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Abstract: The study presents a generalized analytical solution of the laminar, oscillatory, creeping flow
of an incompressible Newtonian fluid in a porous circular pipe with spatiotemporally periodic suc-
tion/injection at the wall. The analytical solution is examined for a variety of values of the dimension-
less parameters, namely the Womersley number and the dimensionless suction/injection number.
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1. Introduction

Flow in pipes with porous walls is of considerable importance for biological and
industrial filtration processes. The mathematical modelling of steady flow in circular
porous pipes was initially addressed by Yuan and Finkelstein assuming constant seepage
velocity at the wall [1]. The Yuan and Finkelstein exact solution of the incompressible
Navier-Stokes equations was obtained via a perturbation method for small and large
suction/injection flow. Later, Terrill [2] obtained an exact solution for steady axisymmetric
flow in a porous pipe with spatially variable suction/injection. Tsangaris et al. [3] extended
the work of Terrill introducing unsteady wall injection and/or suction. The pulsatile flow
in a porous tube with increasing seepage rate along the walls was studied analytically
by Chang [4], using a linear approximation of the Navier—Stokes equations. Recently,
Sindawi et al. [5] applied an approximate analytical method to solve the pulsatile flow in a
porous tube with prescribed leakage flow rate which was considered to be smaller than
axial flow rate.

Blood flow in arterioles and tubular fluid flow in the renal tubules and during
hemodialysis are prominent examples of biological flows that are usually modelled as
Stokes flows in porous pipes. Macey [6] modelled the tubular fluid flow devising a porous
pipe with a reabsorption rate that varied linearly with distance, which is a better assump-
tion about the renal filtration process than constant reabsorption rate, especially at the
distal part of the tubules. Two years later, Macey [7] improved the renal flow modelling
considering the exponential decay of the reabsorption rate in the proximal tubule, following
the study of Kelman [8]. Kozinski et al. [9] extended the work of Macey for arbitrary varia-
tion in the seepage velocity using Fourier analysis. Bhatti et al. [10] derived an analytical
solution of the flow in an infinitely long circular porous pipe with temporally periodic
suction/injection. Siddiqui et al. [11] developed an exact analysis of steady Stokes flow
through tubes with periodic permeable wall.

The Stokes flow in permeable annulus seems to fit in the theory of the recently discov-
ered cerebrospinal fluid flow in the perivascular spaces of the brain, which is part of the
brain’s glymphatic system [12]. The glymphatic system serves an important function in the
clearance of waste, accomplished through the exchange of fluid between the perivascular
spaces and the interstitial spaces [13]. Recent experimental results based on particle track-
ing velocimetry unveiled the basic fluid mechanics aspects of the glymphatic system [14,15].
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Briefly, the cerebrospinal fluid flow in the perivascular spaces was found to be pulsatile,
driven by the heartbeat and the arterial wall pulsations, termed also as perivascular pump-
ing. Moreover, the cerebrospinal fluid flow is best described by Navier-Stokes equations
as the perivascular system is an unobstructed fluid-filled space. The experimental results
showed also that the arterial wall wave is not sinusoidal but rather follows the cardiac cycle
dynamics with a fast expansion followed by a small contraction in accordance with the
cardiac systole and diastole. A last notice is that the perivascular space is not best described
as a refined circular annulus but shall be more eccentric and flattened. The fluid mechanics
problem considered in the current study may be regarded as a model of the cerebrospinal
fluid flow in perivascular spaces, as they share many aspects. Worth mentioning is that
the fluid mechanics modelling of peristaltic flow in the glymphatic system is a mostly
undiscovered area of research.

Our group has recently presented an analytic solution of oscillatory Stokes flow
between porous plates, accounting for magnetohydrodynamic effects [16]. The purpose
of the current study is to expand the analytical framework of Stokes flow problems in
porous pipes, by considering unsteady oscillatory state and periodic suction/injection at
the permeable wall. Previous solutions in the literature on the steady state case prove to be
a limit of the derived, generalized solution that is introduced here.

2. Methods
2.1. Mathematical Formulation

A pipe with permeable wall is considered, as depicted in Figure 1. The suction/injection
is considered to be periodic, with a period of L = 27t/a. The flow is assumed to be slow,
laminar, and axisymmetric governed by the continuity and the Stokes equations, written in
the cylindrical coordinate reference system. Furthermore, the fluid is assumed to be incom-
pressible, with a constant density p, and Newtonian, with a constant dynamic viscosity .
Introducing the stream function ¥(r, z, t), the axial velocity v, and the radial velocity v,

are defined as follows,
_1a% 10%Y

V= = Ty @

(R, z,t) = vpsin(az)sin(wt)

Figure 1. Schematic presentation of the problem. On the left side, the longitudinal cross-section of the
pipe with the permeable walls where the suction/injection is represented as a sinusoidal function of
z at a given t, with a spatial period of L = 27r/«. On the right side, the circumferential cross-section
of the pipe with a different view of the suction/injection at a given ¢.

Subsequently, the continuity equation is satisfied identically and the Stokes equations

are written as follows,
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is a second order differential operator, defined by [17],

Ezziz_li iz
T o2 ror  9z?

4)

Eliminating pressure p from Equations (2) and (3), we obtain a partial differential
equation with respect to ¥ [18],

p% (EZ‘I’) — uEE*Y ®)

The corresponding boundary conditions for the velocity components are
v:(R,z,t) =0, v,(R,z,t) = vgsin(az)sin(wt) or vgsin(az)con(wt) (6a,b,c)

A constant pressure condition p, is assumed along the z axis of the pipe,

p(0,2,t) = po @)

2.2. Problem Solution

We seek the analytical solution of the above problem, using the following Ansatz for
the stream function ¥,

¥(r,z,t) = f(r) cos(az)e'* 8)
wherei =/ —1.
According to the above expression, the velocity components can be written as
— 1 df iwt — f i iwt
v, = ;Econ(az)e S Uy = a;sm(az)e )

The E2? and E2E? operators in Equations (2), (3) and (5) reduce to the following expressions

%Y 19Y |, °Y [d*f 1d ‘
E’Y = ﬁ_;ﬁ—i_@ = (f—f—a2f>con(az)e“‘” (10)

d? (d*f 1df 1d (d*f 1df A?f  1df ;
ppry = 4 (O _24) o\ _rA4 (4] 14)  oe) _ 2% 141 2 , iwt
dr? (er rdr " f) rdr (er rdr " f) ? (drz rdr " f)co (az)e (1)

So, the partial differential Equation (5) of the problem reduces to the following fourth
order linear ordinary differential equation

(8 (12 ) (o) (4] oo

By the introduction of the dimensionless variables,

g2 = i%,a —ra (13)

the differential Equation (12) takes the following form
a2f  1df > (d*>f  1df 1d (df 1df a2f  1df
B(oa- s f) =g f) ool f) - (Z-ap—f) ¥
do?  odo do?\do? odo cdo\do? odo do?  odo
and by substituting

T do?  odo
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it reduces to a linear Bessel equation of the form,

&°F 1d—F—F([32+1):0 (16)

do?2  odo

Using the variable transformation,

s=0y/p*+1 (17)

the differential Equation (16) takes the form of a Bessel equation,

diF 1dF

i? sas 10 (18

The general solution of the above Bessel equation is [19],

F(s) = cash(s) 4 casKy(s) = C30’\/,[TH L <m/ﬁ2 + 1) + a0/ B2+ 1Ky (m/ﬁz + 1) (19)

L(s), Ki(s) are the first-order-modified Bessel functions of the first and second kind,
respectively. Substituting the expression (19) in (15), an inhomogeneous Bessel equation
is derived,

jlz—ig—f:cgm/ﬁz+lh(a\/ﬁ) +C40\//327+1K1(‘7\/52+1> (20)

The Bessel function of the second kind is rejected as it obtains infinite values at the
pipe centerline, and Equation (20) reduces to,

ZZUJZC_1df—f—C30\/ﬁ2+111<0\//32+1) (21)

odo

The inhomogeneous Bessel Equation (21) has the following solution [19],

f(o) = c10L(0) + cocly (U\/,B2 + l> (22)

The above expression is the addition of the solution of the corresponding homogeneous
equation and a partial solution of the inhomogeneous equation.

Rewriting the boundary conditions (6) for the velocity at the wall of the porous pipe
in imaginary formulation,

vz(R,z,t) =0,v,(R,z,t) = vosin(az)ei“’[ (23a,b)
and accordingly with respect to f,

df(R) _ _wR
o = 0f(R)=—— (24a,b)

The constants ¢; and c; are determined by introducing the boundary conditions (24a,b)
in the solution (22),

Vo kI()(leZ)
V= 2 klo(kRa) (Ra) — Ip(Ra) L (kRa) @)
Vo Io(Ra)

= (26)

a2 kIp(kRa)I; (Ra) — Ip(Ra) L (kRa)

Finally, the analytical expressions for the velocity components are,

k=+/B2+1 (27)
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Io(kRa)Io(o) — Io(Ra)Io (ko)
klo(kRa)Il(Ra) — Io(RLl)Il (kREl)
ho(kRﬂ)Il(O') — Io(Ra)I1 (kU’)
kly(kRa)I; (Ra) — Ip(Ra)I; (kRa)

vz = vok con(az)e! (28)

vy = g sin(az)e! (29)

and in dimensionless form,

_ — n(VETRR) () — bk (F/E )
Uz = \/m\/f) +iy? Io(\/e2 + i'y2)11(£) — SIO(S)Il<\/m)

con(ez)e’™.  (30)

Ve2+iv? I (\/82 + i'yz> I (7e) — elp(e) Iy (?\/82 + i'yz)

Uy = sin(ez)e'® (31)

VE+? Io(VEFiv?) he) —elo(e) i (Ve +7?)

where the dimensionless coordinates and parameters are defined as,

7= L,E = E,T = tw, Uz = &,57 = ,€ = aR (suction/injection parameter),y = R L (Womersley number) (32)
R R Vo vy’ U
The mean dimensionless velocity over the cross-section is calculated by the integration
of the axial velocity component, resulting in the following relation,
— v 2 _\
Uz = UL;” = gcon(sz)e“ (33)
The pressure distribution is calculated by integrating Equations (2) and (3). The
boundary condition and the calculated pressure distribution in dimensionless form are
given by the following expressions assuming pg = 0,
7(0,z,7) =0 (34)
2 Ve +in2 Ip( /e +iy? ,
p(r,z,T) = —it ( ) [Io(e7) — 1]sin(ez)e’™ (35)

©VEE b (VEF ) b —elo(e) (V)

where 7 is the dimensionless pressure defined as,

57— P p_ K%
P=pP="% (36)

Rewriting Equations (30), (31) and (35) as,

Uz = (Var + iVH)con(eZ)eiT (37)
Uy = (Vig + 1V )sin(ez)e’™ (38)
7= (Par +1Pa1)szn(ez)e (39)

and taking into consideration the imaginary part of the relations, which correspond to the
boundary conditions (6a,b), we arrive at the following relations for the velocity components
and the pressure,

Uz = Vaampsin(T + ¢z)con(€z), Vaamp = \/ Vzr? + V22, tan(@z) = VEI (40)
ZR

5 — _ D

U7 = mepszn(r + @7)sin(ez), Vigmp = Vir? + V2, tan(pr 41)

ViR

‘
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_ = . S — = P,
P = Pampsin (T + ¢p)sin(ez), Pamp = \/ Par? + Par?, tan(gp) = F”I (42)
aR
_ 2 . o 2
Uz = Esm(r)con(ez), Uzm, amp = 2/ Pam = 0 (43)

The obtained solution, due to the linear form of the creeping flow equations, can be
straightforwardly added to the Poiseuille solution of steady flow and/or to the oscillatory
flow in a circular pipe. As a limit of the present solution for very small Womersley number
(v — 0), the steady state solution of Siddiqui et al. [11] can be obtained.

3. Results and Discussion

Calculations were carried out for different values of the parameters y and ¢ entering
the problem and the results are depicted graphically. Figure 2 presents the velocity field
at various time instances for three values of the Womersley number. The periodicity of
the velocity is evident both spatially and temporally. Peak values migrate towards the
pipe wall with increasing oscillation frequency, while the velocity acquires a flat profile
around the pipe axis. A dominant characteristic of the flow, clear in the stream density
plots of Figure 2, is the recurrent recirculation zones with alternating direction every half a
time period.

-z =3z =
=1 =% T=7

.2‘7
0123455

Figure 2. Velocity stream density plots and velocity magnitude contours (colored) along z and 7 axes,
for € = 1, for three values of the Womersley number (y = 1, 5, 10), at five instances within half a period
(t=0,m7/4,m/2,3m/4,n).

Similar observations are made in Figure 3, which depicts the amplitude profile of axial
and radial velocity components, and pressure, for three different values of the Womersley
parameter (y =1, 5, 10) and the suction/injection parameter (¢ = 1, 2, 3). For small values
of Womersley parameter (7 = 1) and suction injection parameter (e = 1), the axial velocity
acquires an oscillating, parabolic-like profile (quasi steady Poiseuille flow), with mean
value Uz, = 2sin(t)con(z) and maximum value approaching Uz, = 4sin(t)con(z). It can
be noticed that the amplitude of the axial velocity reduces with a factor of 2/¢. For larger
values of the Womersley parameter, the axial velocity profile flattens around the pipe axis,
while higher values appear near the pipe wall. Such behavior is typical for oscillating pipe
flows at high frequencies and is due to the boundary layer character of the flow near the
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pipe wall [20,21]. Regarding the radial velocity, its peak value shifts closer to the pipe wall
with increasing values of the Womersley parameter.

axial velocity amplitude radial velocity amplitude pressure amplitude
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Figure 3. Profiles of the axial velocity, radial velocity and pressure amplitudes for different values of
the Womersley number (7y = 1, 5, 10) and the suction/injection number (¢ =1, 2, 3).

The pressure amplitude is an increasing function of the Womersley parameter (Figure 3).
A physical explanation of the pressure amplitude increase under increasing Womersley
number lies on the balance of inertial, pressure and viscous forces dictated by the law of
momentum conservation. An oscillatory flow with high frequency leads to the increase
in unsteady inertial forces that is compensated mainly by the increase in pressure. It is
noticeable that, for = 1, the pressure amplitude increases for increasing e values, while the
reverse behavior is observed for higher 7y values. The reversal of the pressure amplitude
profiles under increasing suction/injection parameter takes place gradually within the
interval 3 < v < 4. After that, any increase in the frequency leads to bigger differences
between the pressure amplitudes for the various € values. Physically, the latter effect is a
result of high suction/injection frequency both in space and time. The reversed pattern
of pressure (but not of velocity), predicted by the solution, is an interesting finding that is
worth further investigation.

The phase angle profiles of the axial and radial velocity components, and pressure are
shown in Figure 4. For small values of v, the phase angle is close to zero, for all € values.
The phase angles of ¢z and ¢7 have the same value at the axis of the pipe and different
values at the pipe wall, where @7 = 0, according to the applied boundary condition. For
large values of Womersley number 7, the phase angle ¢z near the pipe wall approaches to
mt/4, for all values of e. The phase angle of pressure is constant along the r axis, because
the expression (42) is independent of 7. When 7y tends to very small values, ¢7 — 0, and
when 1 tends to very high values, the pressure phase angle approaches a value ¢z — 7.
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axial velocity phase angle

Overall, the phase angle is also an increasing function of the Womersley number like the
pressure amplitude.

radial velocity phase angle pressure phase angle
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Figure 4. Profiles of the axial velocity, radial velocity and pressure phase angles for different values
of the Womersley number (y = 1, 5, 10) and the suction/injection number (¢ =1, 2, 3).

4. Conclusions

The current study presents an analytical solution that generalizes the literature on
flows driven by the suction/injection occurring at the wall of permeable circular pipes.
Introducing the stream function, the momentum equation reduces to a fourth order ordi-
nary differential equation and after several transformations, to an inhomogeneous Bessel
equation that is solved analytically. Here, the suction/injection is considered to be periodic
both in space and time generating an oscillatory flow with recurrent recirculation zones and
points of flow separation. The increase in suction/injection temporal frequency, controlled
by the Womersley number, results in the shift in peak velocity towards the permeable
wall and in the increase in pressure. Concerning the spatial frequency, the increase in the
suction/injection parameter leads to a decrease in velocity for all Womersley numbers. For
small Womersley numbers, an increase in pressure is noticed. The combined increase in
both parameters was found to be causing a reduction in both velocity and pressure. The
problem description mostly fits in biofluidic systems, such as the renal tubules and the
glymphatic system in the brain, where fluid exchange seems to be taking place between
permeable interfaces. The mathematical model along with its analytic solution could serve
as a basis for the study of the aforementioned biofluidic systems.
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