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Abstract: Sacrificial bonds have been observed in several biological materials and structures and can
increase their toughness, i.e., their resistance to fracture. They provide a reversible mechanism for
dissipating mechanical energy before the possible system rupture. From a structural point of view,
sacrificial bonds consist of short polymer chains that short-circuit parts of a main macromolecular
chain (generating hidden lengths) and absorb energy by breaking them instead of the main chain.
The toughness increase due to the presence of sacrificial bonds is typically named extra-toughness.
Here, we developed a statistical mechanics and thermodynamics-based theory able to estimate the
force–extension relation for chains with sacrificial bonds and to calculate the corresponding extra-
toughness. The model is useful to better understand the sacrificial bond effects in biomaterials but
also to apply the biomimetic paradigm and foster the development of high-performance artificial
polymeric materials.
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1. Introduction

Several materials and structures of biological origin have much higher toughness
than most artificial materials. The explanation for this exceptional property lies in a
particular microstructure observed at the molecular level and recently probed by means of
force spectroscopy techniques. Many studies have indeed revealed that the toughening
mechanism is based on sacrificial bonds and hidden lengths [1–3]. Sacrificial bonds are
defined as polymer chains designed to break when the system is subjected to mechanical
action before the main macromolecular chain [4,5]. In this sense, they protect the main
system from breakdown by sacrificing themselves in its place. Considering the main chain,
sacrificial bonds are rather short chains that short-circuit much longer sections of the main
chain and, therefore, generate the so-called hidden lengths in the system (see Figure 1).
These sacrificial bonds are typically weaker from the mechanical point of view with respect
to the covalent bonds of the main macromolecule. So, when the force is applied to the
system, it can break by adsorbing a large amount of energy and releasing the hidden
lengths. Then, when the force is removed, they are typically self-repaired because of the
reversibility of the process. The characteristic force–extension relation of a chain with
sacrificial bonds is characterized by a series of peak forces (corresponding to the breaking
of a sacrificial bond), which is named the sawtooth pattern [6,7].

Concerning biological materials, a complex microstructure (including calcium-mediated
sacrificial bonds) has been observed in the organic matrix of bones [8,9]. Scientists proved
that the time necessary for these sacrificial bonds to reconstitute after the stress-removing
corresponds to the time necessary to recover the original bone toughness, as measured
by atomic force microscope indentation testing [10]. Moreover, it has been observed that
the recluse spider (Loxosceles genus) spins its silk ribbons into sacrificial micro-loops,
which are very efficient to improve the toughness [11]. Interestingly, sacrificial bonds
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provide the strong adhesive properties of gastroliths (or stomach stones) as well [12]. Other
hierarchical microstructural strategies can be observed in different natural materials, such
as nacre shells, muscle sarcomeres, and collagen fibrils, which are remarkable examples of
high-performance systems [13–15].
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Figure 1. Simplified sketch of a polymer chain or macromolecule with sacrificial bonds. The main
chain is composed of N. elements with the equilibrium length ` and elastic constant k. Each sacrificial
bond is composed of nj elements with equilibrium length d � ` and elastic constant h, and is
characterized by fracture energy Ej (where j = 1, ..., s, with s being the number of sacrificial bonds).
The chain is studied within the Gibbs ensemble (with an applied force) and within the Helmholtz
ensemble (with prescribed extension). The main chain elements short-circuited by the sacrificial
bonds correspond to the hidden lengths of the system.

The study of the properties of systems with toughening sacrificial bonds is not only
important for the deep understanding of the biological structures but also for developing
bio-inspired artificial polymeric materials with exceptional mechanical properties [1,16].
Indeed, mimicking the biological structures by following the biomimetic approach is
one of the main avenues for developing new high-performance synthetic polymeric
materials based on hierarchical structures and various types of organic and inorganic
molecules [17–21]. For example, sacrificial metal–ligand bonds can be added into elas-
tomers [22], elastomer/graphene composites [23], glycogen-based hydrogels [24], or a
composite double network ionic hydrogel (CDN-gel) [25]. Moreover, bioinspired tunable
sacrificial bonds are successfully introduced into the tetra-poly(ethylene glycol) (PEG)-
based polyurethane (PU) (TP) hydrogel network [26]. It has been proven that an acrylate
polymer, typically showing a brittle solid state fracture, can become defect-tolerant by
adding energy dissipating supramolecular interactions [27]. Moreover, artificial muscles
have been developed through sacrificial coordination networks [28]. To toughen the epoxy
resin, a renewable system of sacrificial bonds has been prepared with a modified tung
oil [29]. These are just some examples, and many others can be found in the literature. The
beneficial effects of sacrificial bonds in several materials have been observed by means
of chemiluminescent cross-linking molecules, which emit light when they break. They
have been used to directly follow (in real-time) the propagation of a crack in a given
structure [30,31].
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Although some mathematical models and numerical analyses on systems having sac-
rificial bonds can be found in the literature [3–7,17], a complete theory based on statistical
mechanics and thermodynamics has not been formulated for the moment. The purpose
of this paper is to fill this gap by proposing a theory based on equilibrium statistical me-
chanics and on the so-called spin variables method. The need to use statistical mechanics
and thermodynamics to approach this problem comes from the fact that, given the size
and energies involved, thermal fluctuations are crucial in determining the behavior of the
system. In other words, entropic forces are of the same order of magnitude as enthalpic
forces and cannot be neglected. The theoretical modeling of the thermomechanical response
of macromolecules (polymers, proteins, nucleic acids, and so on) [32–34] has been strongly
stimulated by the advent of force spectroscopy methods (AFM, optical tweezers, magnetic
tweezers, MEMS, and NEMS) which offer the possibility of directly probing the force–
extension response of single chains [35–39]. Classical theories include the freely-jointed
chain (FJC) model [40–42] (describing, e.g., single-stranded DNA and RNA) or the worm-
like chain (WLC) model [43–46] (well representing the double-stranded DNA behavior).
Further, these models have been generalized in order to take into account the conforma-
tional transitions in proteins and other two-state (or multi-state) macromolecules [47–55].
Indeed, many chains of biological origin are composed of domains that exhibit the possible
switching between two or more states or conformations, depending on the mechanical
action applied and on the system temperature [56–58]. Moreover, it is interesting to note
that other artificial mechanical systems show similar transitions, induced by a multi-basin
energy landscape [59–62]. A particularly efficient method to model the force–extension
relation of two-state systems is the so-called spin variables approach. In order to distin-
guish the two states of a chain domain (typically named folded and unfolded) a discrete
variable—assuming only two values—is introduced (it behaves as a bit or a spin). Then,
the statistical mechanics of the system is developed by considering the classical continu-
ous variables (position of domains) and the additional spin variables (state of domains),
allowing for the calculation of the pertinent partition functions and the elaboration of the
macroscopic thermodynamics. This approach was first introduced to model the behaviors
of muscle fibers [63,64], and is still used to study the muscle system [65–67]. Today, it has
been generalized to study different biophysical phenomena, including macromolecular
elasticity [68–75] and adhesion mechanisms [76,77].

In this work, the spin variables are used to distinguish the intact state and the bro-
ken state of the sacrificial bonds included in the system. The chain is represented by a
generalization of the classical freely-jointed chain (FJC), with an additional distribution of
sacrificial bonds. This approach is able to automatically show the transitions between the
states as functions of the applied load and thermal conditions. Interestingly, this method
allowed us to investigate the force–extension relation in both the Helmholtz ensemble
(with the prescribed extension of the main chain) and the Gibbs ensemble (with an applied
force to the main chain), see Figure 1 [68]. The partition functions for both cases can be
calculated in closed form and the corresponding thermodynamics (macroscopic behavior)
can be directly investigated. In particular, the multi-plateau behavior of the force–extension
response was obtained for the Gibbs ensemble and the sawtooth pattern with peaks of force
was observed for the Helmholtz ensemble. As expected, the two statistical ensembles show
different force–extension responses for a finite number N of elements of the chain [68]. We
studied these curves for an arbitrary number of sacrificial bonds within the main chain and
for an arbitrary distribution of sacrificial bond lengths and fracture energies. Indeed, each
sacrificial bond is characterized by its length and fracture energy, representing the amount
of energy necessary to break the bond itself. The knowledge of the force–extension curve is
important to evaluate the extra-toughness, defined as the increase in the area under the
curve by moving from the case without sacrificial bonds to the case with sacrificial bonds
(see Figure 2).
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Figure 2. Sacrificial bonds increase the toughness of a material. The extra-energy (or extra-toughness)
adsorbed and dissipated through the sacrificial molecules (shaded area in the curve) is a measure
of the increase in toughness of the material. Moreover, the initial slope of the pulling curve can be
modified by the sacrificial bonds (dash–dotted line with the sacrificial bonds and dotted line without
the sacrificial bonds). We can also see the sawtooth pattern of the force–extension response. Reprinted
with permission from Reference [3]. Copyright 2006 Elsevier.

It basically represents the energy that the system is able to absorb and dissipate
without breaking the main structure of the chain. Therefore, this parameter measures
the enhancement in the resistance to the fracture. Interestingly, the model can be used to
optimize the chain microstructure in order to have the maximal or the desired toughness.
Eventually, it can be used to investigate the sacrificial bond features in biomaterials and to
analyze and synthesize new artificial polymeric materials.

2. Force–Extension Response of a Chain with Sacrificial Bonds

In order to have a complete description of the sacrificial bond mechanics and ther-
modynamics, we will develop an analytic formalism for both the Gibbs ensemble (with
applied force) and the Helmholtz ensemble (with prescribed extension), as discussed in
the Introduction [68]. The system under consideration is a chain composed of N identical
elements or segments described by the so-called extensible freely-jointed chain (FJC) in-
teraction scheme. These elements, in the simple chain without sacrificial bonds, will be
described by the elastic stiffness k and the equilibrium length ` (see Figure 1). The chain
is supposed to fluctuate in the three-dimensional space and is placed in a thermal bath at
temperature T. Of course, several chains of biological origin exhibit a given persistence
length, which could be taken into account only through the worm-like chain (WLC) model.
However, we neglect here this issue in order to simplify the analysis and better focus on
the sacrificial bond features.

We will now introduce the structure and geometry of the sacrificial bonds. Let s be the
number of sacrificial bonds considered within this system. Each sacrificial bond connects
two points of the original chain that include nj elements, with j = 1, ..., s. Moreover, each
sacrificial bond is composed of nj elastic segments with a defined stiffness h and a defined
equilibrium length d � ` (see Figure 1). This means that the part of the original chain
(nj elements characterized by k and `) short-circuited by a sacrificial bond (nj elements
characterized by h and d) practically does not participate in the elasticity of the whole
chain. The sequence of numbers nj, with j = 1, ..., s, represents the size of the bonds,
which can be heterogeneous in the most general case. Only when nj = n for all j = 1, ..., s
the system of sacrificial bonds is homogeneous. We consider the simplifying assumption
that sacrificial bonds are never overlapping; that is, they never cross. This means that we
must assume that ∑s

j=1 nj < N. A chain without sacrificial bonds shows an equilibrium
contour length equal to N`. However, a chain with all sacrificial bonds intact shows an
equilibrium contour length equal to (N − ∑s

j=1 nj)`+ ∑s
j=1 njd. The difference between

these two quantities, equal to ∑s
j=1 nj(`− d) is called the hidden length since it is a length
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that cannot be measured when all sacrificial bonds are intact, i.e., at the beginning of any
traction experiment (see Figure 1). Moreover, it is necessary to define a sequence Ej, with
j = 1, ..., s, representing the rupture or breaking energies of the sacrificial bonds. It means
that the value Ej represents the energy necessary to break the j-th sacrificial bond. It is
important to underline that the system is able to adsorb the energy ∑s

j=1 Ej before the
breaking of the main chain. In this sense, sacrificial bonds act as mechanical fuses. During
the traction of the chain, one or more of the sacrificial bonds may break; therefore, it is
necessary to distinguish the broken bonds from the intact ones. Let yj be a sequence of
binary or spin variables defined, such that yj = 0 when the j-th bond is broken and yj = 1
when it is intact. We discuss below the separate analysis of the Gibbs and the Helmholtz
boundary conditions.

2.1. Isotensional Gibbs Condition

We start by writing the total potential energy of the system under the Gibbs condition.
Let Kb be Boltzmann’s constant, T the temperature of the system, and~ri, i = 0, ..., N the
sequence of positions delimiting the elements of the chain. We consider that the first
element of the chain is tethered at the origin of the reference frame; thus, we assume
~r0 = 0. In addition, let ~f be the force applied on the last element of the chain. Under these
assumptions, it is possible to write the total energy of the system as

E({~ri}, {yi}) =

N−∑s
j=1 njyj

∑
i=1

1
2

k(‖~ri −~ri−1‖ − `)2

+
N

∑
i=N+1−∑s

j=1 njyj

1
2

h(‖~ri −~ri−1‖ − d)2

+
s

∑
j=1

Ej(1− yj)− ~f ·~rN . (1)

Here, depending on the values of the spin variables yi ∈ {0, 1}, we can take into ac-
count all the possible configurations of the chain, represented by all combinations of broken
or intact sacrificial bonds. We did not consider the kinetic energy entering the Hamiltonian
of the system since it merely produces a non- influential multiplicative constant in the
partition function. Indeed, due to the use of orthogonal coordinates, the kinetic energy
depends only on the linear momentum variables and the potential energy only on the
geometrical variables. Therefore, the two contributions are fully uncoupled and the integral
over the momentum variables simply generates a multiplicative constant. Moreover, it
is important to point out that in Equation (1) we considered all sacrificial bonds at the
end of the chain but this does not affect the generality (since in the considered extensible
freely-jointed chain model the order of the elements does not affect the overall elastic and
thermodynamic responses) [69]. This is because there are no interactions between the
adjacent elements in the chain.

The expression for the total energy of the system allows us to introduce the partition
function for the Gibbs ensemble of the statistical mechanics [32,41]

ZG(~f ) = ∑
~y∈{0,1}s

∫
R3N

e−
E({~ri},{yi})

KbT d~r1...d~rN , (2)

where ~y = (y1, ..., ys) is the vector of the spin variables. The integral can be elaborated by
means of the change of variables ~ξ1 =~r1 −~r0, ~ξ2 =~r2 −~r1,..., ~ξN =~rN −~rN−1, leading to
∑N

k=1
~ξk =~rN −~r0 and d~r1...d~rN = d~ξ1...d~ξN . By fixing~r0 at the origin of axes, we obtain

ZG(~f ) = ∑
~y∈{0,1}s

∫
R3N

e−
E({~ξi},{yi})

KbT d~ξ1...d~ξN , (3)
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where

E
({

~ξi

}
, {yi}

)
=

N−∑s
j=1 njyj

∑
i=1

1
2

k
(
‖~ξi‖ − `

)2

+
N

∑
i=N+1−∑s

j=1 njyj

1
2

h
(
‖~ξi‖ − d

)2

+
s

∑
j=1

Ej(1− yj)− ~f ·
N

∑
i=1

~ξi. (4)

This expression can be rewritten as follows, in order to simplify the following calculations

E
({

~ξi

}
, {yi}

)
=

s

∑
j=1

Ej(1− yj)

+

N−∑s
j=1 njyj

∑
i=1

(
1
2

k
(
‖~ξi‖ − `

)2
− ~f ·~ξi

)

+
N

∑
i=N+1−∑s

j=1 njyj

(
1
2

h
(
‖~ξi‖ − d

)2
− ~f ·~ξi

)
. (5)

Then, it is possible to substitute Equation (5) into Equation (3) to obtain the expression

ZG(~f ) = ∑
~y∈{0,1}s

e−∑s
i=1

Ei
KbT (1−yi)

× [F (k, l)]N−∑s
j=1 njyj [F (h, d)]∑

s
j=1 njyj , (6)

where we introduce the function F (x, y), defined below

F (x, y) =
∫
R3

e−
x

2KbT (‖~ξ‖−y)+~f ·~ξ d~ξ. (7)

To evaluate this integral, we assume (without limiting the generality) that the force is
aligned to the third axis of the reference frame, ~f = (0, 0, f ). Indeed, the chain behavior is
isotropic in the three-dimensional space. In addition, we change the variables according
to ~ξ = (ξ cos ϕ sin ϑ, ξ sin ϕ sin ϑ, ξ cos ϑ). Since d~ξ = ξ2 sin ϑdξdϕdϑ, ‖~ξ‖ = ξ and ~f · ~ξ =
f ξ cos ϑ, we obtain the following simpler form for the function F (x, y)

F (x, y) = 4π
∫ ∞

0
e
− x

2kbT (ξ−y)2 sinh
(

f ξ
kbT

)
f ξ

kbT

ξ2dξ. (8)

From now on, we assume that the elastic constants k and h are large enough to justify
the use of the freely-jointed chain scheme (without extensibility). To this aim, we can use

the Dirac delta function property
√

α
π e−α(x−x0)

2 →
α→∞

δ(x− x0), eventually yielding

F (x, y) = 2(2πKbT)
3
2

y
f
√

x
sinh

f y
KbT

. (9)

To lighten the expression of the Gibbs partition function, we introduce the follow-
ing notations

A( f ) =
l

f
√

k
sinh

f `
KbT

, (10)
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B( f ) =
d

f
√

h
sinh

f d
KbT

, (11)

Cj = e−
Ej

KbT , (12)

and we obtain

ZG( f ) = AN ∑
~y∈{0,1}s

(
s

∏
i=1

C
1−yj
j

)
A−∑s

j=1 njyj B∑s
j=1 njyj (13)

=

(
s

∏
i=1

Cj

)
AN ∑

~y∈{0,1}s

(
s

∏
i=1

C
−yj
j

)(
B
A

)∑s
j=1 njyj

. (14)

Please note that, in the definitions of A( f ) and B( f ), we left out the multiplicative

constant 2(2πKbT)
3
2 , which is irrelevant in the subsequent calculations. To conclude, it is

necessary to note that, for each binary parameter yi, there are two possible values yi = 0 or
yi = 1. Therefore, we obtain the final result in the form

ZG( f ) =

(
s

∏
i=1

Cj

)
AN

s

∏
j=1

(
1 + C−1

j

(
B
A

)nj
)

. (15)

This is the main achievement concerning the behavior of the ideal chain with sacrificial
bonds under the isotensional Gibbs condition.

In order to study the Helmholtz ensemble, we have to further develop the second
product in Equation (15). Let φi be a sequence of real numbers; we attempt to calculate the
following product

P =
s

∏
i=1

(1 + φi). (16)

By developing the expression, we directly have

P = 1 + ∑
j

φj + ∑
i 6=j

φiφj + ... +
s

∏
i=1

φi, (17)

where the sum contains 2s terms. To simplify this expression, it is possible to use the bits
of a number t between 0 and 2s − 1, written in base 2. If~t = (t1, ..., ts) is the vector of the
binary representation of the number t, then we can write

s

∏
i=1

(1 + φi) =
2s−1

∑
t=0

(
s

∏
j=1

φ
tj
j

)
. (18)

A trivial generalization of this result follows

s

∏
i=1

(a + φib) =
2s−1

∑
t=0

(
s

∏
j=1

φ
tj
j

)
as−∑s

i=1 ti b∑s
i=1 ti . (19)

The application of this approach to Equation (15) immediately leads to

ZG( f ) =
2s−1

∑
t=0

(
s

∏
i=1

C1−ti
i

)
A( f )N−~n·~tB( f )~n·~t, (20)
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where ~n = (n1, ..., ns) is the vector of the sacrificial bond lengths. The force–extension
response for the chain with sacrificial bonds within the Gibbs ensemble can be found
through the standard relation [32,41]

〈r〉 = kBT
∂ log ZG( f )

∂ f
, (21)

which will be used in the following developments to discuss the behavior of the system
with an applied force. In this case, the average value of the extension is written as a function
of the deterministic applied force.

2.2. Isometric Helmholtz Condition

The Helmholtz ensemble is characterized by the prescribed extension r of the chain,
which assumes a deterministic character. Consequently, we will determine the average
value 〈 f 〉 of the force, which is a random variable subjected to statistical fluctuations. We
determine the Helmholtz partition function on the base of the previously evaluated Gibbs
partition function. Indeed, it is possible to write the relationship [32,41]

ZH(r) =
∫ +∞

−∞
ZG(iη)

η

r
sin
(

ηr
KbT

)
dη, (22)

where ZG(iη) represents the analytic continuation of ZG( f ) over the imaginary axis. Please
note that the Fourier or Laplace relation between ZH and ZG is always true whereas the
Legendre transform between the Helmholtz and Gibbs free energies is correct only when
N → ∞ (thermodynamic limit) [32,41]. By substituting the Gibbs partition function in
Equation (22), we obtain

ZH(r) =
2s−1

∑
t=0

(
s

∏
i=1

C1−ti
i

) ∫ +∞

−∞
A(iη)N−~n·~tB(iη)~n·~t sin

(
ηr

KbT

)
η

r
dη

=
2s−1

∑
t=0

(
`√
k

)N−~n·~t( d√
h

)~n·~t( s

∏
i=1

C1−ti
i

)
1
r

×
∫ +∞

−∞
sinN−~t·~n

(
η`

KbT

)
sin~t·~n

(
ηd

KbT

)
sin
(

ηr
KbT

)
1

ηN−1 dη. (23)

The function to integrate in Equation (23) is regular on the real axis and analytical on a
strip |= η| < M of the complex plane, for an arbitrary M ∈ <. Then, instead of integrating
on the whole real axis, we can use the path Γ shown in Figure 3. With the change of variable
y = η`/(KbT), we then have

ZH(r) = −i
(

`

KbT

)N−2 2s−1

∑
t=0

(
`√
k

)N−~n·~t( d√
h

)~n·~t( s

∏
i=1

C1−ti
i

)

× 1
r

∫
Γ

sinN−~t·~n (y) sin~t·~n
(

d
`

y
)

ei r
` y 1

yN−1 dη. (24)

"

=η

<ηΓ

0

Figure 3. Definition of the contour Γ on the complex plane.
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By developing the powers of trigonometric functions in the previous expression by
means of the expansion [68,70,74]

sinm y =
1

(2i)m eimy
m

∑
t=0

(
m
t

)
(−1)te−2ity, (25)

and by using the integral [68,70,74]

∫
Γ

eiay

ym dy =

{
0 if a > 0
−2πim am−1

(m−1)! if a ≤ 0
, (26)

after straightforward calculations, we obtain the final result

ZH(r) = c
2s−1

∑
t=0

(
`√
k

)N−~n·~t( d√
h

)~n·~t( s

∏
i=1

C1−ti
i

)
1
r

×
N−~n·~t
∑
p=0

~n·~t
∑
q=0

(
N −~n ·~t

p

)(
~n ·~t

q

)
(−1)p+q

×
(

N −~n ·~t− 2p +
d
`
~n ·~t− 2qd

`
+

r
`

)N−2

×1
(
−N +~n ·~t + 2p− d

`
~n ·~t + 2qd

`
− r

`

)
, (27)

where c = π
2(N−2)!

(
l

2KbT

)N−2
is an irrelevant multiplicative constant and the Heaviside

step function 1(x) is defined as 1(x) = 1 if x ≥ 0, and 1(x) = 0 if x < 0. This is the final
result describing the thermoelasticity of the ideal chain with sacrificial bonds under the
isometric Helmholtz condition.

The knowledge of the partition function allows us to obtain the force–extension
response within the Helmholtz ensemble through the expression [32,41]

〈 f 〉 = −kBT
∂ log ZH(r)

∂r
, (28)

which will be used to discuss the behavior of the system with the prescribed extension. In
particular, it will be adopted to show the characteristic sawtooth pattern and to evaluate
the extra-toughness.

An interesting point concerning the thermomechanics of polymeric chains is the
equivalence of the ensembles in the thermodynamic limit (i.e., for N → ∞) [41,78–81].
Two conjugated ensembles (for instance, the Gibbs and Helmholtz ones) are said to be
equivalent when the macroscopic behavior described by the force–extension relation is the
same for N → ∞. In general, it is difficult to prove for a given system if two statistical
ensembles are equivalent. Although there are some particular rules, there are no general
criteria or theorems for determining whether a system satisfies such an equivalence [80].
Several examples of non-equivalence are well-known in the literature [82–87]. However,
in our system, which is a generalization of the extensible freely-jointed chain [69], it is
not difficult to prove that the equivalence of the ensembles in the thermodynamic limit
is verified.

3. Results and Discussion

Here, we present some examples of applications of previous results in order to better
understand the role of the different parameters of the system on the mechanical perfor-
mances (particularly on the extra-toughness). The force–extension curves were obtained by the
implementation of Equations (15) and (21) for the Gibbs ensemble and of Equations (27) and (28)
for the Helmholtz ensemble. While the partition functions have been implemented in closed
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form, the derivatives to obtain the averaged macroscopic quantities have been calculated
numerically. It is important to observe that if we plot the force–extension curves in terms
of the adimensional force f `/(KbT) and adimensional extension r/(N`), then the curve
only depends on the adimensional parameters d/`, h/k, nj and Ej/(KbT), ∀j = 1, ..., s. We
should also note that in all of the following plots we have written the quantities f `/(KbT)
and r/(N`) on the two axes. However, this is not very accurate in that we should have
written f `/(KbT) and 〈r〉/(N`) for the Gibbs ensemble and 〈 f 〉`/(KbT) and r/(N`) for
the Helmholtz ensemble. The choice comes only from the fact that we superimposed the
two curves in the same graph. We leave correct interpretation of the axes to the reader.

To begin, in Figure 4, we show the mechanical response of a chain with only one
sacrificial bond (left panel) and with s = 5 sacrificial bonds (right panel) under both
Gibbs (blue curves) and Helmholtz (red curves) conditions. In addition, the green curves
correspond to the case of a chain without sacrificial bonds. The sacrificial bonds are homo-
geneous, i.e., with the same length and fracture energy. On the left panel, we observe that
the rupture of the sacrificial bond corresponds to a force plateau in the Gibbs ensemble,
representing the releasing of the hidden length. In the same panel, we also note that
the Helmholtz response is described by a peak of force in the same region of the Gibbs
plateau. The same behavior can be observed on the right panel where we see one plateau
for the Gibbs response and five force peaks for the Helmholtz response. It means that in
the Gibbs case the ruptures are synchronized when the force reaches a given threshold
value. In contrast, in the Helmholtz case, breaks occur sequentially as the chain exten-
sion progresses continuously. The synchronized versus sequential transitions are well
known in the protein folding/unfolding process [68]. The value of the plateau force in the
Gibbs ensemble turns out to be temperature independent, as already observed in other
investigations [68,69,72–75]. This result can be simply explained in the framework of the
Bell relation f = E/∆r, discovered in the context of cell adhesion [88,89], where ∆r is the
hidden length in our system. This plateau force can be explained as follows. We consider
two potential energies U1(r) = 1

2 k(r − nd)2 − f r and U2(r) = E + 1
2 k(r − n`)2 − f r, cor-

responding to the intact and broken states of one sacrificial bond under force f , when
h/k = 1. In both cases, the equilibrium lengths are defined by ∂U1/∂r = 0 and ∂U2/∂r = 0,
and we obtain r1 = nd + f /k and r2 = n`+ f /k. Finally, the broken configuration is more
favorable than the intact one when U2(r2) < U1(r1), which corresponds to f > f ∗ = E/∆x,
with ∆x = n(`− d) being the hidden length of the bond. This force plateau value can be
written in an adimensional form as f ∗`/(KbT) = 1

n
E

KbT
1

1−d/` , perfectly corresponding with
the values in Figure 4. The previous argument can be easily generalized also for the case
with k 6= h, but let us skip this detail for the sake of brevity. We see that the introduction
of the sacrificial bonds increases the toughness of the system. This improvement can be
measured quantitatively by means of the following definition of the extra-toughness

E =
1

NKbT

∫ +∞

0
[ fs(r)− f0(r)]dr, (29)

where fs(r) is the force–extension curve with s sacrificial bonds and f0(r) is the same curve
without sacrificial bonds. For the Gibbs case, it corresponds to the area between the blue
and green curves, divided by KbT. Similarly, for the Helmholtz case, it corresponds to the
area between the red and green curves, divided by KbT. The integral always converges
since fs(r) ∼ f0(r) for r → ∞ (when all sacrificial bonds are broken). In the following, we
will evaluate this quantity for the Helmholtz condition, which is the most widely used in
this type of analysis (the integral will be performed numerically).
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Figure 4. Force–extension response of a chain with only one sacrificial bond (left panel) and with
s = 5 sacrificial bonds (right panel) under both Gibbs (blue curves) and Helmholtz (red curves)
conditions. We also added the response of the same system without sacrificial bonds in order
to compare the different behaviors (green curves). The plots are represented with adimensional
quantities. We adopted the parameters N = 50, h/k = 1, d/` = 1/10, n = 5 and E/(KbT) = 75 for
all sacrificial bonds.

In Figure 5, we show two examples of force–extension curves with two kinds of dis-
tribution of heterogeneous sacrificial bonds. On the left panel, we have a heterogeneous
distribution of lengths but a homogeneous distribution of fracture energies (nk = k∀k
and Ek/(KbT) = 75∀k). Conversely, on the right panel, we have a homogeneous distri-
bution of lengths but a heterogeneous distribution of fracture energies (nk = 5∀k and
Ek/(KbT) = 35k∀k). We note that in this case with heterogeneous distributions of sacrificial
bonds, we have in the Gibbs response a multi-plateau pattern where each plateau corre-
sponds to the threshold force for breaking a given sacrificial bond. Indeed, we could repeat
the previous argument in order to obtain the expression f ∗k `/(KbT) = 1

nk

Ek
KbT

1
1−d/` , giving

the adimensional form of the threshold force for a given sacrificial bond, with length nk
and fracture energy Ek. It is possible to verify that this simple result perfectly corresponds
with the plateau values in Figure 5. It can be seen from these examples that the sawtooth
curve of the response in the Helmholtz case is strongly dependent on the distribution of
sacrificial bonds. Before analyzing how extra-toughness varies as different parameters
change, let us look at a few more examples.
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Figure 5. Force–extension response of two chains with s = 5 and different heterogeneous distri-
butions of sacrificial bonds under both Gibbs (blue curves) and Helmholtz (red curves) conditions.
We also added the response of the same system without sacrificial bonds in order to compare the
different behaviors (green curves). On the left panel, we assumed nk = k∀k and Ek/(KbT) = 75∀k,
while on the right panel we adopted nk = 5∀k and Ek/(KbT) = 35k∀k. The plots are represented
with adimensional quantities. The other parameters are given by N = 50, h/k = 1, and d/` = 1/10.
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Since the adimensional threshold forces are given by f ∗k `/(KbT) = 1
nk

Ek
KbT

1
1−d/` , it is

possible to have a heterogeneous distribution of sacrificial bonds (but with a homogeneous
distribution of threshold forces). It is sufficient to set all fractions Ek

nk
to the same value.

Two examples following this criterion can be found in Figure 6. On the left panel, we
considered a chain with s = 3 and we assumed nk = 3 + k∀k and Ek/(KbT) = 35nk∀k,
while on the right panel, we analyzed a chain with s = 4 and we adopted nk = 3 + k∀k
and Ek/(KbT) = 30nk∀k. We clearly observe that in these two cases the Gibbs response is
described by a single plateau that corresponds to the synchronized breaking of all sacrificial
bonds. In fact, the threshold-breaking strength is the same for all sacrificial bonds. We
move then from the multi-plateau case to the single plateau case. However, the Helmholtz
ensemble is more complicated since, in addition to the s main force peaks, we note the
emergence of some smaller force peaks. The origin of such minor peaks can be explained
as follows. If we look at the curves in Figure 5 and imagine deforming them in order to
bring all the Gibbs plateaus to the same level, we see that in the Helmholtz curves we have
to make a folding that generates exactly the minor peaks observable in Figure 6. From the
physical point of view, it means that there is an interaction between the rupture process of
the different sacrificial bonds. This fact is consistent with the general principle that in the
Helmholtz ensemble the chain segments are not independent because the constraint on the
total extension creates an implicit interaction between them (the distance between the ends
is fixed) [68]. In contrast, in the Gibbs ensemble, they are always independent because the
application of force does not create constraints between the chain segments [68]. From the
point of view of statistical mechanics, this fact is evident from the structure of the partition
function: in the Gibbs ensemble, it is given by the product of the partial functions of the
segments, see Equation (15), while this simple form cannot be identified for the Helmholtz
ensemble, see Equation (27).
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Figure 6. Force–extension response of two chains with s = 3 (left panel) and s = 4 (right panel)
and different heterogeneous distributions of sacrificial bonds under both Gibbs (blue curves) and
Helmholtz (red curves) conditions. We also added the response of the same system without sacrificial
bonds in order to compare the different behaviors (green curves). On the left panel, we assumed
nk = 3 + k∀k and Ek/(KbT) = 35nk∀k, while on the right panel, we adopted nk = 3 + k∀k and
Ek/(KbT) = 30nk∀k. The plots are represented with adimensional quantities. The other parameters
are given by N = 50, h/k = 1, and d/` = 1/10.

We now begin to analyze the behavior of extra-toughness as the system parameters
change. We start with the simple case in which there is only one sacrificial bond with a
variable braking energy. The results can be found in Figure 7. On the left panel, one can find
the different force–extension curves with an increasing rupture energy E, while in the right
panel, we plot the extra-toughness E defined in Equation (29) versus Ek/(KbT). Of course,
we observe an increasing extra-toughness with increasing braking energy. Nevertheless, it
is interesting to note that there is a threshold value of energy below which extra-toughness
is zero, and beyond this value, the behavior is perfectly linear.
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Figure 7. Helmholtz force–extension response (left panel, red curves) and extra-toughness (right
panel, black curve) for a chain with s = 1 and n = 5 and an increasing value of the rupture
energy E. We also added the response of the same system without sacrificial bonds in order
to compare the different behaviors (green curve). On the left panel, we assumed E/(KbT) =

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, while on the right panel, we varied Ek/(KbT) continuously be-
tween 0 and 100. The plots are represented with adimensional quantities. The other parameters are
given by N = 50, h/k = 1, and d/` = 1/10.

In Figure 8, we found the behavior of the extra-toughness in terms of the sacrificial
bond length. We consider a simple chain with only one sacrificial bond and we vary n from
1 to 10, by keeping the other parameters constant. We see that the extra-toughness is a
linearly decreasing function of n. This behavior can be explained by observing that since the
Gibbs plateau is given by the formula f ∗`/(KbT) = 1

n
E

KbT
1

1−d/` , we see that it is inversely
proportional to n and, therefore, the area subtended by the curve is also decreasing with
n. The same argument is clearly also valid for the Helmholtz peak, which is related to the
Gibbs plateau. We deduce that short sacrificial bonds are more efficient for improving the
system toughness. This behavior has been obtained by considering a constant value of the
rupture energy E for any value of n.
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Figure 8. Helmholtz force–extension response (left panel, red curves) and extra-toughness (right
panel, black symbols) for a chain with s = 1 and an increasing length n of the sacrificial bond. We also
added the response of the same system without sacrificial bonds in order to compare the different
behaviors (green curve). We assumed n = 1, 2, 3, ..., 10. The plots are represented with adimensional
quantities. The other parameters are given by N = 50, h/k = 1, E/(KbT) = 75 and d/` = 1/10.

Differently, in Figure 9, we consider again only one sacrificial bond but we assume
that the rupture energy is proportional to the bond length. In particular, we suppose that
n = 1, 2, 3, ..., 10 and the corresponding rupture energies are given by E/(KbT) = 20n. In
this case, in contrast to the previous one, we see that longer sacrificial bonds are more
efficient from the point of view of the extra-toughness. This example shows the complexity
of the system and teaches us that the rupture energies are crucial in determining the
toughness of the system.
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Figure 9. Helmholtz force–extension response (left panel, red curves) and extra-toughness (right
panel, black symbols) for a chain with s = 1, an increasing length n of the sacrificial bond, and rupture
energy proportional to the length. We also added the response of the same system without sacrificial
bonds in order to compare the different behaviors (green curves). We assumed n = 1, 2, 3, ..., 10 and
the corresponding rupture energies are given by E/(KbT) = 20n. The plots are represented with
adimensional quantities. The other parameters are given by N = 50, h/k = 1, and d/` = 1/10.

We studied the effects of the length n, and now we can analyze those of the number s of
sacrificial bonds. The results can be seen in Figure 10, where we studied the extra-toughness
by varying both s and n. We consider here a homogeneous distribution of sacrificial bonds.
While on the left panel we represented the force–extension curves for different values of s
with a fixed length n, on the right panel we show the values of the extra-toughness E versus
the number s of sacrificial bonds, by taking n as a parameter. Importantly, we observe that
the extra-toughness is a linearly increasing function of the number s of sacrificial bonds,
and it is a slightly decreasing function of the length n, as predicted by Figure 8. It is clear
that the number of sacrificial bonds is the key parameter to focus on in order to increase
the toughness of the system.
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Figure 10. Helmholtz force–extension response (left panel, red curves) and extra-toughness (right
panel, colored symbols) for a chain with different s and n. We also added the response of the same
system without sacrificial bonds in order to compare the different behaviors (green curve). On the
left panel, we considered a chain with s = 1, ..., 5 with the fixed value n = 3. On the right panel,
the extra-toughness is calculated for n = 1, ..., 5 and n = 1, ..., 5. The plots are represented with
adimensional quantities. The other parameters are given by N = 50, h/k = 1, E/(KbT) = 75, and
d/` = 1/10.

Another analysis concerns the effect of the length ratio d/` on the extra-toughness. In
Figure 11, one can find on the left panel three different force–extension curves characterized
by different ratios d/` = 1/10, 3/10, 1/2 (pink, brown, and red curves, respectively), and
on the right panel, the behavior of E versus d/` for different values of s and n. In general,
we observe a slightly increasing trend of E , which can be justified again by the expression
f ∗k `/(KbT) = 1

nk

Ek
KbT

1
1−d/` , giving the adimensional force plateau for a given sacrificial
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bond. Indeed, we can see that this value increases as d/` increases and, thus, the areas
under both the Gibbs and Helmholtz curves increase with d/` as well. However, the
variation in extra-toughness is not very large. Moreover, in fact, in real physical systems,
the sacrificial bonds are much shorter than the short-circuited sections of the main chain for
other chemical–physical reasons. In fact, such sacrificial links are often driven by chemical
bonds that are weaker than the covalent bond and, thus, have limited extension.
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Figure 11. Helmholtz force–extension response (left panel) and extra-toughness (right panel) for
a chain with different s and n and varying d/`. We also added the response of the same system
without sacrificial bonds in order to compare the different behaviors (green curve). On the left
panel, we considered a chain with s = 3, n = 4 and d/` = 1/10, 3/10, 1/2 (pink, brown, and red
curves, respectively). On the right panel, the extra-toughness is calculated for n = 3, 4, s = 2, 3 and
1/100 < d/` < 1/2. The plots are represented with adimensional quantities. The other parameters
are given by N = 50, h/k = 1, and E/(KbT) = 75.

In Figure 12, we also investigated the variation of the extra-toughness in terms of the
elastic constants ratio h/k for chains with different geometries. We considered a chain with
s = 3, n = 2, 3, 4 (red, black, and blue curves, respectively), and we varied h/k in the interval
(0,1) on the left panel, and the interval (1,10) on the right panel. We can directly infer that
extra-toughness increases as the ratio h/k decreases. This is consistent with the fact that
sacrificial bonds are weak and typically have a lower elastic constant than the main chain.
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Figure 12. Extra-toughness E behavior versus the elastic constants ratio h/k for chains with different
geometries. We considered a chain with s = 3, n = 2, 3, 4 (red, black, and blue curves, respectively)
and we varied h/k in the interval (0,1) on the left panel, and in the interval (1,10) on the right panel.
The plots are represented with adimensional quantities. The other parameters are given by N = 50,
d/` = 1/10, and E/(KbT) = 75.

To conclude, we performed an analysis concerning the stochastic behavior of the
system. In particular, we considered a chain with a given distribution and geometry of
sacrificial bonds, but we assumed that the rupture energies were random variables. The
results of this further study are represented in Figure 13. All rupture energies (normalized,
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i.e., E
KbT ) were generated by means of independent translated exponential distributions

described by the probability density

fX(x) =
1
µ

e−
x−λ

µ , x ≥ λ, (30)

with µ and λ, two real parameters, we suppose that fE(x) = 0 when x < λ. This probability
density is characterized by the average value

〈X〉 =
∫ +∞

λ
e fE(x)dx = µ + λ, (31)

and by a variance

σ2
X =

〈
(X− 〈X〉)2

〉
=
∫ +∞

λ
(x− 〈X〉)2 fE(x)dx = µ2. (32)

From these relations, we can write λ = 〈X〉 − σX and µ = σX. On the left panel, we
assumed an independent exponential distribution of the rupture energies with a fixed
average value and varying variance. More precisely, we assumed

〈
E

KbT

〉
= 60, and σ E

KbT

variable between 1 and 40. Conversely, on the right panel, we assumed an independent
exponential distribution of the rupture energies with fixed variance and varying average
value. We assumed σ E

KbT
= 40, and

〈
E

KbT

〉
varying between 30 and 100. From the left panel,

we deduce that the variance of the rupture energies does not affect the extra-toughness
since E remains quite constant over a large range of σ2

E
KbT

. Moreover, we see on the right

panel that the extra-toughness E increases linearly with
〈

E
KbT

〉
when the variance is con-

stant. This is the same behavior already observed in Figure 7 for a deterministic system.
The important conclusion is that the statistical distribution of the rupture energies does
not affect the system behavior and only the average value of these quantities can induce a
marked improvement of the mechanical performances.
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Figure 13. Extra-toughness behavior E in terms of the stochastic distribution of sacrificial bond
rupture energies. In both examples, we considered a chain with s = 4 and n = 2. On the left panel,
we assumed an independent exponential distribution of the rupture energies with a fixed average
value and varying variance. Conversely, on the right panel, we assumed an independent exponential
distribution of the rupture energies with fixed variance and varying average value (see details in the
main text). The red circles represent the single results (Monte Carlo realizations) and the blue lines the
corresponding average values. The other parameters are given by N = 20, h/k = 1, and d/` = 1/10.

4. Conclusions

We developed a simple model, based on statistical mechanics and thermodynamics
of the elastic behavior of a polymeric chain or macromolecule with sacrificial bonds. The
model takes into account the hidden length and the resulting extra-toughness, which
are the two main ingredients used by biological structures to create high-toughness and
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high-performance materials. The approach is based on the spin variable methods, where
discrete quantities, such as bits, are introduced to identify the state (intact or broken) of
the sacrificial bonds during the load application. It allows the determination of the force–
extension relation of the chain under both Gibbs (with applied force) and Helmholtz (with
prescribed extension) conditions. The knowledge of this force–extension relation permits
obtaining the characteristic sawtooth pattern observed in force spectroscopy experiments
and evaluating the extra-toughness generated by the sacrificial bonds system. The model,
while simple, was developed (exactly and analytically) from reasonable assumptions. Thus,
it allows for studying the effect of key parameters on macromolecular chain performance.
We showed some examples in this regard, to analyze the behavior of the system, as the
lengths of the chain elements, breaking energies, sacrificial bond geometry, and so on,
vary. However, the model can be generalized in a variety of directions to be more closely
tailored to the chemical and physical realities of biological structures. First, we used a
generalization of the FJC model that did not allow for the introduction of a persistence
length in the chains. This point can be remedied by the use of the WLC model, which is
more mathematically complex and, therefore, does not allow for an easy focus on issues
related to sacrificial bonds [43–46]. In addition, we approached the problem with statistical
mechanics at equilibrium, so the results are valid only for static or quasi-static processes, as
in classical thermodynamics. Consideration of dynamics would be an important point to
take into account the true traction velocities used in force spectroscopy experiments. Typical
values in AFM force-spectroscopy experiments range between 10−2 and 102 µm/s [90]
(only recently, high-speed atomic force microscopes HS-AFM attained speeds of about
104 µm/s [91]). In order to take this issue into consideration, the equilibrium statistical
mechanics approaches should be substituted with the methodologies based on the Langevin
and Fokker–Planck stochastic formalism [92–95]. Moreover, other limitations concern the
geometry of the system. First of all, we developed our model only for a single chain, but in
real systems, the material toughness depends on a complex interaction among many chains
coexisting in a given structure (rubber-like materials). In addition, we considered only
sacrificial links that did not overlap and interact with each other in the simple chain. These
structural and geometric limitations should also be reduced with more complex modeling
that would probably have to be studied entirely numerically.
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Appl. Mech. 2022, 3 952

References
1. Cranford, S.W.; Buehler, M.J. Biomateriomics, 2012nd ed.; Springer: Dordrecht, The Netherlands, 2014; ISBN 9789400796867.
2. Smith, B.L.; Schäffer, T.E.; Viani, M.; Thompson, J.B.; Frederick, N.A.; Kindt, J.; Belcher, A.; Stucky, G.D.; Morse, D.E.; Hansma, P.K.

Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites. Nature 1999, 399, 761–763.
[CrossRef]

3. Fantner, G.E.; Oroudjev, E.; Schitter, G.; Golde, L.S.; Thurner, P.; Finch, M.M.; Turner, P.; Gutsmann, T.; Morse, D.E.;
Hansma, H.; et al. Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials. Biophys. J.
2006, 90, 1411–1418. [CrossRef] [PubMed]

4. Nabavi, S.S.; Harrington, M.J.; Fratzl, P.; Hartmann, M.A. Influence of Sacrificial Bonds on the Mechanical Behaviour of Polymer
Chains. Bioinspired Biomim. Nanobiomaterials 2014, 3, 139–145. [CrossRef]

5. Soran Nabavi, S.; Harrington, M.J.; Paris, O.; Fratzl, P.; Hartmann, M.A. The Role of Topology and Thermal Backbone Fluctuations
on Sacrificial Bond Efficacy in Mechanical Metalloproteins. New J. Phys. 2014, 16, 013003. [CrossRef]

6. Lieou, C.K.C.; Elbanna, A.E.; Carlson, J.M. Sacrificial Bonds and Hidden Length in Biomaterials: A Kinetic Constitutive
Description of Strength and Toughness in Bone. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 88, 012703. [CrossRef] [PubMed]

7. Elbanna, A.E.; Carlson, J.M. Dynamics of Polymer Molecules with Sacrificial Bond and Hidden Length Systems: Towards a
Physically-Based Mesoscopic Constitutive Law. PLoS ONE 2013, 8, e56118. [CrossRef]

8. Fantner, G.E.; Hassenkam, T.; Kindt, J.H.; Weaver, J.C.; Birkedal, H.; Pechenik, L.; Cutroni, J.A.; Cidade, G.A.G.; Stucky, G.D.;
Morse, D.E.; et al. Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate during Bone Fracture.
Nat. Mater. 2005, 4, 612–616. [CrossRef]

9. Burr, D.B. The Contribution of the Organic Matrix to Bone’s Material Properties. Bone 2002, 31, 8–11. [CrossRef]
10. Thompson, J.B.; Kindt, J.H.; Drake, B.; Hansma, H.G.; Morse, D.E.; Hansma, P.K. Bone Indentation Recovery Time Correlates with

Bond Reforming Time. Nature 2001, 414, 773–776. [CrossRef] [PubMed]
11. Koebley, S.R.; Vollrath, F.; Schniepp, H.C. Toughness-Enhancing Metastructure in the Recluse Spider’s Looped Ribbon Silk. Mater.

Horiz. 2017, 4, 377–382. [CrossRef]
12. Thormann, E.; Mizuno, H.; Jansson, K.; Hedin, N.; Fernández, M.S.; Arias, J.L.; Rutland, M.W.; Pai, R.K.; Bergström, L. Embedded

Proteins and Sacrificial Bonds Provide the Strong Adhesive Properties of Gastroliths. Nanoscale 2012, 4, 3910–3916. [CrossRef]
[PubMed]

13. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 12631334. [CrossRef]
14. Gao, H. ;Ji, B.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl.

Acad. Sci. USA 2003, 100, 5597–5600. [CrossRef] [PubMed]
15. Manca, F.; Palla, P. L.; Cleri, F.; Giordano, S. Characteristic lengths in natural bundle assemblies arising from fiber-matrix energy

competition: A Floquet-based homogenization theory. Eur. J. Mech. A/Solids 2016, 60, 145–165. [CrossRef]
16. Zhou, X.; Guo, B.; Zhang, L.; Hu, G.-H. Progress in Bio-Inspired Sacrificial Bonds in Artificial Polymeric Materials. Chem. Soc. Rev.

2017, 46, 6301–6329. [CrossRef]
17. Shabbir, H.; Dellago, C.; Hartmann, M.A. A High Coordination of Cross-Links Is Beneficial for the Strength of Cross-Linked

Fibers. Biomimetics 2019, 4, 12. [CrossRef] [PubMed]
18. Jiang, Z.; Bhaskaran, A.; Aitken, H.M.; Shackleford, I.C.G.; Connal, L.A. Using Synergistic Multiple Dynamic Bonds to Construct

Polymers with Engineered Properties. Macromol. Rapid Commun. 2019, 40, e1900038. [CrossRef] [PubMed]
19. Mazzotta, M.G.; Putnam, A.A.; North, M.A.; Wilker, J.J. Weak Bonds in a Biomimetic Adhesive Enhance Toughness and

Performance. J. Am. Chem. Soc. 2020, 142, 4762–4768. [CrossRef]
20. Wang, Z.; Xiang, C.; Yao, X.; Le Floch, P.; Mendez, J.; Suo, Z. Stretchable Materials of High Toughness and Low Hysteresis. Proc.

Natl. Acad. Sci. USA 2019, 116, 5967–5972. [CrossRef]
21. Zhang, Z.; Liu, J.; Li, S.; Gao, K.; Ganesan, V.; Zhang, L. Constructing Sacrificial Multiple Networks to Toughen Elastomer.

Macromolecules 2019, 52, 4154–4168. [CrossRef]
22. Tang, Z.; Huang, J.; Guo, B.; Zhang, L.; Liu, F. Bioinspired Engineering of Sacrificial Metal-Ligand Bonds into Elastomers with

Supramechanical Performance and Adaptive Recovery. Macromolecules 2016, 49, 1781–1789. [CrossRef]
23. Huang, J.; Tang, Z.; Yang, Z.; Guo, B. Bioinspired Interface Engineering in Elastomer/Graphene Composites by Constructing

Sacrificial Metal-Ligand Bonds. Macromol. Rapid Commun. 2016, 37, 1040–1045. [CrossRef] [PubMed]
24. Hussain, I.; Sayed, S.M.; Liu, S.; Oderinde, O.; Yao, F.; Fu, G. Glycogen-Based Self-Healing Hydrogels with Ultra-Stretchable,

Flexible, and Enhanced Mechanical Properties via Sacrificial Bond Interactions. Int. J. Biol. Macromol. 2018, 117, 648–658.
[CrossRef] [PubMed]

25. Sun, M.; Qiu, J.; Lu, C.; Jin, S.; Zhang, G.; Sakai, E. Multi-Sacrificial Bonds Enhanced Double Network Hydrogel with High
Toughness, Resilience, Damping, and Notch-Insensitivity. Polymers 2020, 12, 2263. [CrossRef] [PubMed]

26. Lin, C.; Li, Z.; Lei, K.; Jia, H.; Yu, L.; Zheng, Z.; Wang, X. Bioinspired Tunable Sacrificial Bonds Endowing Tetra-PEG Based
PU Hydrogel with Tunable Mechanical Properties, Shape-Memory, and Self-Healing Functions. Macromol. Mater. Eng. 2018,
303, 1700542. [CrossRef]

27. Myllymäki, T.T.T.; Lemetti, L.; Nonappa; Ikkala, O. Hierarchical Supramolecular Cross-Linking of Polymers for Biomimetic
Fracture Energy Dissipating Sacrificial Bonds and Defect Tolerance under Mechanical Loading. ACS Macro Lett. 2017, 6, 210–214.
[CrossRef] [PubMed]

http://doi.org/10.1038/21607
http://dx.doi.org/10.1529/biophysj.105.069344
http://www.ncbi.nlm.nih.gov/pubmed/16326907
http://dx.doi.org/10.1680/bbn.14.00009
http://dx.doi.org/10.1088/1367-2630/16/1/013003
http://dx.doi.org/10.1103/PhysRevE.88.012703
http://www.ncbi.nlm.nih.gov/pubmed/23944488
http://dx.doi.org/10.1371/journal.pone.0056118
http://dx.doi.org/10.1038/nmat1428
http://dx.doi.org/10.1016/S8756-3282(02)00815-3
http://dx.doi.org/10.1038/414773a
http://www.ncbi.nlm.nih.gov/pubmed/11742405
http://dx.doi.org/10.1039/C6MH00473C
http://dx.doi.org/10.1039/c2nr30536d
http://www.ncbi.nlm.nih.gov/pubmed/22653376
http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
http://dx.doi.org/10.1073/pnas.0631609100
http://www.ncbi.nlm.nih.gov/pubmed/12732735
http://dx.doi.org/10.1016/j.euromechsol.2016.07.002
http://dx.doi.org/10.1039/C7CS00276A
http://dx.doi.org/10.3390/biomimetics4010012
http://www.ncbi.nlm.nih.gov/pubmed/31105198
http://dx.doi.org/10.1002/marc.201900038
http://www.ncbi.nlm.nih.gov/pubmed/30977952
http://dx.doi.org/10.1021/jacs.9b13356
http://dx.doi.org/10.1073/pnas.1821420116
http://dx.doi.org/10.1021/acs.macromol.9b00116
http://dx.doi.org/10.1021/acs.macromol.5b02756
http://dx.doi.org/10.1002/marc.201600226
http://www.ncbi.nlm.nih.gov/pubmed/27229634
http://dx.doi.org/10.1016/j.ijbiomac.2018.04.088
http://www.ncbi.nlm.nih.gov/pubmed/29679673
http://dx.doi.org/10.3390/polym12102263
http://www.ncbi.nlm.nih.gov/pubmed/33019708
http://dx.doi.org/10.1002/mame.201700542
http://dx.doi.org/10.1021/acsmacrolett.7b00011
http://www.ncbi.nlm.nih.gov/pubmed/35650915


Appl. Mech. 2022, 3 953

28. Tu, Z.; Liu, W.; Wang, J.; Qiu, X.; Huang, J.; Li, J.; Lou, H. Biomimetic High Performance Artificial Muscle Built on Sacrificial
Coordination Network and Mechanical Training Process. Nat. Commun. 2021, 12, 2916. [CrossRef] [PubMed]

29. Xiao, L.; Huang, J.; Wang, Y.; Chen, J.; Liu, Z.; Nie, X. Tung Oil-Based Modifier Toughening Epoxy Resin by Sacrificial Bonds. ACS
Sustain. Chem. Eng. 2019, 7, 17344–17353. [CrossRef]

30. Chen, Y.; Sanoja, G.; Creton, C. Mechanochemistry Unveils Stress Transfer during Sacrificial Bond Fracture of Tough Multiple
Network Elastomers. Chem. Sci. 2021, 12, 11098–11108. [CrossRef]

31. Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R.P.; Creton, C. Toughening Elastomers with Sacrificial Bonds and Watching Them
Break. Science 2014, 344, 186–189. [CrossRef] [PubMed]

32. Weiner, J.H. Statistical Mechanics of Elasticity, 2nd ed.; Dover Publications: Mineola, NY, USA, 2003; ISBN 9780486422602.
33. Doi, M. Introduction to Polymer Physics; Clarendon Press: Oxford, UK, 1995; ISBN 9780198517726.
34. Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 2nd ed.; World Scientific Publishing:

Singapore, 1995; ISBN 9789810214722.
35. Ritort, F. Single-Molecule Experiments in Biological Physics: Methods and Applications. J. Phys. Condens. Matter 2006, 18, R531.

[CrossRef] [PubMed]
36. Neuman, K.C.; Nagy, A. Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy.

Nat. Methods 2008, 5, 491–505. [CrossRef]
37. Kumar, S.; Li, M.S. Biomolecules under Mechanical Force. Phys. Rep. 2010, 486, 1–74. [CrossRef]
38. Hoffmann, T.; Dougan, L. Single Molecule Force Spectroscopy Using Polyproteins. Chem. Soc. Rev. 2012, 41, 4781–4796. [CrossRef]

[PubMed]
39. Perret, G.; Lacornerie, T.; Manca, F.; Giordano, S.; Kumemura, M.; Lafitte, N.; Jalabert, L.; Tarhan, M.C.; Lartigau, E.F.; Cleri, F.; et al.

Real-Time Mechanical Characterization of DNA Degradation under Therapeutic X-Rays and Its Theoretical Modeling. Microsyst.
Nanoeng. 2016, 2, 16062. [CrossRef]

40. Petrosyan, R. Improved Approximations for Some Polymer Extension Models. Rheol. Acta 2017, 56, 21–26. [CrossRef]
41. Manca, F.; Giordano, S.; Palla, P.L.; Zucca, R.; Cleri, F.; Colombo, L. Elasticity of Flexible and Semiflexible Polymers with Extensible

Bonds in the Gibbs and Helmholtz Ensembles. J. Chem. Phys. 2012, 136, 154906. [CrossRef] [PubMed]
42. Manca, F.; Giordano, S.; Palla, P.L.; Cleri, F.; Colombo, L. Theory and Monte Carlo Simulations for the Stretching of Flexible and

Semiflexible Single Polymer Chains under External Fields. J. Chem. Phys. 2012, 137, 244907. [CrossRef] [PubMed]
43. Marko, J.F.; Siggia, E.D. Statistical Mechanics of Supercoiled DNA. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.

1995, 52, 2912–2938. [CrossRef] [PubMed]
44. Marko, J.F.; Siggia, E.D. Stretching DNA. Macromolecules 1995, 28, 8759–8770. [CrossRef]
45. Smith, S.B.; Cui, Y.; Bustamante, C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-

Stranded DNA Molecules. Science 1996, 271, 795–799. [CrossRef] [PubMed]
46. Storm, C.; Nelson, P.C. Theory of High-Force DNA Stretching and Overstretching. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

2003, 67, 051906. [CrossRef] [PubMed]
47. Rief, M.; Fernandez, J.M.; Gaub, H.E. Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility. Phys. Rev.

Lett. 1998, 81, 4764–4767. [CrossRef]
48. Staple, D.B.; Payne, S.H.; Reddin, A.L.C.; Kreuzer, H.J. Stretching and Unfolding of Multidomain Biopolymers: A Statistical

Mechanics Theory of Titin. Phys. Biol. 2009, 6, 025005. [CrossRef] [PubMed]
49. Prados, A.; Carpio, A.; Bonilla, L.L. Sawtooth Patterns in Force-Extension Curves of Biomolecules: An Equilibrium-Statistical-

Mechanics Theory. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 88, 012704. [CrossRef] [PubMed]
50. Bonilla, L.L.; Carpio, A.; Prados, A. Theory of Force-Extension Curves for Modular Proteins and DNA Hairpins. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 2015, 91, 052712. [CrossRef] [PubMed]
51. De Tommasi, D.; Millardi, N.; Puglisi, G.; Saccomandi, G. An Energetic Model for Macromolecules Unfolding in Stretching

Experiments. J. R. Soc. Interface 2013, 10, 20130651. [CrossRef] [PubMed]
52. Manca, F.; Giordano, S.; Palla, P.L.; Cleri, F.; Colombo, L. Two-State Theory of Single-Molecule Stretching Experiments. Phys. Rev.

E Stat. Nonlin. Soft Matter Phys. 2013, 87. [CrossRef]
53. Makarov, D.E. A Theoretical Model for the Mechanical Unfolding of Repeat Proteins. Biophys. J. 2009, 96, 2160–2167. [CrossRef]

[PubMed]
54. Su, T.; Purohit, P.K. Mechanics of Forced Unfolding of Proteins. Acta Biomater. 2009, 5, 1855–1863. [CrossRef] [PubMed]
55. Dudko, O.K. Decoding the Mechanical Fingerprints of Biomolecules. Q. Rev. Biophys. 2016, 49, e3. [CrossRef]
56. Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H.E. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force

Microscopy. Science 1997, 275, 129–1297. [CrossRef] [PubMed]
57. Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J.M.; Gaub, H.E. Reversible Unfolding of Individual Titin Immunoglobulin

Domains by AFM. Science 1997, 276, 1109–1112. [CrossRef] [PubMed]
58. Hughes, M.L.; Dougan, L. The Physics of Pulling Polyproteins: A Review of Single Molecule Force Spectroscopy Using the AFM

to Study Protein Unfolding. Rep. Prog. Phys. 2016, 79, 076601. [CrossRef] [PubMed]
59. Benichou, I.; Givli, S. Structures Undergoing Discrete Phase Transformation. J. Mech. Phys. Solids 2013, 61, 94–113. [CrossRef]
60. Fedelich, B.; Zanzotto, G. Hysteresis in Discrete Systems of Possibly Interacting Elements with a Double-Well Energy. J. Nonlinear

Sci. 1992, 2, 319–342. [CrossRef]

http://dx.doi.org/10.1038/s41467-021-23204-x
http://www.ncbi.nlm.nih.gov/pubmed/34006839
http://dx.doi.org/10.1021/acssuschemeng.9b04284
http://dx.doi.org/10.1039/D1SC03352B
http://dx.doi.org/10.1126/science.1248494
http://www.ncbi.nlm.nih.gov/pubmed/24723609
http://dx.doi.org/10.1088/0953-8984/18/32/R01
http://www.ncbi.nlm.nih.gov/pubmed/21690856
http://dx.doi.org/10.1038/nmeth.1218
http://dx.doi.org/10.1016/j.physrep.2009.11.001
http://dx.doi.org/10.1039/c2cs35033e
http://www.ncbi.nlm.nih.gov/pubmed/22648310
http://dx.doi.org/10.1038/micronano.2016.62
http://dx.doi.org/10.1007/s00397-016-0977-9
http://dx.doi.org/10.1063/1.4704607
http://www.ncbi.nlm.nih.gov/pubmed/22519349
http://dx.doi.org/10.1063/1.4772656
http://www.ncbi.nlm.nih.gov/pubmed/23277956
http://dx.doi.org/10.1103/PhysRevE.52.2912
http://www.ncbi.nlm.nih.gov/pubmed/9963738
http://dx.doi.org/10.1021/ma00130a008
http://dx.doi.org/10.1126/science.271.5250.795
http://www.ncbi.nlm.nih.gov/pubmed/8628994
http://dx.doi.org/10.1103/PhysRevE.67.051906
http://www.ncbi.nlm.nih.gov/pubmed/12786177
http://dx.doi.org/10.1103/PhysRevLett.81.4764
http://dx.doi.org/10.1088/1478-3975/6/2/025005
http://www.ncbi.nlm.nih.gov/pubmed/19571360
http://dx.doi.org/10.1103/PhysRevE.88.012704
http://www.ncbi.nlm.nih.gov/pubmed/23944489
http://dx.doi.org/10.1103/PhysRevE.91.052712
http://www.ncbi.nlm.nih.gov/pubmed/26066204
http://dx.doi.org/10.1098/rsif.2013.0651
http://www.ncbi.nlm.nih.gov/pubmed/24047874
http://dx.doi.org/10.1103/PhysRevE.87.032705
http://dx.doi.org/10.1016/j.bpj.2008.12.3899
http://www.ncbi.nlm.nih.gov/pubmed/19289042
http://dx.doi.org/10.1016/j.actbio.2009.01.038
http://www.ncbi.nlm.nih.gov/pubmed/19251493
http://dx.doi.org/10.1017/S0033583515000220
http://dx.doi.org/10.1126/science.275.5304.1295
http://www.ncbi.nlm.nih.gov/pubmed/9036852
http://dx.doi.org/10.1126/science.276.5315.1109
http://www.ncbi.nlm.nih.gov/pubmed/9148804
http://dx.doi.org/10.1088/0034-4885/79/7/076601
http://www.ncbi.nlm.nih.gov/pubmed/27309041
http://dx.doi.org/10.1016/j.jmps.2012.08.009
http://dx.doi.org/10.1007/BF01208928


Appl. Mech. 2022, 3 954

61. Bellino, L.; Florio, G.; Giordano, S.; Puglisi, G. On the Competition between Interface Energy and Temperature in Phase Transition
Phenomena. Appl. Eng. Sci. 2020, 2, 100009. [CrossRef]

62. Cannizzo, A.; Bellino, L.; Florio, G.; Puglisi, G.; Giordano, S. Thermal Control of Nucleation and Propagation Transition Stresses
in Discrete Lattices with Non-Local Interactions and Non-Convex Energy. Eur. Phys. J. Plus 2022, 137. [CrossRef]

63. Huxley, A.F.; Simmons, R.M. Proposed Mechanism of Force Generation in Striated Muscle. Nature 1971, 233, 533–538. [CrossRef]
[PubMed]

64. Hill, T.L. Theory of Muscular Contraction Extended to Groups of Actin Sites. Proc. Natl. Acad. Sci. USA 1973, 70, 2732–2736.
[CrossRef] [PubMed]

65. Caruel, M.; Allain, J.-M.; Truskinovsky, L. Muscle as a Metamaterial Operating near a Critical Point. Phys. Rev. Lett. 2013,
110, 248103. [CrossRef] [PubMed]

66. Caruel, M.; Truskinovsky, L. Statistical Mechanics of the Huxley-Simmons Model. Phys. Rev. E 2016, 93, 062407. [CrossRef]
[PubMed]

67. Caruel, M.; Truskinovsky, L. Physics of Muscle Contraction. Rep. Prog. Phys. 2018, 81, 036602. [CrossRef] [PubMed]
68. Giordano, S. Spin Variable Approach for the Statistical Mechanics of Folding and Unfolding Chains. Soft Matter 2017, 13, 6877–6893.

[CrossRef]
69. Benedito, M.; Giordano, S. Thermodynamics of Small Systems with Conformational Transitions: The Case of Two-State Freely

Jointed Chains with Extensible Units. J. Chem. Phys. 2018, 149, 054901. [CrossRef] [PubMed]
70. Benedito, M.; Giordano, S. Isotensional and Isometric Force-Extension Response of Chains with Bistable Units and Ising

Interactions. Phys. Rev. E 2018, 98, 052146. [CrossRef]
71. Benedito, M.; Manca, F.; Giordano, S. Full Statistics of Conjugated Thermodynamic Ensembles in Chains of Bistable Units.

Inventions 2019, 4, 19. [CrossRef]
72. Florio, G.; Puglisi, G. Unveiling the Influence of Device Stiffness in Single Macromolecule Unfolding. Sci. Rep. 2019, 9, 4997.

[CrossRef] [PubMed]
73. Bellino, L.; Florio, G.; Puglisi, G. The Influence of Device Handles in Single-Molecule Experiments. Soft Matter 2019, 15, 8680–8690.

[CrossRef] [PubMed]
74. Benedito, M.; Giordano, S. Unfolding Pathway and Its Identifiability in Heterogeneous Chains of Bistable Units. Phys. Lett. A

2020, 384, 126124. [CrossRef]
75. Benedito, M.; Manca, F.; Palla, P.L.; Giordano, S. Rate-Dependent Force-Extension Models for Single-Molecule Force Spectroscopy

Experiments. Phys. Biol. 2020, 17, 056002. [CrossRef] [PubMed]
76. Florio, G.; Puglisi, G.; Giordano, S. Role of Temperature in the Decohesion of an Elastic Chain Tethered to a Substrate by Onsite

Breakable Links. Phys. Rev. Res. 2020, 2, 033227. [CrossRef]
77. Cannizzo, A.; Florio, G.; Puglisi, G.; Giordano, S. Temperature Controlled Decohesion Regimes of an Elastic Chain Adhering to a Fixed

Substrate by Softening and Breakable Bonds. J. Phys. A Math. Theor. 2021, 54, 445001. [CrossRef]
78. Winkler, R.G. Equivalence of Statistical Ensembles in Stretching Single Flexible Polymers. Soft Matter 2010, 6, 6183. [CrossRef]
79. Manca, F.; Giordano, S.; Palla, P.L.; Cleri, F.; Colombo, L. Response to “Comment on Elasticity of Flexible and Semiflexible

Polymers with Extensible Bonds in the Gibbs and Helmholtz Ensembles” [J. Chem. Phys. 138, 157101 (2013)]. J. Chem. Phys. 2013,
138, 157102. [CrossRef] [PubMed]

80. Manca, F.; Giordano, S.; Palla, P.L.; Cleri, F. On the Equivalence of Thermodynamics Ensembles for Flexible Polymer Chains. Phys.
A 2014, 395, 154–170. [CrossRef]

81. Giordano, S. Helmholtz and Gibbs Ensembles, Thermodynamic Limit and Bistability in Polymer Lattice Models. Contin. Mech.
Thermodyn. 2018, 30, 459–483. [CrossRef]

82. Skvortsov, A.M.; Klushin, L.I.; Leermakers, F.A.M. Negative Compressibility and Nonequivalence of Two Statistical Ensembles in
the Escape Transition of a Polymer Chain. J. Chem. Phys. 2007, 126, 024905. [CrossRef]

83. Dimitrov, D.I.; Klushin, L.I.; Skvortsov, A.; Milchev, A.; Binder, K. The Escape Transition of a Polymer: A Unique Case of
Non-Equivalence between Statistical Ensembles. Eur. Phys. J. E Soft Matter 2009, 29, 9–25. [CrossRef] [PubMed]

84. Skvortsov, A.M.; Klushin, L.I.; Polotsky, A.A.; Binder, K. Mechanical Desorption of a Single Chain: Unusual Aspects of Phase
Coexistence at a First-Order Transition. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2012, 85, 031803. [CrossRef] [PubMed]

85. Dutta, S.; Benetatos, P. Inequivalence of Fixed-Force and Fixed-Extension Statistical Ensembles for a Flexible Polymer Tethered to
a Planar Substrate. Soft Matter 2018, 14, 6857–6866. [CrossRef]

86. Dutta, S.; Benetatos, P. Statistical Ensemble Inequivalence for Flexible Polymers under Confinement in Various Geometries. Soft
Matter 2020, 16, 2114–2127. [CrossRef] [PubMed]

87. Noh, G.; Benetatos, P. Tensile Elasticity of a Freely Jointed Chain with Reversible Hinges. Soft Matter 2021, 17, 3333–3345.
[CrossRef] [PubMed]

88. Bell, G.I. Models for the Specific Adhesion of Cells to Cells: A Theoretical Framework for Adhesion Mediated by Reversible
Bonds between Cell Surface Molecules. Science 1978, 200, 618–627. [CrossRef] [PubMed]

89. Bell, G.I.; Dembo, M.; Bongrand, P. Cell Adhesion. Competition between Nonspecific Repulsion and Specific Bonding. Biophys. J.
1984, 45, 1051–1064. [CrossRef]

90. Schlierf, M.; Rief, M. Single-Molecule Unfolding Force Distributions Reveal a Funnel-Shaped Energy Landscape. Biophys. J. 2006,
90, L33–L35. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.apples.2020.100009
http://dx.doi.org/10.1140/epjp/s13360-022-02790-9
http://dx.doi.org/10.1038/233533a0
http://www.ncbi.nlm.nih.gov/pubmed/4939977
http://dx.doi.org/10.1073/pnas.70.10.2732
http://www.ncbi.nlm.nih.gov/pubmed/4517930
http://dx.doi.org/10.1103/PhysRevLett.110.248103
http://www.ncbi.nlm.nih.gov/pubmed/25165964
http://dx.doi.org/10.1103/PhysRevE.93.062407
http://www.ncbi.nlm.nih.gov/pubmed/27415298
http://dx.doi.org/10.1088/1361-6633/aa7b9e
http://www.ncbi.nlm.nih.gov/pubmed/28649969
http://dx.doi.org/10.1039/C7SM00882A
http://dx.doi.org/10.1063/1.5026386
http://www.ncbi.nlm.nih.gov/pubmed/30089392
http://dx.doi.org/10.1103/PhysRevE.98.052146
http://dx.doi.org/10.3390/inventions4010019
http://dx.doi.org/10.1038/s41598-019-41330-x
http://www.ncbi.nlm.nih.gov/pubmed/30899032
http://dx.doi.org/10.1039/C9SM01376H
http://www.ncbi.nlm.nih.gov/pubmed/31621748
http://dx.doi.org/10.1016/j.physleta.2019.126124
http://dx.doi.org/10.1088/1478-3975/ab97a8
http://www.ncbi.nlm.nih.gov/pubmed/32464604
http://dx.doi.org/10.1103/PhysRevResearch.2.033227
http://dx.doi.org/10.1088/1751-8121/ac2a07
http://dx.doi.org/10.1039/c0sm00488j
http://dx.doi.org/10.1063/1.4801656
http://www.ncbi.nlm.nih.gov/pubmed/23614448
http://dx.doi.org/10.1016/j.physa.2013.10.042
http://dx.doi.org/10.1007/s00161-017-0615-5
http://dx.doi.org/10.1063/1.2406075
http://dx.doi.org/10.1140/epje/i2008-10442-0
http://www.ncbi.nlm.nih.gov/pubmed/19343384
http://dx.doi.org/10.1103/PhysRevE.85.031803
http://www.ncbi.nlm.nih.gov/pubmed/22587115
http://dx.doi.org/10.1039/C8SM01321G
http://dx.doi.org/10.1039/C9SM02246E
http://www.ncbi.nlm.nih.gov/pubmed/32016271
http://dx.doi.org/10.1039/D1SM00053E
http://www.ncbi.nlm.nih.gov/pubmed/33630011
http://dx.doi.org/10.1126/science.347575
http://www.ncbi.nlm.nih.gov/pubmed/347575
http://dx.doi.org/10.1016/S0006-3495(84)84252-6
http://dx.doi.org/10.1529/biophysj.105.077982
http://www.ncbi.nlm.nih.gov/pubmed/16361331


Appl. Mech. 2022, 3 955

91. Rico, F.; Gonzalez, L.; Casuso, I.; Puig-Vidal, M.; Scheuring, S. High-Speed Force Spectroscopy Unfolds Titin at the Velocity of
Molecular Dynamics Simulations. Science 2013, 342, 741–743. [CrossRef] [PubMed]

92. Manca, F.; Déjardin, P.-M.; Giordano, S. Statistical Mechanics of Holonomic Systems as a Brownian Motion on Smooth Manifolds:
Statistical Mechanics of Holonomic Systems as a Brownian Motion. Ann. Phys. 2016, 528, 381–393. [CrossRef]

93. Giordano, S. Stochastic Thermodynamics of Holonomic Systems. Eur. Phys. J. B 2019, 92, 174. [CrossRef]
94. Risken, H.; Frank, T.D. The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 1989; ISBN 9783540504986.
95. Coffey, W.T.; Kalmykov, Y.P.; Waldron, J.T. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry

and Electrical Engineering; World Scientific Series in Contemporary Chemical Physics; World Scientific Publishing Company:
Singapore, 2004; Volume 14; ISBN 9786611935528.

http://dx.doi.org/10.1126/science.1239764
http://www.ncbi.nlm.nih.gov/pubmed/24202172
http://dx.doi.org/10.1002/andp.201500221
http://dx.doi.org/10.1140/epjb/e2019-100162-6

	Introduction
	Force–Extension Response of a Chain with Sacrificial Bonds
	Isotensional Gibbs Condition
	Isometric Helmholtz Condition

	Results and Discussion
	Conclusions
	References

