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Abstract: The prevention of excessive pressure build-up in pipelines requires a thorough understand-
ing of water hammer phenomena. Using theoretical techniques, researchers have investigated this
phenomenon and proposed productive solutions. In this article, we demonstrate a power spectral
density approach on the pressure wave generated by water hammer in order to improve our un-
derstanding on the frequency domain approach as well as their fractal nature and complexity. This
approach has the ability to explain some valuable attributes of the unsteady flow at a specific section,
such as vulnerability and complexity that allow us more dynamic variables for effective analysis
of pipe network design. Therefore, we aim to test a simple pipe system to simulate the proposed
approach, which may offer useful physical information about pipeline network construction. The
proposed method is expected to be beneficial and effective in acquiring a better understanding of the
complicated features of unsteady flows as well as the sound acoustics within a pipe system and its
design. In specific, our findings demonstrate the possibility for engineering design to comprehend the
robustness, vulnerability, and complexity of pipe networks, as well as their sustainable construction.

Keywords: water hammer; Fourier transform; fractals; power spectral density; Hurst exponent;
sample entropy; approximate entropy

1. Introduction: Water Hammer Phenomena

Most liquids are incompressible or barely compressible, so their volume remains con-
stant under pressure. This is beneficial for hydraulic cylinders, but it can cause catastrophic
pipe failure, called hydraulic transience or water hammer [1,2]. Given that we normally
carry only a few ounces of water with us, it is important to emphasize its weight. Even in
a single household’s pipe, water accumulates a substantial bulk in a city’s pipelines. All
of this water is moving at a rapid rate through the pipe. Due to its incompressibility and
elasticity, water cannot absorb the shock of a sudden stop, such as the closing of a valve.
Perhaps concrete is used to reinforce the valve and pipe walls. Due to an abrupt change in
momentum, a pressure spike occurs, which propagates as a shockwave through the pipe.
Although the sound of water pounding on walls when a faucet is turned off or a washing
machine is turned on may seem peculiar, this shockwave can be heard pounding in walls
for large diameter pipelines. For example, a 100 km pipeline with a 1 m diameter contains
around 80 MKg of water, which is a huge mass flow of water. As a result for closing a valve
at the pipeline’s terminus, the pressure spike caused by the abrupt change in velocity may
rupture the pipe or cause significant damage to other system components.

Due to this pressure, it may be more difficult to construct a pipeline or pipe network
than it initially appears [3]; even slight pressure spikes can cause a system to malfunction.
Some parameters affect the pressure profile of the water hammer pulse. Adjusting these
variables can reduce forces that cause pipe damage. Slowing the flow of fluid through
the pipe minimizes the impact. Flow velocity is affected by pipe diameter and flow rate.
Due to a constant flow rate, the pipe diameter can be increased to minimize flow velocity.
Smaller pipes are less expensive, however, the increased flow velocity might result in water
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hammer. Due to the constant diameter of the pipe, either the flow rate or the momentum
change time can be decreased. Flywheels slow pumps instead of stopping them. Closing
valves gradually reduces water hammer. Fluid sound velocity (wave celerity) describes
the velocity at which a wave can travel through a conduit [1,2]. Fluid compressibility, pipe
material, and whether or not the pipe is buried in a rigid structure determine wave speed.
Water hammer can be eliminated by reflecting pressure waves by connecting a flexible
PVC pipe to an anti-surge device with an air bladder. Water towers absorb variations in
atmospheric pressure by permitting the free surface to rise and fall. As engineers, it is
our responsibility to ensure that expensive infrastructure does not break when water is
regulated, including forecasting and implementing procedures to avoid water pressure
surge damage.

In the meantime, a stronger pressure pulsation is generated at the valve, causing a
more complex water–structure interaction response in the water conveyance system [4–7].
This is extremely important in chemical refineries, power plant stations, and water supply
systems. Accidents and fatalities are commonly associated with the term water hammer.
For some, this term conjures up images of broken and bent piping, the loss of water supplies
to cities, and deaths caused by water hammer. Literature from the past synthesizes the
significance of water hammer phenomena and the associated risks in a variety of contexts,
including chemical installations, power plant stations, and water supply [8].

Theoretical approaches such as power spectral density and entropy of time series
are frequently used to quantify spectral properties in many disciplines. Recently, these
approaches have been used in the hydrology field to study natural channel networks [9–12].
However, very little attention has been taken to the application of these approaches in the
context of pipe water distribution and their physical phenomena.

2. Water Hammer Wave
2.1. Theory

The conventional momentum equation [1,2,13] can be used to explain the water
hammer wave problem.

∑ F = ρQ(U f −Ui) (1)

where F = force, ρ = density of water, Ui = initial velocity of water, and U f = final velocity
of water. As a result, when U f falls below Ui, a negative force is created. Within a pipeline,
this negative force creates a wave of increased pressure that propagates back toward
the source of the flow and goes back and forth between the source and the destination.
The wave speed, also known as celerity, is a function of the theoretical wave celerity (i.e., the
pipe is considered to be rigid), which is given by

ct =

√
Ev

ρ
(2)

where ct = theoretical wave celerity and Ev = bulk modulus of elasticity of fluid. However,
in reality the pipe is elastic and the velocity of a pressure wave in an elastic fluid inside an
elastic pipe is given by

c =
ct√

1 + d
t

Ev
E

(3)

where d = pipe diameter, t = thickness of pipe walls, and E = modulus of elasticity of pipe
material. The maximum change in pressure created from water hammer in a pipeline is
derived from the momentum Equation (1) and results in the following equation:

∆P = ρcu0 (4)

where ∆P = change in pressure. Furthermore, when the time it takes for a valve to close is
less than the pipe length divided by the wave celerity (i.e., t = L/c), this is called a rapid
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valve closing. Hence, the maximum pressure Pmax that will occur in the pipe is the original
pressure within the pipe P0 plus the change in pressure (Equation (5)).

Pmax = P0 + ∆P (5)

This pressure variation will change in cycles at times equal to t = 2L/c for a rapid
interruption of the flow. Over time, the pressure wave will decrease due to pipe friction
and damping. In other words, the pressure wave of water at a given point within a pipe
oscillates, while overall steadily decreasing as time passes. Figure 1 depicts a relatively
simple pipeline system in which a control valve abruptly blocks water flow from a reservoir.
From the mathematical modeling point of view, if the coordinate x runs from the reservoir
through the depicted pipeline of diameter d, we can consider the control valve at x = L
as an unsteady flow source. Initially, it supplies virtually no velocity fluctuation to the
pipeline under the system pressure until the time reaches 0, and after that it gradually increases
the velocity fluctuation until t = tc [14]. In general, pressure and flow velocity are independent
variables in hydrodynamics, but they are dependent in linear acoustics [1,2,14].

ut =


0 : when t < 0;
u(t/tc) : when 0 < t < tc;
u : when tc < t

(6)

The one-dimensional compressible fluid in the pipeline has the following continuity
and momentum equations [14,15]:

∂Px

∂t
+ ρc2 ∂ux

∂x
+ [ux

∂Px

∂x
] = 0 (7)

∂ux

∂t
+

1
ρ

∂Px

∂x
+ [ux

∂ux

∂x
+ f

ux|ux|
2d

] = 0 (8)

where f = Darcy–Weisbach friction factor [1,2,14] and convective terms are neglected in
most engineering applications because they are so small in comparison to the other terms,
we also neglect the friction term’s effect, and we can simplify the above equations in the
form of simple wave equations as below:

∂2Px

∂t2 =
1
c2

∂2Px

∂x2 (9)

Equation (9) represents the wave form characteristics of a pressure wave induced by
the water hammer effect. Consequently, a time series of the pressure amplitude (Px) of
the Fourier components can be represented as the spectrum of the wave form. Numerous
studies have been conducted on the Fourier transformation of the pressure wave; however,
the power spectral density approach and the concept of entropy have never been applied
to the pressure wave caused by the water hammer effect.

In this study, the Fourier transform and fractal dimension of the pressure wave Px was
adopted and analyzed to infer the instantaneous valve closure behavior as well as their
wave complexity using the notion of entropy.
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Figure 1. The diagram of a water hammer system, (a) schematic and (b) Armfield laboratory
apparatus [1].

2.2. Pressure Losses in the Flow System

Pipe, elbow, and vessel exit contribute to the pressure losses of the flow system. The
pressure loss is calculated by using Darcy–Weisbach Equation (10).

Pressure loss = f
L
d

ρU2

2
(10)

where L is the length of the pipe, d is the inner diameter of the pipe, ρ is the density of
the water, U is the velocity, and f is the friction factor. This friction factor ( f ) is a function
of the surface roughness of the pipe, Reynolds number (Re = 4Q

πdν ), and the flow regime,
i.e., laminar flow, transition zone, and turbulent flow [1,2,13]. Moody diagrams [1] are
frequently used by engineers to depict the friction factor as a function of Reynolds number
and flow regime. In order to investigate the effect of discharge on the spectrum of water
hammer waves in pipes with constant length (1.5 m), diameter (OD 9.5 mm and ID 7.7 mm),
and material, we conducted our experiment only under different discharge conditions.

3. Data Collection
3.1. Experimental Setup

This section will demonstrate our water hammer system for collecting data on water
hammer waves. Figure 1 shows the schematic diagram of the water hammer system.
Figures 2 and 3 illustrate the components of the experiment’s equipment setup procedure.
On the hydraulic bench, the setup includes a flow control valve in the pipe surge circuit, a
water hammer valve, and a supply control valve (see details in [1]).
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Figure 2. Laboratory water hammer system [1].

Figure 3. Components associated with the water hammer effect [1].

3.2. Procedure for Collecting Water Hammer Data

We began by closing the flow control valve on the hydraulic bench in the pipe surge
circuit, followed by closing the supply control valve, and then by turning the black knob
inward until it locked to open the fast-acting valve on the water hammer equipment. On
the water hammer equipment, we closed the flow control valve at the end of the water
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hammer circuit and then activated the pump via the hydraulic bench switch. We gradually
opened the hydraulic bench’s supply control valve and let the header tank fill to the level
indicated by the transparent surge shaft’s water level; once the water reached the header
tank’s overflow level, we opened the flow control valve in conjunction with the fast-acting
valve. Following that, water was pumped through the test pipe, dislodging any trapped
air. Water flowed consistently through the test pipe and out of the volumetric tank via the
flexible exit tube. We adjusted the supply control valve on F1-10 as necessary to ensure that
water returned to the sump tank via the overflow in a constant trickle [1].

We collected pressure wave data automatically using the C7MK11 application (water
hammer software system). This software requires a virtual serial serial COM port on a
USB port. For the specific details of this software and the data collection procedure, we
refer readers to [1]. The software automatically generates graphs representing the pressure
sensors P1 and P2 in the water hammer circuit (indicating atmospheric pressure). While
water hammer pressure changes are significant in comparison to pipe surge pressures, they
are so transient that they must be documented and viewed retrospectively rather than in
real time. By fully opening the flow control and subsequently the fast-acting valve, we
allow the water hammer circuit to settle. Thus, the surge shaft might provide information
on the reservoir’s level. We ascertained that the clear return line is returning water to the
sump tank. The flow control valve was adjusted as necessary to maintain a small overflow
supply [1]. As indicated by a message in the lower left corner, the virtual oscilloscope was
enabled once the water hammer exercise was installed on the computer. We navigated to
the Operation section, clicked the GO icon in the top tool bar to initiate data logging, then
pressed the trigger on the fast-acting valve within two seconds and waited for the data to
be gathered and processed before saving them (see details in [1]).

3.3. Discharge Data Collection

In this study, we use a stopwatch to determine how long it takes to fill the outlet tank
with V = 20 (0.02 m3) liters of water (see Figure 3). After that, the flow rate (Q) is measured
and recorded. We adjust the flow rate and repeat these steps for three additional discharges
(see details in [1]).

4. Methods
4.1. The Essence of the Fourier Transform

The primary objective of this section is to explain the Fourier transform, a fundamental
idea for comprehending waves, as well as its use in calculating power spectral density.
This is the most important aspect for comprehending the idea of power spectral density
used in this study. To show this concept, we can decompose the frequencies of a simple
pressure wave and apply this knowledge to the comprehension of water hammer waves.

Figure 4 depicts a simple pressure wave and its progression in seconds. If we tracked
the pressure wave around any source, it would oscillate at a certain frequency. When low
and high frequency pressure waves are superimposed, the peaks can sometimes coincide,
resulting in an increase in pressure, or they can cancel each other out. In other words, the
pressure versus time graph is not a pure sine wave, and its complexity is increased by
the addition of additional sine waves. The pressure over time is depicted in Figure 4 as a
combination of two pure hypothetical pressure wave frequencies. The ultimate objective is
to comprehend how the ‘Fourier transform’ can separate complex pressure wave signals
into distinct pure frequencies.
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(a) (b)

(c) (d)

Figure 4. Illustration of the Fourier transformation, (a) frequency decomposition example, (b) original
signal, (c) transformation from time to frequency domain, and (d) winding frequency example [16].

Consider a pure pressure wave signal with a period of 0–4.5 seconds (see Figure 4) to
comprehend the concept. In this case, we can also consider a small rotating vector equal to
the height of the signal at each time step. Each second, as depicted in Figure 4, the vector
completes a half-cycle; thus, two seconds of time forwarding equals one circle rotation.
Therefore, the initial signal can be separated into two frequencies: its three-cycle frequency
and its half-rotation frequency. This second frequency is variable, enabling us to wrap it
around faster or slower.

Each cycle in Figure 4 takes 1.5 s, where the vertical lines represent the starting signal
distance for a full-circle rotation. Consider this signal to be analogous to a metal wire,
with this small dot representing the wire’s center of mass (CM). As the frequency of the
signal varies, the CM wobbles and wraps differently. When the winding frequency and
our signal frequency are identical, the CM is ideal. Now, it is possible to comprehend the
transformation by considering the CM of each winding frequency. Specifically, we can
consider the CM’s x-coordinate. At zero frequency, the x-coordinate of the signal is large,
but it decreases as it balances around the circle. Any intensity vs. time signal can be coiled
and plotted in two dimensions to determine the effect of winding frequency on the original
signal’s CM. This is the ’Fourier transform’ of our original signal; however, the complete
Fourier transform can be calculated by using the x- and y-coordinates of the center of
mass, which is typically located in the complex plane, to create a wound-up signal. This
sophisticated method allows us to decompose a signal consisting of multiple frequencies.
The mathematical expression for the process of creating a complex plane is Equation (11).

P̂x(ω) =
∫ t2

t1

Px(t)e−2πιωtdt (11)

where this CM is a complex number with a real and an imaginary component. If e equals
any number times iota, we can count that many counterclockwise units around a circle
with unit radius, starting on the right. To denote one cycle per second rotation, we use
‘e2πιt’ where t is the elapsed time. 2pι describes a 1-radius circle’s circumference. This
mathematical formula captures winding a signal around a variable-frequency circle and
tracking its CM. In this study, we aim to use the concept of power spectral density in the
frequency domain of the water hammer wave discussed in the subsequent section.
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4.2. Roughness in the Form of Fractals

In addition to the power spectral density approach, we intend to investigate the fractal
dimension of pressure wave time series. Fractal is also a mathematical term for seemingly
endlessly repeating patterns [17,18], however, fractals’ true nature and geometry remain
abstruct. This section aims to provide a useful review of the concept of fractal dimension.
Typically, fractals are assumed to be self-similar shapes, such as a von Koch snowflake or a
Sierpinski triangle, etc. A simple shape can be used to generate more intricate shapes than
its own self-similar patterns. Natural systems provide a physical foundation for fractals that
can be used to calculate time series roughness. Mandelbrot demonstrated that self-similar
patterns can be utilized to demonstrate a level of regularity in roughness. Fractals cannot
be appropriately defined without the fractal dimension (D). The D value for the Sierpinski
triangle is 1.58, the D value for the von Koch curve is 1.26, and the D value for the British
coast is 1.21. In other words, any positive real integer may be utilized as a dimension for
non-naturally sized forms. Example: a line is one-dimensional, a plane is two-dimensional,
etc., here, ‘dimension’ is a mathematical term that refers exclusively to natural numbers. In
addition to the formal concept of dimension, D can be defined in a more general way.

Self-similar geometries include a line, a square, a cube, and a Sierpinski triangle
(Figure 5). A line can be represented by two half-sized lines, a square by four half-sized
squares, and a cube by eight half-sized cubes. In addition, the Sierpinski triangle has three
smaller replicas, each with a side length that is half that of the main triangle. Consequently,
we can generally use the term ‘mass’ instead of ‘measure’. Consequently, the fractal
dimension quantifies the scaling of an object’s mass. As demonstrated by the need for
two copies of the similar mass to complete the line, halving the square mass reduces it
by one-fourth. Similarly, halving a cube results in a mass reduction of one-eighth of the
copies of the smaller cube and halving a Sierpinski triangle creates precisely three smaller
triangles, reducing its mass by one-third. The fact that the mass of the line, square, and
cube has been cut in half is remarkable. This exponent represents the shape’s dimensions.
On the other hand, the dimension of the Sierpinski triangle is D, and can be calculated as
1.58. Likewise, the D value of the von Koch curve is 1.26. This D can also be accomplished
in a commonly used, more general way.

Figure 5. (a) Analogy of fractal dimensions with shape dimensions and (b) scale-wide generalization
of fractal dimensions for various shapes [19].
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In this study, we employ a method that can calculate D of pressure wave time series.
For example, in this way, we can keep track of all grid squares that intersect the plane’s
shape and count them to compute the area of contact between a disk and the grid, which
should be proportional (see in Figure 5). In general, when plotted against the number of
boxes intersected by the scaled disk, the scaling factor is a perfect parabola (see Figure 5).
Scaling levels should be increased to accommodate a parabola, and the data are obtained
by multiplying y = x1.58 by a proportionality constant. Similarly, in the case of the UK
coastline nearly as many boxes hit the coast as scaling factors are increased to 1.21. In other
words, we can calculate the D by plotting the scaling factor against the number of boxes
that touch the shoreline. In this study, the fractal dimension D was estimated using the box
approach adopted from [20,21] to define the roughness of pressure waves [12].

4.3. Power Spectral Density in the Frequency Domain

Power spectral density (PSD) is a frequency response measurement of the signal
intensity or amplitude. In general, it provides a standard method to capture how the energy
in a signal is distributed across different frequencies. The PSD S(ω) of a discrete signal
Px(t) can be computed as the average magnitude of the Fourier transform squared [12],
over a time interval, and expressed as follows:

S(ω) =

∣∣∣∣∣ 1
2π

t2

∑
t1

Px(t)e−iωt

∣∣∣∣∣
2

=
P̂x(ω)P̂x∗(ω)

2π
(12)

where, P̂x(ω) is the discrete Fourier transform of g(t) and P̂x∗(ω) is its complex conjugate,
and ω is the wave number [12,22–24]. We analyze this PSD in the power-law domain
across the frequency ω in the following form:

S(ω)
1

ωβ
(13)

where β is the power-law exponent of the PSD and we refer to this β as a proxy of the
roughness of the wave signal, which is computed using the slope of the linear regression
fitted to the estimated PSD plotted on log–log scales [12,25].

4.4. Colors of Noise and Hurst Exponent

In physics, engineering, and many other fields, the color of noise refers to the power
spectrum of a signal produced by a stochastic process, i.e., noise signal. They sound
different to human ears as audio signals, and they have different textures as visuals. As
a result, each application usually demands noise of a certain color. Some of the noise
names have established definitions in specific areas, while others are either theoretical
or poorly defined. Most of these definitions are under the assumption that a signal with
a power spectral density per unit of bandwidth is proportional to 1/ωβ and therefore
they are defined as power-law noise. White noise, for example, is flat (i.e., β = 0), while
flicker or pink noise has β = 1, and Brownian noise has β = 2. Many time-dependent
stochastic processes are known to exhibit 1/ωβ noises with β between 0 and 2. Brownian
motion, in particular, has a power spectral density of 4 ∗ D f /ω2, where D f is the diffusion
coefficient [26]. In fractional Brownian motion, Hurst exponent H is also related to 1/ωβ

power spectral density with β = 2H + 1 for subdiffusive processes (0 < H < 0.5) and
β = 2 for superdiffusive processes (0.5 < H < 1) [27,28].

The Hurst exponent is a metric for time series long-term memory. It has to do with
time series autocorrelations and the pace at which they drop as the lag between pairs of
values grows longer. It was established in hydrology for the purpose of calculating the
optimum dam size for the Nile River’s fluctuating rain and drought conditions that had
been studied over a long period of time [29]. In the fractal geometry discussed earlier,
the generalized Hurst exponent has been denoted by H that directly relates to the fractal
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dimension, D, and is a measure of a data series’ ‘mild’ or ‘wild’ randomness [30]. It is
a term used to describe long-range dependence, which quantifies a time series’ relative
tendency to regress strongly to the mean or cluster in a certain direction. The value of H
in the range 0.5∼1 implies a time series with long-term positive autocorrelation, whereas
a value of 0∼0.5 indicates a time series with long-term flipping between high and low
values in neighboring pairs. Furthermore, for self-similar time series, H is directly related
to the fractal dimension, D, where 1 < D < 2, such that D = 2− H. The values of H vary
between 0 and 1, with higher values indicating a smoother trend, less volatility, and less
roughness [31]. The Hurst exponent and fractal dimension can be chosen independently for
more generic time series or multi-dimensional processes, as the Hurst exponent represents
structure over asymptotically longer periods, whereas the fractal dimension represents
structure over asymptotically shorter periods [32].

4.5. Entropy: Approximate Entropy and Sample Entropy

Approximate entropy (ApEn) is a form of Shannon entropy whose calculation involves
a large amount of time series data; Steve M. Pincus developed this statistical technique to
deal with the limitations of moment statistics by modifying an exact regularity statistic [33].
Although it was initially developed for the study of medical data, its applications later
expanded to other fields [12,33–35].

PX(1) = px(1), px(2), . . . px(m) (14a)

PX(2) = px(2), px(3), . . . px(m + 1) (14b)

..................................... (14c)

PX(N −m + 1) = px(N −m + 1), px(N −m + 2), . . . px(N) (14d)

The distance between two vectors PX(i) and PX(j) can be calculated using the maxi-
mum difference in their respective corresponding elements (see details in [35]).

d(PX(i), PX(j)) = max
k=1,2...,m

(|PX(i + k− 1), PX(j + k− 1)|) (15)

where i = 1, 2, . . . , N − m + 1 and j = 1, 2, . . . , N − m + 1 and N is the number of data
points in the pressure time series. For each vector PX(i), a measure that describes the
similarity between the vector PX(i) and all other vectors PX(j) j = 1, 2, . . . , N−m + 1, j 6= i
can be constructed using Equation (16), (see details in [35]).

Cm
i (r) =

1
(N −m + 1) ∑

j 6=i
θ(r− d[PX(i), PX(j)]) (16)

where

θ(px) =

{
1, px ≥ 0
0, px < 0.

(17)

The symbol r specifies a filtering level and is related to the standard deviation of the
series. Finally, ApEn can be calculated by the following equation:

ApEn(m, r) = ∅m(r)−∅m+1(r) (18)

where
∅m(r) =

1
(N −m + 1) ∑

i
ln[Cm

i (r)] (19)

where m is the length of the compared patterns commonly known as the embedding
dimension and r is the effective noise filter (see details in [36]).

Likewise, sample entropy (SampEn) is another modified form of Shannon entropy that
is used to determine the complexity of physical time series signals and to evaluate physical
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states. While SampEn is a measure of complexity similar to ApEn, it does not include self-
similar patterns [35,37]. Both ApEn and SampEn algorithms are based on the calculation
of conditional probabilities (see details in [36]), and the first two steps (14) and (15) are
similar to ApEn. After the second step, SampEn is calculated for each template vector
using Equation (20).

Bm
i (r) =

1
(N −m− 1)

N−m

∑
j=1,j 6=i

number of times that d[PX(j)− PX(i)] < r (20)

Then, summing over all template vectors can be written as Equation (21).

Bm(r) =
1

(N −m)

N−m

∑
i=1

Bm
i (r) (21)

Similarly, for each template vector, we can calculate using Equation (22):

Am
i (r) =

1
(N −m− 1)

N−m

∑
j=1,j 6=i

number of times that d[PX+1(j)− PX+1(i)] < r (22)

and the summing over all template vectors can be calculated using Equation (23).

Am(r) =
1

(N −m)

N−m

∑
i=1

Am
i (r) (23)

Finally, SampEn can be calculated using Equation (24).

SampEn(m, r, N) = −log
[

Am(r)
Bm(r)

]
(24)

In this study, the values of m, r, etc. were determined based on the multi-scale
phenomena of time series confirmed by previous research [9,12,35].

5. Results and Discussion

Pressure wave data caused by water hammer were extracted from the C7MK11 soft-
ware setup (see details in Methods section) for four different initial flow rates (see Table 1).
Table 1 shows the response of discharge in the power spectral properties as well as the
entropy values for P1 and P2 points. In addition to the discharge, we have also collected
the initial gauge pressure at P1 and P2. From these discharges, other flow state parameters,
such as the Reynolds number Re, can be calculated. The values of Re are 71,600, 141,875,
131,292, and 92,600, respectively. Table 1 only displays the best fitted slope (i.e., β) of
PSD in the power-law frequency domain (see details in Methods section). The subsequent
paragraph describes the plot of PSD in the power-law domain across the frequency.

Table 1 also shows the computed value of fractal dimension D and corresponding
Hurst exponent H for different Q, and the value of H was calculated under the assumption
of self-similar time series of pressure wave induced by water hammer.

Figures 6 and 7 depict the power spectral density (PSD) plot of pressure wave data
collected from pressure sensors P1 and P2 [1,2] for four different discharges, respectively.
While both figures have the same PSD shape, the log–log fitted slope (β) exhibits differences
in the characteristics of the P1 and P2 pressure waves. As illustrated in Figures 6 and 7, the
value of the log–log fitted slope is greater for the P1 wave sensor than for the P2 wave sensor
for all four discharges. This is because of applied forces that causes the water hammer effect.
Although the correlation between the PSD value and frequency is low (R2 < 0.1), the t-test
indicates that the correlation is significant under the 90% confidence interval [12,38]. From
the perspective of colors of noise, we can say that both wave sensors exhibit near-flicker
or pink noise, rather than purely random behavior. Additionally, this pink noise property
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supports our assumption about the wave equation presented in Equation (9). Additionally,
the absolute value of the slope of PSD for P1 is slightly greater than that for P2, indicating
that the P1 wave has a slightly higher frequency variation than the P2 wave, which is
consistent with the behavior of the water hammer wave.

Table 1. The outcomes of the experiment.

Q = V/t
m3/s

Static P1 P1 Time (t)
secBar β SampEn ApEn D H=2-D

0.000433 1.21 −0.1068 1.076 1.072 1.8688 0.1312 46.2

0.000858 1.57 −0.1791 1.1346 1.1295 1.8807 0.1193 23.3

0.000794 1.54 −0.1844 1.1125 1.1079 1.8710 0.1290 25.2

0.00056 1.23 −0.2534 1.0843 1.0802 1.8522 0.1478 35.7

Q = V/t
m3/s

Static P2 P2 Time (t)
secBar β SampEn ApEn D H=2-D

0.000433 1.08 −0.0638 1.0338 1.0303 1.855 0.1450 46.2

0.000858 1.49 −0.1218 1.0942 1.0899 1.8562 0.1438 23.3

0.000794 1.47 −0.1598 1.0774 1.0733 1.8471 0.1529 25.2

0.00056 1.11 −0.2324 1.0761 1.0716 1.830 0.1700 35.7

On the other hand, the relationship between the fractal dimension (D) and Hurst
exponent (H) with β described in the earlier sections demonstrates that the pressure wave
for P2 has a smoother temporal trend, less vulnerability, and less geometric roughness of
time series than P1. This could be a useful property for understanding the behavior of
pressure wave time series for pipe network vulnerability research and acoustics research
for designing pipe networks. Furthermore, large amount of discharge may create a large D
value and lower H value that creates more vulnerability inside the pipe.

Another important aspect of the pressure wave induced by the water hammer is the
complexity of their time series. In this regard, we have computed the complexity based
on the notion of entropy. The computed value of the complexity based on SampEn and
ApEn is presented in Table 1. These two values provide us with a quantitative sense of the
complexity of the pressure wave series for P1 and P2. Additionally, SampEn and ApEn
exhibit greater complexity in the presence of P1 than in the presence of P2, despite their
reverse vulnerability relation. These arguments imply that the pipe is less likely to break at
the far point than at the near point of the hammer, due to the fact that the near point has a
higher strength of variation and complexity of pressure wave induced by water hammer
than the far point.

Figure 8a–d illustrate the effect of discharge on hydraulic properties and our proposed
metric. As discharge increases, the gauge pressure at P1 and P2 increases significantly and
linearly. In addition, the gauge pressure at P1 is greater than that at P2 due to the direction
of flow (Figure 8a). In addition to other metrics, |β| increases linearly with discharge
(Figure 8b), consistent with the gauge pressure, and the value of |β| for P1 is greater than
P2 due to the damping effect or head loss [1–3,13].

Figure 8c–d illustrate the response of discharge on the complexity of a pressure wave
induced by the water hammer. Specifically, complexity obtained from both SampEn and
ApEn increases linearly with discharge significantly, which is consistent with previous
studies [9]. However, complexity obtained from SampEn does not include self-similar
patterns as ApEn does [37].
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(a) Trial 1

(d) Trial 4

(b) Trial 2

(c) Trial 3

Figure 6. Power spectral density across frequency for four different discharges, (a) Trial 1, (b) Trial 2,
(c) Trial 3, and (d) Trial 4 for point P1, where β = slope of PSD (see details in (13)). The SampEn and
ApEn numerical values are displayed within each subplot.

(a) Trial 1

(d) Trial 4

(b) Trial 2

(c) Trial 3

Figure 7. Power spectral density across frequency for four different discharges, (a) Trial 1, (b) Trial 2,
(c) Trial 3, and (d) Trial 4 for point P2, where β = slope of PSD (see details in (13)). The SampEn and
ApEn numerical values are displayed within each subplot.
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(a) (b)

(c) (d)

Figure 8. Response of discharge, Q (m3/sec), on (a) static gauge pressure, (b) absolute value of β,
(c) sample entropy SampEn, and (d) approximate entropy ApEn.

From the above discussion, we can argue that the proposed method may be benefi-
cial for investigating the robustness, vulnerability, and complexity of pipe networks [3],
especially for water distribution purposes.

6. Concluding Remarks

In this study, using power spectral density, the fractal dimension, and entropy ap-
proach, we have demonstrated useful spectral properties of pressure waves induced by the
water hammer effect. The main results of this study can be summarized as follows:

• We explain how the notion of power spectral density can be implemented to under-
stand the behavior of pressure waves generated by the water hammer effect and how
the strength of variation is related to the flow rate.

• We propose a method for calculating the fractal behavior of pressure wave time series
induced by the water hammer effect. This method may be used to investigate acoustics
and design pipe networks.

• We also describe how the concept of entropy can be used to calculate the complexity
of a water hammer-induced pressure wave.

• We demonstrate that the response of discharge through the pipe is proportional to the
complexity of the pressure wave generated by the water hammer effect.

Our findings may assist in comprehending the robustness, vulnerability, and complex-
ity of pressure waves induced by the water hammer effect, which has implications for the
engineering design and sustainable construction of pipe networks.
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