI

σ

))−1
, (4)

whereH is the Kohn–Sham Hamiltonian, µ is the Fermi level, and σ = KBT is the electronic
smearing. The right side of Equation (3) can be expanded as a polynomial of H, the discrete
version ofH. Linear scaling methods based on the polynomial expansion of H are known
as Fermi Operator Expansion (FOE), make use of the sparsity, off-diagonal decay of the
density operator, and ignore the entries of matrix-matrix products which are lower than a
certain tolerance. In large-scale simulations using the FOE method, H is distributed across
several computational cores, and the global matrix-matrix multiplications with changing
sparsity patterns can give rise to complicated parallel communication.

The Spectral Quadrature method [8,10–15] is an alternate linear scaling formulation
of DFT where the essential ground state quantities are expressed as integrals over the
spectrum of the Hamiltonian.

I[ f ] =
∫

σ(H)
f (λ)dµη,η(λ) , (5)

where σ(H) is the spectrum ofH, and µη,η is the spectral measure ofH contracted with η.
The above integral (Equation (5)) can be approximated using quadratures.

I[ f ] ≈
K

∑
k=1

wη
k f (λη

k ) , (6)
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where K is the order of the quadrature wη
k are the spectral weights and λ

η
k are the spectral

nodes. The quadrature order is independent of the system size, hence each evaluation of
Equation (6) is O(1). The summation (Equation (6)) is evaluated at every discrete point in
real space and the number of such discrete points scale linearly with the number of atoms
N, and therefore the scaling of evaluating the ground state is linear.

In spectral Gauss quadrature, the weights {wη
k }

K
k=1 are fixed apriori, and the spectral

nodes {λkη}K
k=1 are treated as unknowns. The spectral weights and nodes at any grid point

q can be calculated by the Lanczos iteration,

bq
k+1vq

k+1 = (H− aq
k+1)v

q
k − bq

kvq
k−1 , k = 0, 1, . . . , K− 1

vq
−1 = 0 , vq

0 = ηq , bq
0 = 1 , (7)

where aq
k+1 = (Hvq

k, vq
k), k = 0, 1, . . . , K − 1, and bq

k is computed such that ||vq
k|| = 1,

k = 0, 1, . . . , K− 1. {aq
k}

K
k=1 and {bq

k}
K−1
k=1 are used to construct a tri-diagonal Jacobi matrix

Ĵq
K, where (aq

1, aq
2, . . . , aq

K) is the diagonal and (bq
1, bq

2, . . . , bq
K−1) are the subdiagonal and

superdiagonal entries. The nodes {wηq
k }

K
k=1 are calculated as the eigenvalues of Ĵq

K, and
the weights {ληq

k }
K
k=1 are the squares of the first elements of the normalized eigenvectors

of Ĵq
K. The Lanczos iteration (Equation (7)) is the most computationally expensive part

of the entire computation and can be accelerated by offloading onto Graphics Processing
Units (GPUs).

After the spectral weights and spectral nodes are evaluated at a grid point q using the
Lanczos scheme (Equation (7)), the electron density at the grid point is given by

ρq ≈ 2
K

∑
k=1

w
ηq
k

(
1 + exp

(
λ

q
k − µ

σ

))−1

. (8)

The electron density, and similarly other electronic fields, can be calculated in a linear
scaling fashion using the spectral quadrature technique. The prefactor can be reduced
by noting that the growth of vectors {vq

k}
K
k=1 are restricted within a sphere of a finite

radius—typically a few lattice spacings—around the grid point q. Therefore, the discrete
Hamiltonian in Equation (7), can be spatially truncated beyond a certain distance. This
insight allows us to employ local sparse algebra routines instead of distributed sparse
algebra, decreases computation time, and storage.

Spatial Coarse Graining

The Spectral Quadrature Method can be used for large scale first principles simu-
lations of materials. Typical calculations with the Spectral quadrature method involve
several hundred to tens of thousands of atoms. Further controlled approximations can
be introduced which can push the number of atoms even higher using the idea of spatial
coarse-graining [8,10,14,21]. This is specifically advantageous for simulating extended de-
fects such as dislocations. To understand heuristics involved in the approximations, first
consider an isolated defect. The electronic fields and the atomic displacements are complex
in the vicinity of the defect. Moving far away from the defect, the atomic displacements
decay in either a polynomial of logarithmic manner, and the electronic fields far away from
the defect are almost locally periodic. In the coarse grained formulation, the nature of the
decay of the elastic and the electronic fields are exploited in the following manner. First,
the position of all atoms is approximated by tracking only a subset PRA of Representative
Atoms (RAs) which are fully dense in the vicinity of the defect core and is increasingly
sparse with increase in distance from the defect. The positions of atoms which are not in
PRA are evaluated by linear interpolation, which provides a coarse grained representation
of the atomistic fields. Next, for the electronic fields, the discrete Hamiltonian is defined
uniformly on a spatial finite difference mesh P f . However, the electronic fields are not
evaluated at all points in P f . Instead, a different representation is employed based on
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the observation that sufficiently far away from the defect, the atom positions are locally
periodic, where the periodicity is related to the local strain, and the electronic fields are
almost locally periodic. Due to this, the electronic fields can be written as the sum of a
corrector and a locally periodic predictor in the following way:

ρq = ρ
q
0 + ρ

q
c , (9)

where ρ
q
0 is the piecewise periodic predictor and ρ

q
c is the corrector at a mesh point q ∈ P f .

The predictor can be calculated by using a periodic DFT calculation with the lattice parame-
ters subjected to local strain. To calculate the corrector, the electron density is first calculated
at a select few points p ∈ Pc using Spectral quadrature, and the difference between the
electron density and predictor is interpolated onto the points in P f :

ρ
q
c = ∑

p∈Pc

Γq
p(ρ

p − ρ
p
0 ) , (10)

where the Pc is a subset of P f . Once the electronic fields are calculated, the total energy
can be computed using cluster summation technique [22]. Figure 2a–c shows the features
of defects and the associated atomic and electronic mesh for a one dimensional system.

Figure 2. (a) Shows some features of defects; (b) shows the atomic mesh; and (c) shows the electronic
mesh. As depicted in (a) the atomic displacements are complex near the defect but have a polynomial
decay far away from the defect. The black line shows the displacement field of the atoms, and the
red points are the displacements evaluated on a mesh which is fine resolution near the defect and
increasingly coarse further away as shown in (b). The electronic field, shown in blue, is strongly
perturbed near the defect and is piecewise periodic far away. The electronic field is evaluated on a
mesh that is fine near the defect and increasingly coarse far away as shown by the blue lines in (c).
The Hamiltonian operator necessary to evaluate the electronic fields is defined on the uniformly fine
mesh shown by the grey lines in (c). (d) shows the scaling of different formulations of DFT. The blue
line shows cubic scaling associated with standard DFT formulations. The red line shows the linear
scaling associated with the spectral quadrature formulation and the yellow line shows the sub-linear
scaling associated with coarse-graining. The lower computation time of linear and sub-linear scaling
methods over cubic scaling methods is typically observed for systems larger than a few hundred to
thousand atoms.

Note that, because the electron density is calculated only on a select few points in Pc,
the scaling is sub-linear with respect to the total number of atoms in the domain. Figure 2d
shows the representative plot of computation time versus number of atoms for cubic, linear
and sub-linear scaling methods.
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In the coarse-grained formulation, a key computational expense comes from repeated
on-the-fly calculation of the predictor electronic fields for every local strain field. This
significant overhead can be reduced by employing a neural-network which maps the local
strain to the electronic fields. We refer the reader to the recent work by Teh, Ghosh and
Bhattacharya [23] for constructing such a map using machine learning.

3. Discussion
3.1. Bulk Properties of Elements

The Spectral Quadrature Method was used to calculate the bulk properties of materials.
Higher order finite differences were used to represent the discrete Hamiltonian operator.
The finite difference mesh spacing and tolerances were chosen such that the energies and
forces are converged to within chemical accuracies. Table 1 shows the values of equilibrium
lattice constant and bulk modulus for Li, Na and Mg. Overall, the values calculated using
the O(N) spectral quadrature DFT are in excellent agreement with the values calculated
using O(N3) DFT, and experiments.

Table 1. Bulk properties of elements.

Element Crystal Structure Method Lattice Constant (a.u.) Bulk Modulus (GPa)

Li BCC
O(N) SQ [11] 6.87 10.0

O(N3) DFT [24] 6.77 14.0
Expt. [24] 6.77 13.3

Na BCC
O(N) SQ [11] 8.01 5.0

O(N3) DFT [24] 8.21 7.1
Expt. [24] 8.21 7.3

Mg HCP

O(N) SQ [10] a = 5.866, c/a = 1.626 38.75
O(N) SQ [15] a = 6.043, c/a = 1.629 38.50

O(N3) DFT [25] a = 5.877, c/a = 1.624 38.40
Expt. [26,27] a = 6.066, c/a = 1.623 35.40

3.2. Defects in Magnesium

Defects in crystalline materials give rise to several interesting phenomena such as
creep, spall, plasticity, radiation aging, phase transitions. Defects are present in very small
concentrations which make their accurate study challenging. Defect can also interact
with other defects in crystalline solids. Vacancies can coalesce to nucleate voids, solutes
cluster to nucleate a precipitate, solutes bind to vacancies for diffusion, solutes interact
with dislocations for strengthening.

We consider divacancy, solute–vacancy and solute–solute pairs in magnesium lattice.
Figure 3 shows the six nearest neighbor positions on a HCP lattice where the first defect is
placed at the position marked 0 and the other defect occupies positions marked 1 through
6. These denote the first six nearest neighbor configurations in increasing order of their
distances from the defect at position 0. Let Evv, Esv and Ess denote the energies of divacancy,
solute–vacancy and solute–solute pairs, respectively in a magnesium supercell with M
lattice sites. The formation energies of the divacancy pair is:

E f
vv = Evv − (M− 2)Eper f ect , (11)

where Eper f ect is the energy of a magnesium atom in the perfect crystalline state. The
formation energy of the solute–vacancy pair is:

E f
sv = Esv − (M− 2)Eper f ect − Esolute , (12)
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where Esolute is the energy of a solute atom in in the perfect crystalline state. The formation
energy of the solute–solute pair is:

E f
ss = Ess − (M− 2)Eper f ect − 2Esolute . (13)

A negative formation energy implies that the defect formation is energetically favorable.
The binding energy of defect pair can be calculated as the difference between the sum

of formation energies of the individual isolated defects and the defect pair.

Eb
vv = 2E f

v − E
f

vv , (14)

Eb
sv = E f

s + E f
v − E

f
sv , (15)

Eb
ss = 2E f

s − E
f

ss , (16)

where E f
v and E f

s are the formation energies of vacancies and solutes respectively. A
positive binding energy implies that the defect pair is more stable than the individual
isolated defects.

Figure 3. Nearest neighbor positions for two point defects in an HCP lattice.

In Figure 4, the top-panel shows the formation energies of (a) divacancy, (b) Al solute–
vacancy and (c) Al solute–solute pairs, respectively with increasing cell size from 64 to 1152
atoms. From these plots we see that the formation energy of defect pairs strongly depend
on the cell size. Furthermore, the solute–solute formation energy calculated at cell sizes less
than 200 atoms is negative but is positive at larger cell sizes. The bottom panel of Figure 4
shows the contours of the difference in electron density of the defect pairs in the second
nearest neighbor configuration. We see the depletion of charge around vacancies and an
accumulation of charge around the solute atoms.

Table 2 shows the formation and binding energies of isolated defects and defect pairs
calculated using the spectral quadrature method. The formation energy of a monovacancy
and Al solute is positive. Further the formation energies of divacancy, solute–vacancy
and solute–solute pairs are also positive. Interestingly, the formation energy increases
from ∼1 eV to ∼26 eV when the system is changed from a divacancy to an Al solute–
vacancy pair, but decreases to ∼1 eV for solute–solute pair. Thus, the formation energy
follows a non-linear trend with increasing solute number. The equilibrium concentration
of spontaneously formed vacancies and divacancies depend on the formation energy and
temperature as C = exp(−E f /kBT). As the formation energies of divacancies are greater
than monovacancies, the spontaneous formation of monovacancies is favored over the
spontaneous formation of divacancies. Additionally, the binding energies of divacancies
are positive, implying two monovacancies can coalesce to form a divacancy. Again from
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Table 2, the binding energies of solute–vacancy and solute–solute pairs are also positive.
The solute–vacancy binding energy is also greater than the divacancy binding energy,
which implies that solute and vacancy can strongly bind, which aids the self diffusion of
solute atoms. As the solute–solute binding energy is also large, these solutes atoms can
bind to each other, form clusters and nucleate precipitates [15].

Figure 4. Formation energy of defect pairs as shown in (a–c). (d–f) shows the contour plots of electron
density difference for defect pairs in second nearest neighbor configuration. A cell size of 1000 atoms
is needed to calculate the formation energy of defect pairs. The electron density difference around a
divacancy is shown in (d), around a Al solute–vacancy pair in (e) and around a Al solute pair in (f).
In these plots, the electron density is depleted around a vacancy and elevated near the Al solute.

The Spectral Quadrature Method can be used to simulate even larger systems, con-
taining several tens of thousands of atoms. Figure 5 shows the electron density contours
around a prismatic dislocation loop in Magnesium calculated using 24,539 atoms, and the
prismatic loop consists of a cluster of 37 vacancies. The cell sizes used in these calculations
are beyond the scope of most widely popular DFT codes. Calculations with coarse-grained
spectral quadrature reveal the preference towards forming large stable vacancy clusters and
preference towards forming large prismatic dislocation loops by clustering of vacancies,
as observed in nanoporous Mg alloys and experiments [14]. Further optimizing the Lanc-
zos iteration into Graphics Processing Units (GPUs) and utilizing exascale resources (e.g.,
Frontier) will significantly increase the size of systems to several hundred thousand atoms.

We finally close by commenting on the applicability of the above method to problems
in the mechanical behavior of materials. It is of interest to calculate the influence of defects
on the mechanical moduli of a crystal. Simulating processes involving material flow [28]
and additive manufacturing [29] require accurate estimation of effective moduli of materials
under evolving defects such as voids and precipitate growth. Micromechanics approaches
dating back to the work of Eshelby [30], Hashin and Shtrikman [31] provide upper and
lower bounds on the moduli. Traditional DFT methods have been used to calculate the
moduli under high defect concentrations [32]. Therefore, it will be interesting to use the
spectral quadrature method on exascale computing resources to calculate the influence of
voids and precipitates at high or realistic concentrations from ab-initio.
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Table 2. Formation energies of vacancy and Al solute in Mg lattice in eV. Formation and binding
energies of divacancies, Al solute–vacancy and Al solute–solute pairs in Mg in eV. First six nearest
neighbors are considered for calculation of defect pair binding energies as shown in Figure 3. The cell
size used for all calculations is more than 1100 atoms.

Isolated Defects

Formation Energy (eV)

Vacancy 0.846
Al solute 25.756

Defect Pairs

Nearest Neighbor Formation Energy (eV) Binding Energy (eV)
This Work Ref. [15]

Divacancy

1 1.565 0.127
2 1.596 0.195
3 1.627 0.064
4 1.659 0.033
5 1.659 0.033
6 1.659 0.033

solute–vacancy

1 25.956 0.254
2 26.583 0.195
3 26.583 0.206
4 26.722 0.125
5 26.722 0.125
6 26.722 0.125

solute–solute

1 1.066 0.238
2 1.081 0.223
3 1.084 0.219
4 1.112 0.191
5 1.134 0.169
6 1.166 0.138

Figure 5. Contours of electron density around a prismatic dislocation loop in Mg. The slice is along
the a-b plane. The prismatic loop is formed by a cluster of 37 vacancies. The total number of atoms in
the simulation domain is 24,539.

4. Conclusions

In this article, we discuss recent advances in first principles simulations of bulk mate-
rials and crystalline defects using the Spectral Quadrature Computational method. This
framework is capable of simulating non-periodic systems embedded in a bulk environment,
which allows the application of correct boundary conditions for simulations of crystalline
defects. Furthermore, due to the local representation of the electronic fields, this method is
also amenable to spatial coarse graining. We have presented studies of defect clusters in
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magnesium using cell sizes ranging from a few tens to several tens of thousands of atoms.
These calculations are typically beyond the reach of the most widely used DFT codes. Due
to the local nature of all calculations, the method is amenable to spatial coarse-graining
which can be further accelerated by utilizing machine learning models. Furthermore, the
local computations can be transferred onto Graphics Processing Units (GPUs), which sig-
nificantly reduces the solution times. These features make the formulation suitable for
efficiently utilizing the exascale supercomputing frameworks.
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